Neutrino Mass

Ordering 50?

IRN Meeting June 2021

> Anatael Cabrera CNRS/IN2P3 IJCLab (Orsay) LNCA (Chooz)

Université

DES SCIENCES

cnrs

université

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratori

status on neutrino oscillation knowledge...

Standard Model (3 families)

[leptons & quarks] & <u>unitary</u> **PMNS**_{3×3}(θ₁₂,θ₂₃,θ₁₃,δ_{CP}) &

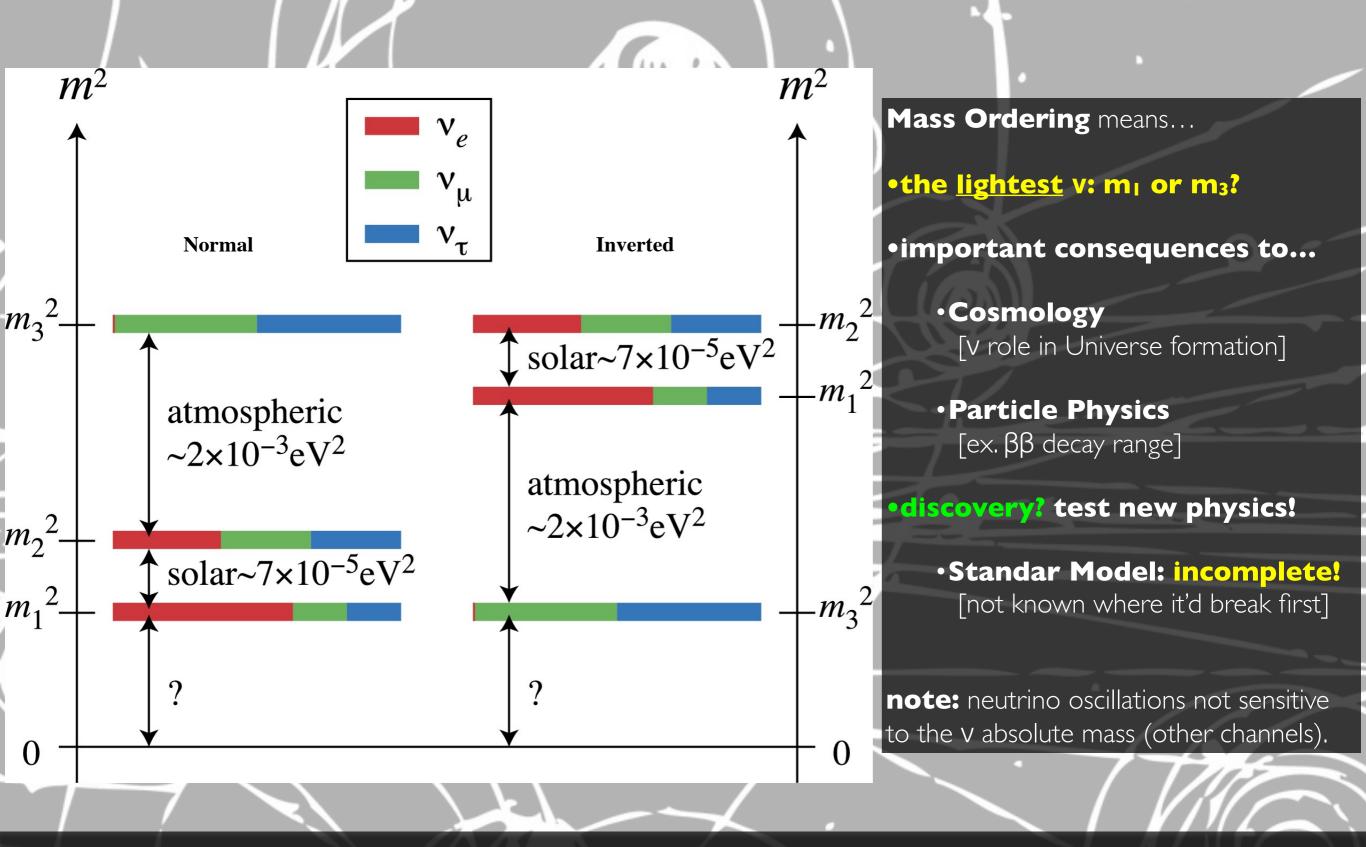
no conclusive sign of any extension so far!!

(inconsistencies vs uncertainties)

±Δm² & +δm²

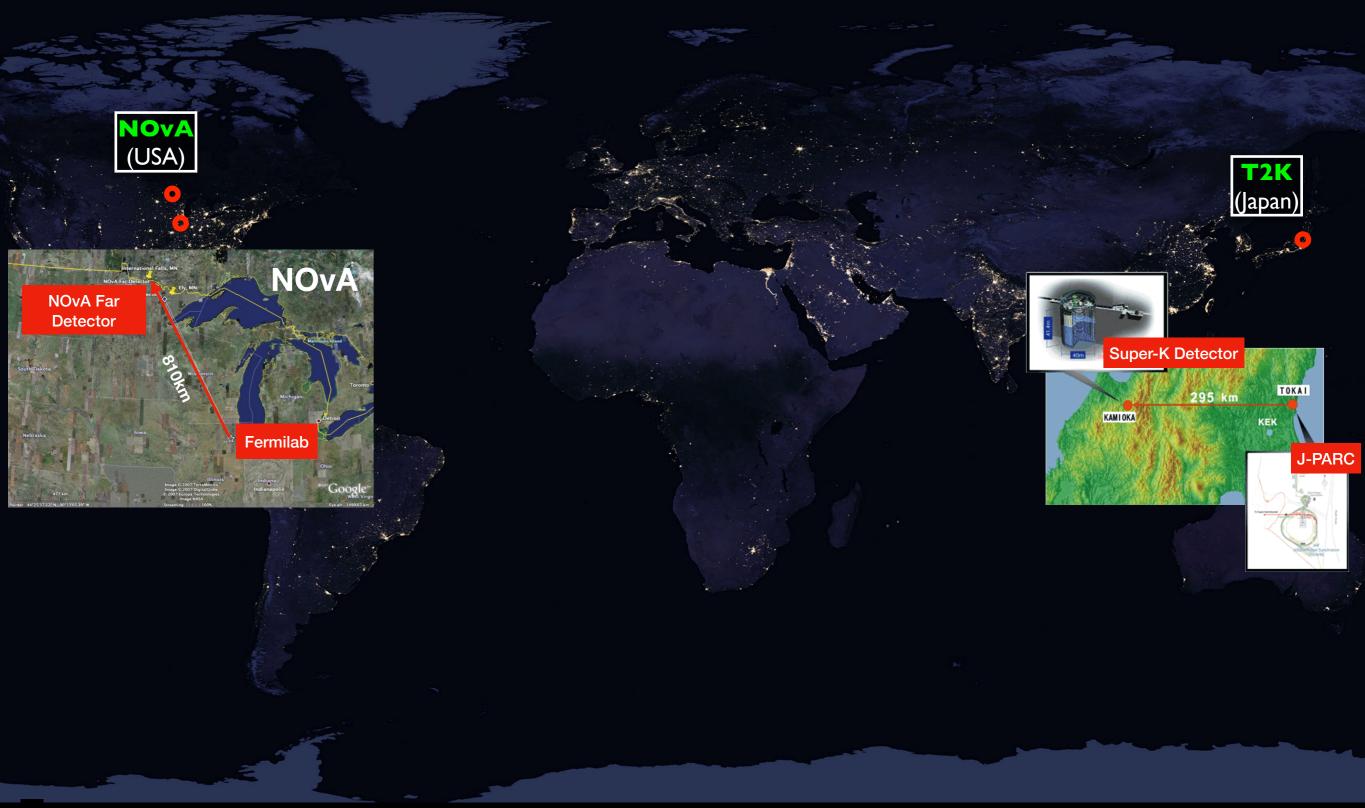
must measure all parameters→characterise & test (i.e. over-constrain) Standard Model

	today		
	best knowledge		NuFIT4.0
θ12	3.0 %	sk⊕sno	2.3 %
θ23	5.0 %	NOvA+T2K	2.0 %
θιз	1.8 %	DYB+DC+RENO	I.5 %
+δm²	2.5 %	KamLAND	2.3 %
∆m²	3.0 %	T2K+NOvA & DYB	1.3 %
Mass Ordering	unknown	SK et al	NMO ~3σ
CP Violation	unknown	T2K+NOvA	≈2σ
			(now)

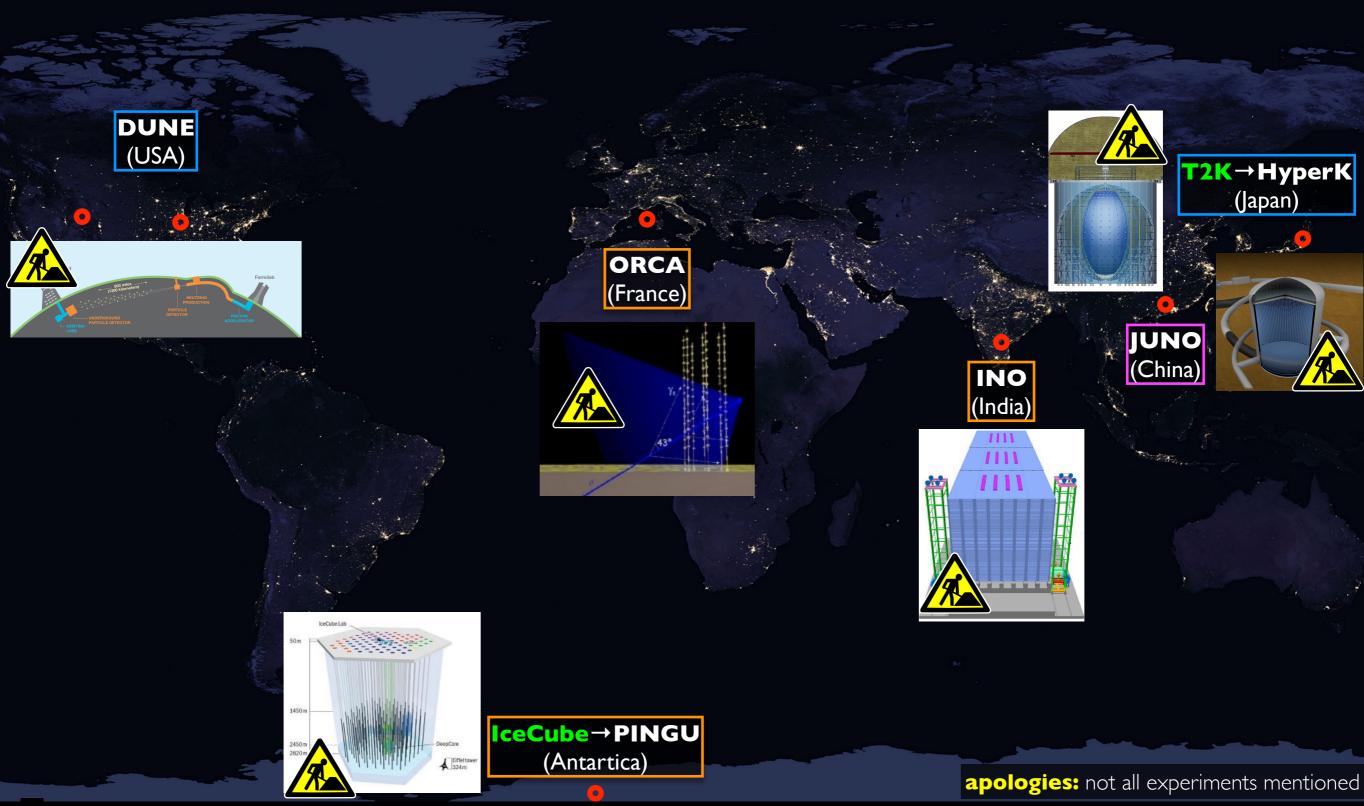

2

(reactor-beam)

soon JUNO \oplus DUNE \oplus HK will lead precision in the field \rightarrow sub-percent precision & CPV!


NOTE: ORCA \oplus PINGU \oplus IceCube complementary (Mass Ordering & Δ m² measurements)

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)



the Mass Ordering mystery.

running experiments...

imminent experiments...

PREPARED FOR SUBMISSION TO JHEP

IFT-UAM/CSIC-112, YITP-SB-2020-21

The fate of hints: updated global analysis of three-flavor neutrino oscillations

Ivan Esteban,^{*a*} M. C. Gonzalez-Garcia,^{*a,b,c*} Michele Maltoni,^{*d*} Thomas Schwetz,^{*e*} Albert Zhou^{*e*}

- ^aDepartament de Fisíca Quàntica i Astrofísica and Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain
- ^bInstitució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain.
- ^cC.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3840, USA
- ^dInstituto de Física Teórica UAM/CSIC, Calle de Nicolás Cabrera 13–15, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
- ^e Institut für Kernphysik, Karlsruher Institut für Technologie (KIT), D-76021 Karlsruhe, Germany

E-mail: ivan.esteban@fqa.ub.edu, maria.gonzalez-garcia@stonybrook.edu,michele.maltoni@csic.es,

schwetz@kit.edu, albert.zhou@kit.edu

ABSTRACT: Our herein described combined analysis of the latest neutrino oscillation data presented at the Neutrino2020 conference shows that previous hints for the neutrino mass ordering have significantly decreased, and normal ordering (NO) is favored only at the 1.6σ level. Combined with the χ^2 map provided by Super-Kamiokande for their atmospheric neutrino data analysis the hint for NO is at 2.7σ . The CP conserving value $\delta_{\rm CP} = 180^{\circ}$ is within 0.6σ of the global best fit point. Only if we restrict to inverted mass ordering, CP violation is favored at the $\sim 3\sigma$ level. We discuss the origin of these results – which are driven by the new data from the T2K and NOvA long-baseline experiments–, and the relevance of the LBL-reactor oscillation frequency complementarity. The previous 2.2σ tension in Δm_{21}^2 preferred by KamLAND and solar experiments is also reduced to the 1.1σ level after the inclusion of the latest Super-Kamiokande solar neutrino results. Finally we present updated allowed ranges for the oscillation parameters and for the leptonic Jarlskog determinant from the global analysis.

KEYWORDS: neutrino oscillations, solar and atmospheric neutrinos

today's world data leads to ...

NMO favoured to $\sim 2.7\sigma$ (2020)

Super-Kamiokande (most info so far)
I.6σ (NOvA⊕T2K & DC⊕DYB⊕RENO)

what are the leading experiments?

what's going to happen next?

today's NMO status...

arXiv:2008.11280

Earliest Resolution to the Neutrino Mass Ordering?

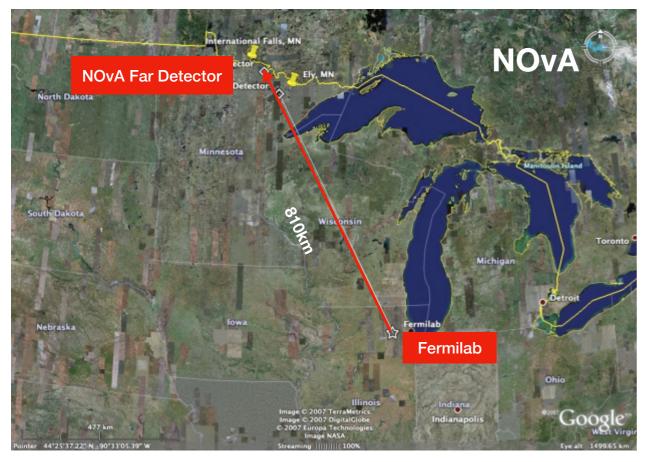
Anatael Cabrera^{*1,2,4}, Yang Han^{†1,2}, Michel Obolensky¹, Fabien Cavalier², João Coelho², Diana Navas-Nicolás², Hiroshi Nunokawa^{‡2,7}, Laurent Simard², Jianming Bian³, Nitish Nayak³, Juan Pedro Ochoa-Ricoux³, Bedřich Roskovec³, Pietro Chimenti⁵, Stefano Dusini^{6a}, Marco Grassi^{6b}, Mathieu Bongrand^{8,2}, Rebin Karaparambil⁸, Victor Lebrin⁸, Benoit Viaud⁸, Frederic Yermia⁸, Lily Asquith⁹, Thiago J. C. Bezerra⁹, Jeff Hartnell⁹, Pierre Lasorak⁹, Jiajie Ling¹⁰, Jiajun Liao¹⁰, and Hongzhao Yu¹⁰

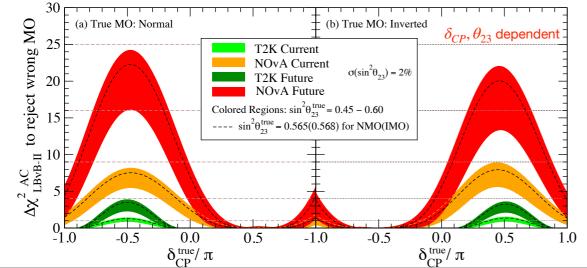
¹APC, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité University, 75205 Paris Cedex 13, France
 ²IJCLab., Université Paris-Saclay, CNRS/IN2P3, 91405 Orsay, France
 ³Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
 ⁴LNCA Underground Laboratory, CNRS/IN2P3 - CEA, Chooz, France
 ⁵Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina - PR, Brazil
 ^{6a}INFN, Sezione di Padova, via Marzolo 8, I-35131 Padova, Italy
 ^{6b}Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, I-35131 Padova, Italy
 ⁷Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, 22451-900, Brazil
 ⁸SUBATECH, CNRS/IN2P3, Université de Nantes, IMT-Atlantique, 44307 Nantes, France
 ⁹Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
 ¹⁰Sun Yat-sen University, NO. 135 Xingang Xi Road, Guangzhou, China, 510275

August 27, 2020 – v
3.5 $\,$

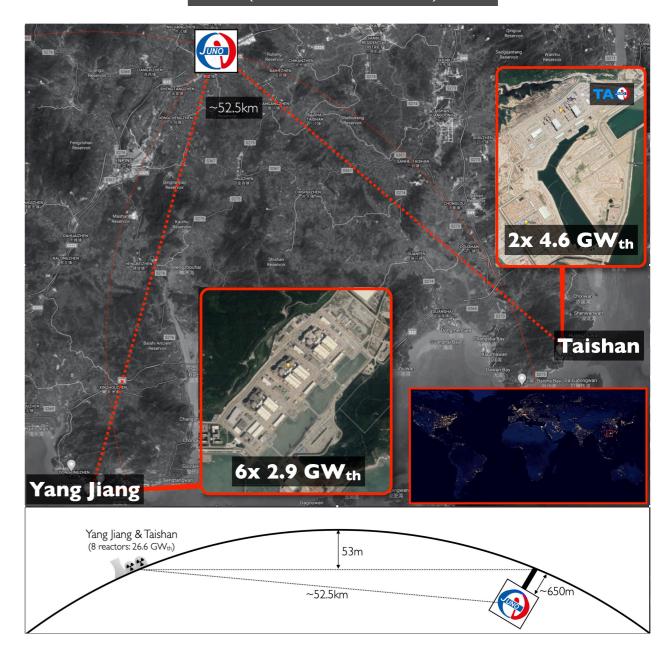
when can we resolve (≥5σ) the neutrino Mass Order? [earliest time scale]

which experiments (i.e. <u>the minimal set</u>) to yield the full resolution?


what physics exploited to yield the full resolution?


MO to probe new physics? (discovery potential)

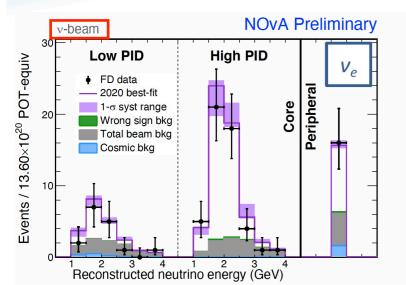
our studies goal.



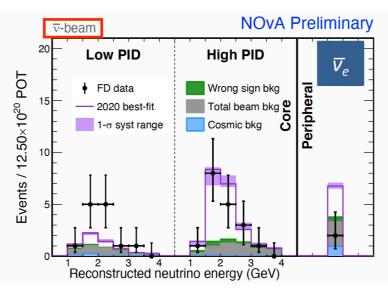
Matter Effects Oscillations (CP experiments→ fake CP-violation)

Vacuum Oscillations (no CP-violation)

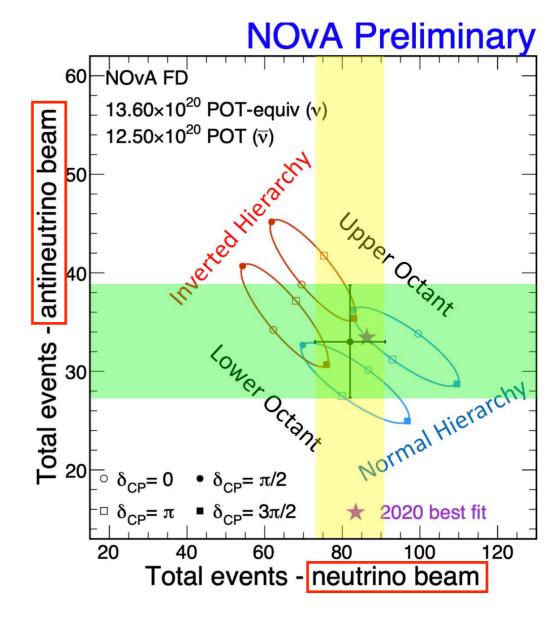
only 2 ways to measure...


arXiv:2008.11280

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

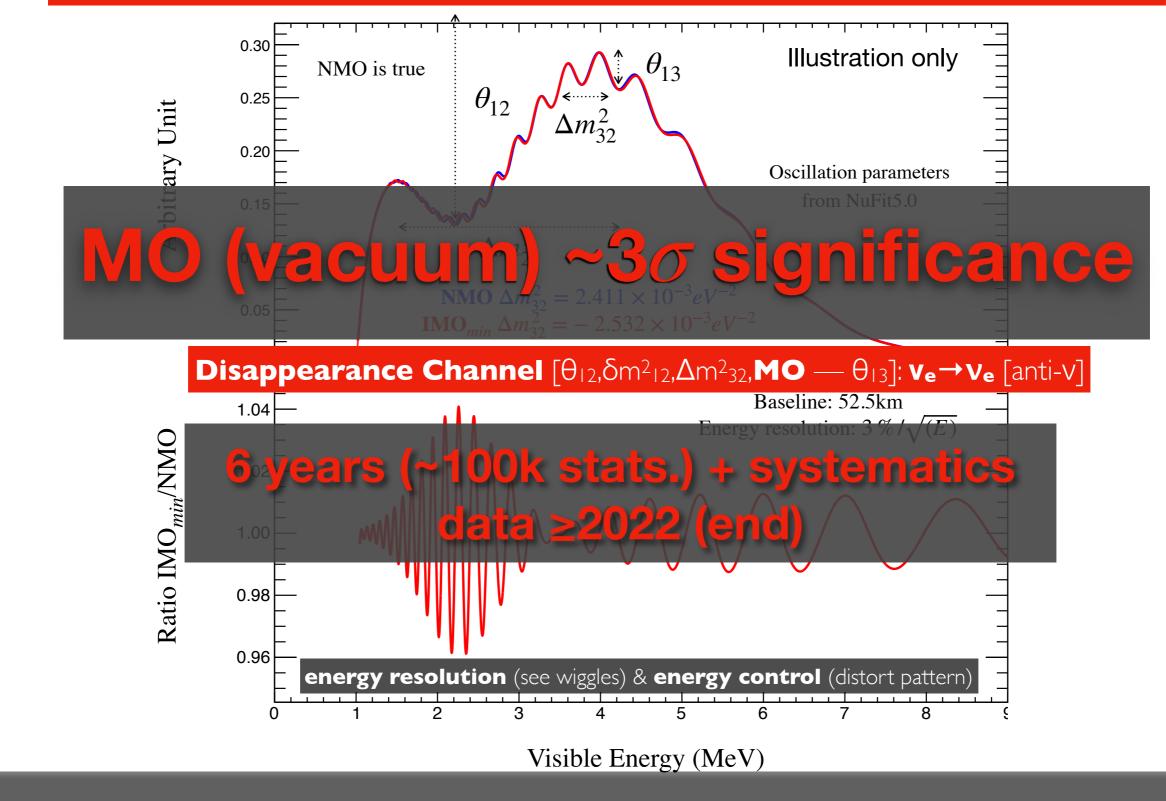

NOvA & T2K: direct comparison of oscillation with neutrino & anti-neutrino

NEUTRINO


v_e and \overline{v}_e Data at the Far Detector

Total Observed	82	Range
Total Prediction	85.8	52-110
Wrong-sign	1.0	0.6-1.7
Beam Bkgd.	22.7	
Cosmic Bkgd.	3.1	
Total Bkgd.	26.8	26-28

Total Observed	33	Range		
Total Prediction	33.2	25-45		
Wrong-sign	2.3	1.0-3.2		
Beam Bkgd.	10.2			
Cosmic Bkgd.	1.6			
Total Bkgd.	14.0	13-15		
>4 σ evidence of $\bar{\nu}_e$ appearance				



Appearance Channel $[\theta_{23} \oplus \theta_{13}, \delta_{CP}, MO]$: $v_{\mu} \rightarrow v_{e}$ [v and anti-v]

Disappearance Channel $[\theta_{23}, \Delta m^2_{32}]$: $v_{\mu} \rightarrow v_{\mu}$ "survival probability" (not shown)

NOvA/T2K observables...

JUNO ultra-precise oscillometry: 2 oscillations & interference terms (hard physics)

the JUNO (hardest) way...

in 2020...

Super-Kamiokande — no!

T2K (≤ 2024) — no! little $\leq 2\sigma \rightarrow$ T2K designed for cleanest $\delta(CP)$

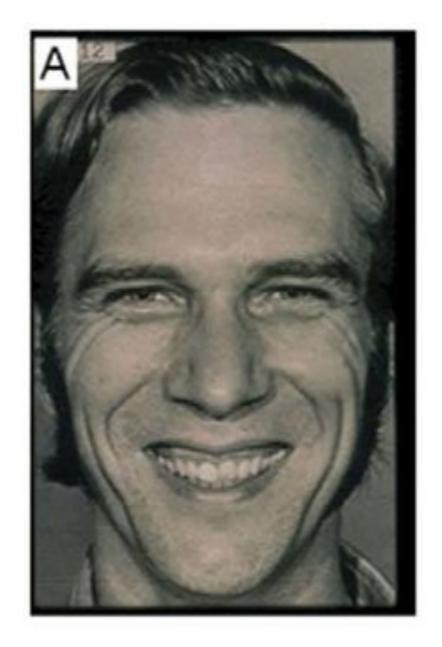
NOvA (≤2026) — no! not bad ‼ ≤4σ (by 2026), <u>only if lucky on δ(CP)</u>!

JUNO (≥2022) — no! not bad !! robust ~3σ (by 2028) — careless of δ(CP)!!

by 2030...

DUNE(≥2028?) — yes! stunning >5σ (by ~2030?) — careless of δ(CP)!!

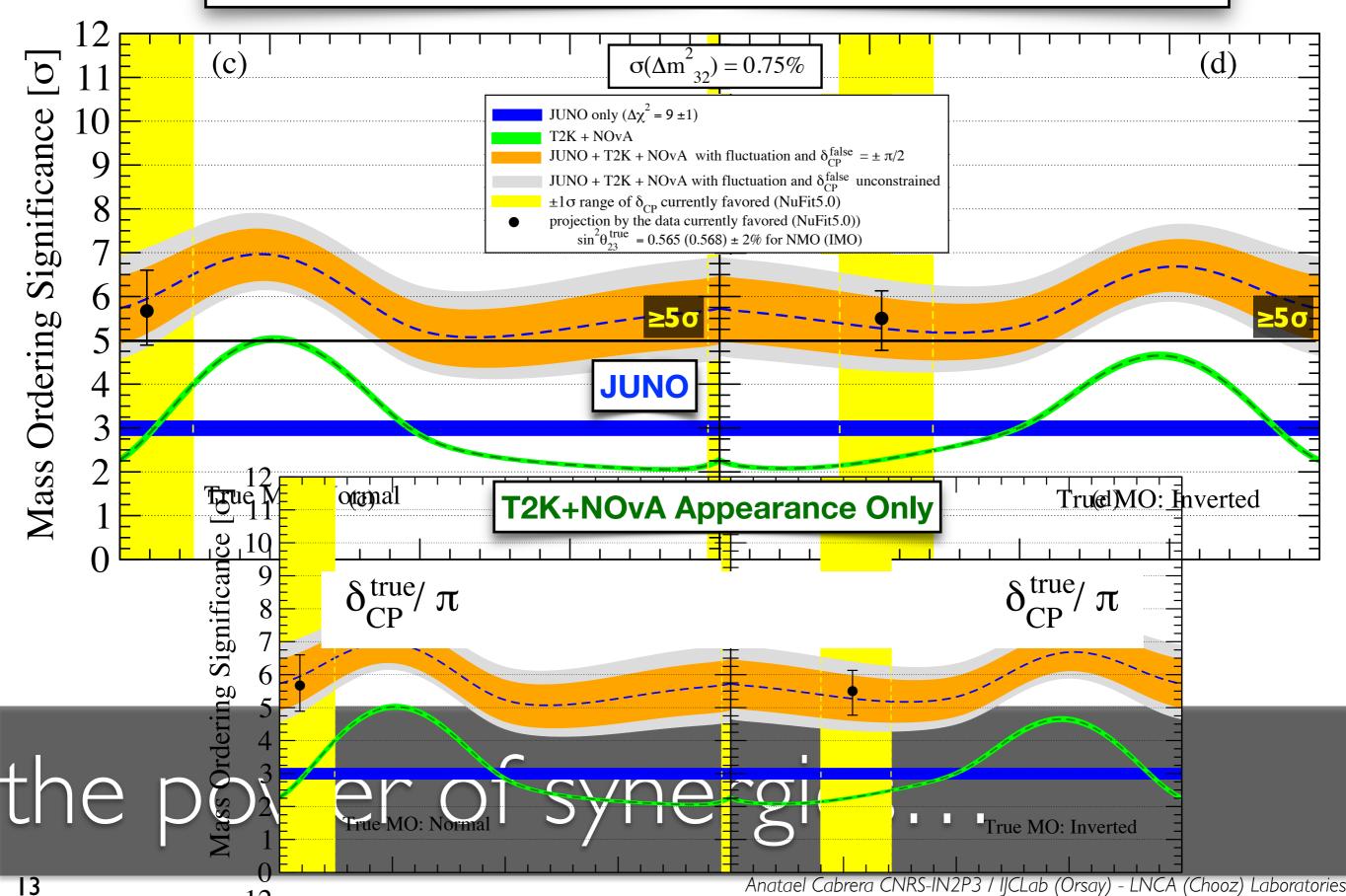
Hyper-K(\geq 2028?) — no! (like T2K) targets the <u>cleanest δ (CP</u>) [minimal matter effects]

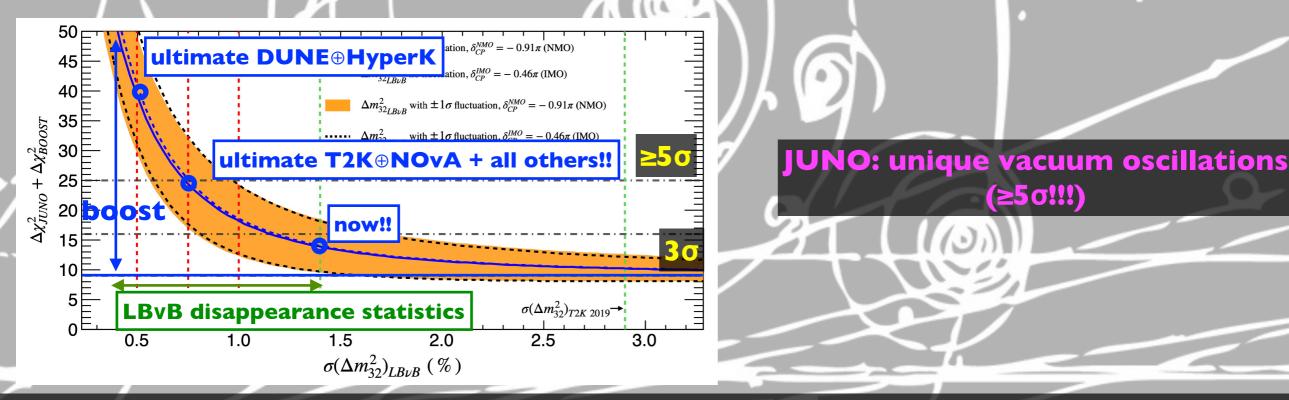

atmospheric neutrino — critical! (extra info maybe $\sim 5\sigma$)

atmospheric not addressed in our analysis (complex) \rightarrow reinforce our conclusions

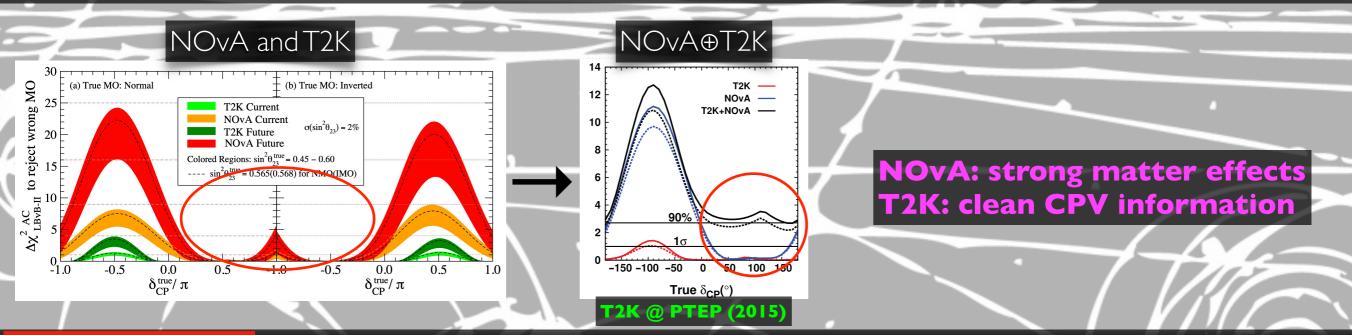
resolution ($\gtrsim 5\sigma$) anybody...?

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

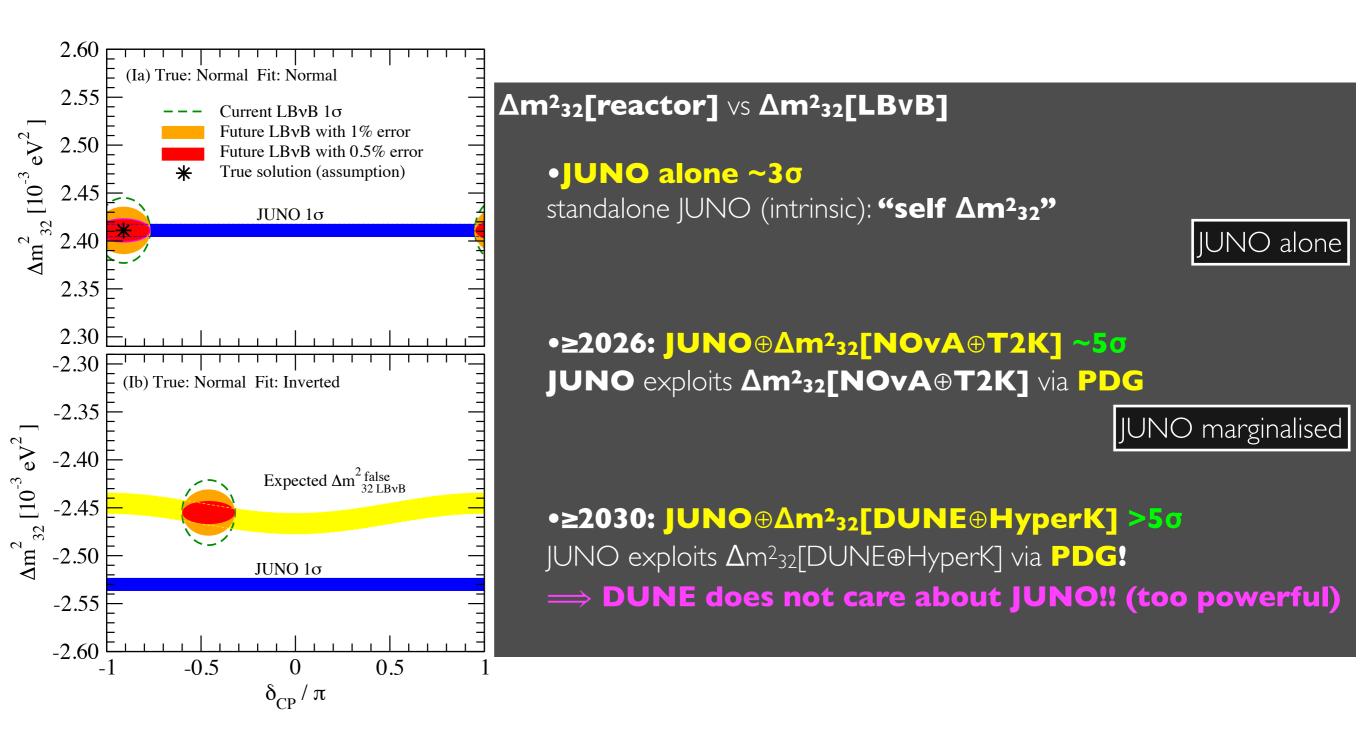

•T2K Appearance (≤2024) -- no!
•NOvA Appearance (≤2026) -- no!
•JUNO (≥2022) -- no!
⇒ T2K + NOvA + JUNO = yes? → no! (just adding)
⇒ T2K ⊕ NOvA ⊕ JUNO = yes! (synergies: appearance & disappearance)

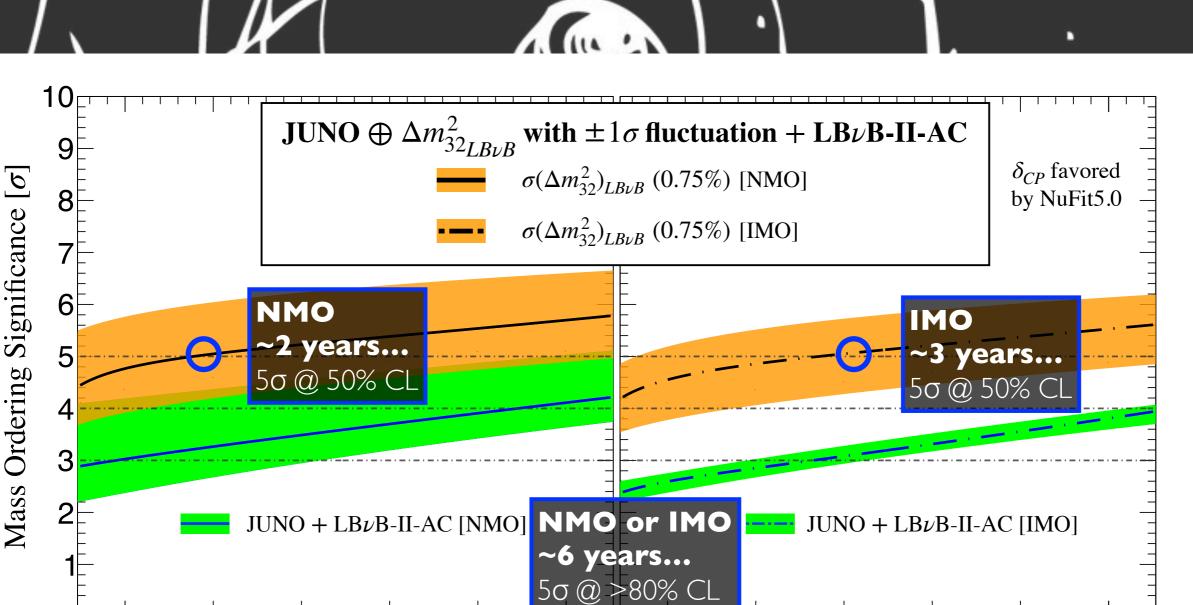

still, ~5 σ before 2030...

arXiv:2008.11280


JUNO \bigoplus LB ν B-Disappearance [$\delta(\Delta m^2)$ =0.75%] \bigoplus LB ν B-Appearance

synergy I (JUNO vs NOvA \oplus T2K): high precision disappearance Δm^{2}_{32} measurement

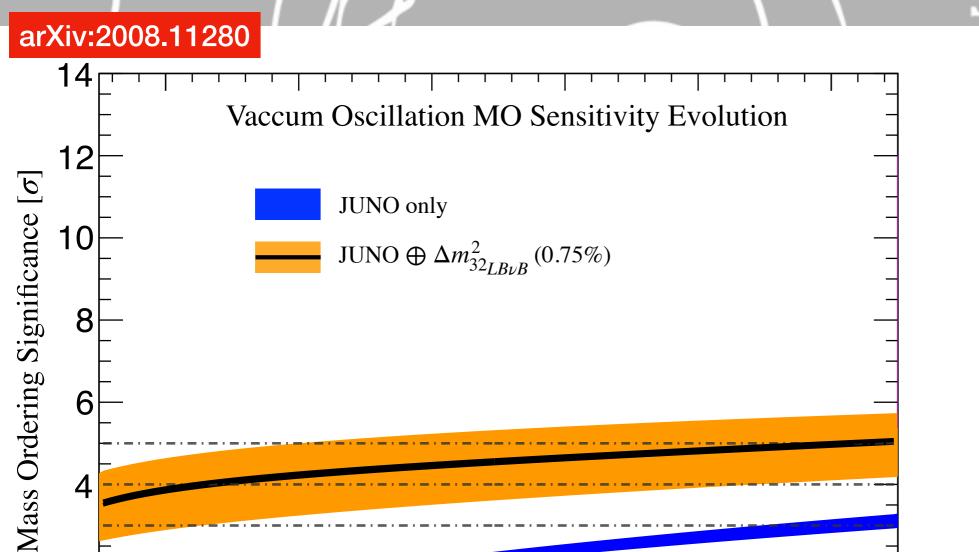

synergy II (NOvA vs T2K): MO⊕CPV complementary phase space discrimination


arXiv:2008.11280

Mass Ordering: JUNO & NOvA & T2K...

(≥5σ**!!!**)

all about the Δm^2 synergy...



T2K data (2026) and NOvA data (2024) \rightarrow release most precise Δ m²₃₂

JUNO Timeline (years)

JUNO Timeline (years)

-5σ maybe even by ≥2026‼ (if lucky)

8

6

4

2

0

$\frac{1}{2}$ Vacuum vs Matter

JUNO Timeline (years)

first? MO @ ≥5σ possible (≥90% CL) — follow JUNO [2028]

discovery: physics BSM?

time evolution... new physics?

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

arXiv:2008.11280

Earliest Resolution to the Neutrino Mass Ordering?

Anatael Cabrera*^{1,2,4}, Yang Han^{†1,2}, Michel Obolensky¹, Fabien Cavalier², João Coelho², Diana Navas-Nicolás², Hiroshi Nunokawa^{‡2,7}, Laurent Simard², Jianming Bian³, Nitish Nayak³, Juan Pedro Ochoa-Ricoux³, Bedřich Roskovec³, Pietro Chimenti⁵, Stefano Dusini^{6a}, Marco Grassi^{6b}, Mathieu Bongrand^{8,2}, Rebin Karaparambil⁸, Victor Lebrin⁸, Benoit Viaud⁸, Frederic Yermia⁸, Lily Asquith⁹, Thiago J. C. Bezerra⁹, Jeff Hartnell⁹, Pierre Lasorak⁹, Jiajie Ling¹⁰, Jiajun Liao¹⁰, and Hongzhao Yu¹⁰

¹APC, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité University, 75205 Paris Cedex 13, France ²IJCLab,, Université Paris-Saclay, CNRS/IN2P3, 91405 Orsay, France ³Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA ⁴LNCA Underground Laboratory, CNRS/IN2P3 - CEA, Chooz, France ⁵Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina – PR, Brazil ^{6a}INFN, Sezione di Padova, via Marzolo 8, I-35131 Padova, Italy ^{6b}Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, I-35131 Padova, Italy ⁷Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, 22451-900, Brazil ⁸SUBATECH, CNRS/IN2P3, Université de Nantes, IMT-Atlantique, 44307 Nantes, France ⁹Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom ¹⁰Sun Yat-sen University, NO. 135 Xingang Xi Road, Guangzhou, China, 510275

August 27, 2020 – v3.5

We hereby illustrate and numerically demonstrate via a simplified proof of concept calculation tuned to the latest average neutrino global data that the combined sensitivity of JUNO with NOvA and T2K experiments has the potential to be the first fully resolved ($>5\sigma$) measurement of neutrino Mass Ordering (MO) around 2028; tightly linked to the JUNO schedule. Our predictions account for the key ambiguities and the most relevant $\pm 1\sigma$ data fluctuations. In the absence of any concrete MO theoretical prediction and given its intrinsic binary outcome, we highlight the benefits of having such a resolved measurement in the light of the remarkable MO resolution ability of the next generation of long baseline neutrino beams experiments. We motivate the opportunity of exploiting the MO experimental framework to scrutinise the standard oscillation model, thus, opening for unique discovery potential, should unexpected discrepancies manifest. Phenomenologically, the deepest insight relies on the articulation of MO resolved measurements via at least the two possible methodologies matter effects and purely vacuum oscillations. Thus, we argue that the JUNO vacuum MO measurement may feasibly yield full resolution in combination to the next generation of long baseline neutrino beams experiments.

our results (end of August 2020)

The discovery of *neutrino* (ν) oscillations phenomenon non-trivial mixture of the known neutrino flavour eigenhave completed a remarkable scientific endeavour last- states (ν_e, ν_μ, ν_τ) linked to the three (e, μ, τ) respective ing several decades that has changed forever our under- charged leptons. Since no significant experimental evstanding of the phenomenology of the leptonic sector idence beyond three families exists so far, the mixing of the standard model of elementary particles (SM). A is characterised by the 3×3 so called Pontecorvo-Makifew modifications were accommodated to account for the Nakagawa-Sakata (PMNS) [3, 4] matrix, assumed uninew phenomenon [1]. This means the manifestation of tary, thus parametrised by three independent mixing anmassive neutrinos and leptonic mixing along with an em- gles $(\theta_{12}, \theta_{23}, \theta_{13})$ and one CP phase (δ_{CP}) . The neutrino bedded mechanism for the intrinsic difference between ν mass spectra are indirectly known via the two measured and $\bar{\nu}$ due to the violation of charge conjugation parity mass squared differences indicated as $\delta m_{21}^2 (\equiv m_2^2 - m_1^2)$ symmetry, or CP-violation (CPV); e.g. review [2].

eigenstates (ν_1 , ν_2 , ν_3) spectrum is non-zero and non-rectly accessible via neutrino oscillations and remains degenerate, so at least two neutrinos are massive. Each unknown, despite major active research [5]. mass eigenstate (ν_i ; with i=1,2,3) can be regarded as a

*Contact: anatael@in2p3.fr Contact: vang.han@apc.in2p3.fr [‡]Contact: nunokawa@puc-rio.br

and $\Delta m_{32}^2 (\equiv m_3^2 - m_2^2)$, respectively, related to the ν_2/ν_1 Neutrino oscillations imply that the neutrino mass and ν_3/ν_2 pairs. The neutrino absolute mass is not di-

As of today, the field is well established both exper-

2020 Oct 4 [hep-ph] arXiv:2009.08585v2

Physics potentials with a combined sensitivity of T2K-II, $NO\nu A$

extension and JUNO

S. Cao,^{1,*} A. Nath,^{2,†} T. V. Ngoc,^{3,4,‡} Ng. K. Francis,^{2,§} N. T. Hong Van,^{5,3,¶} and P. T. Quyen^{3,4,**}

¹High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan ²Department of Physics, Tezpur University, Assam, India ³Institute For Interdisciplinary Research in Science and Education (IFIRSE), Quy Nhon, Vietnam ⁴Graduate University of Science and Technology,

Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam ⁵Institute of Physics, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam

Abstract

Leptonic CP violation search, neutrino mass hierarchy determination, and precision measurement of oscillation parameters for an unitary test of the neutrino mixing matrix are among the major targets of the ongoing and future neutrino oscillation experiments. The work explores the physics reach for these targets by around 2027, when the 3rd generation of the neutrino experiments starts operation, with a combined sensitivity of three experiments T2K-II, $NO\nu A$ extension, and JUNO. It is shown that a joint analysis of these three experiments can conclusively determine the neutrino mass hierarchy. Also, it provides 5σ C.L. more or less to exclude CP conserving values if true $\delta_{\rm CP} \sim \pm \frac{\pi}{2}$ and more than 50% fractional region of true $\delta_{\rm CP}$ values can be explored with a significance of at least 3σ C.L. Besides, the joint analysis can provide unprecedented precision measurements of the atmospheric neutrino oscillation parameters and a great offer to solve the θ_{23} octant degeneracy in case of non-maximal mixing.

* cvson@post.kek.jp [†] ankur04@tezu.ernet.in [‡] tranngocapc06@ifirse.icise.vn § francis@tezu.ernet.in

- ¶ nhvan@iop.vast.ac.vn
- ** phantoquyen97@gmail.com

confirmation (end of September 2020) [poster @ Nu2020]

validation \leftrightarrow agreement.

Anatael Cabrera CNRS-IN2P3 / IICLab (Orsay) - LNCA (Chooz) Laboratories

8

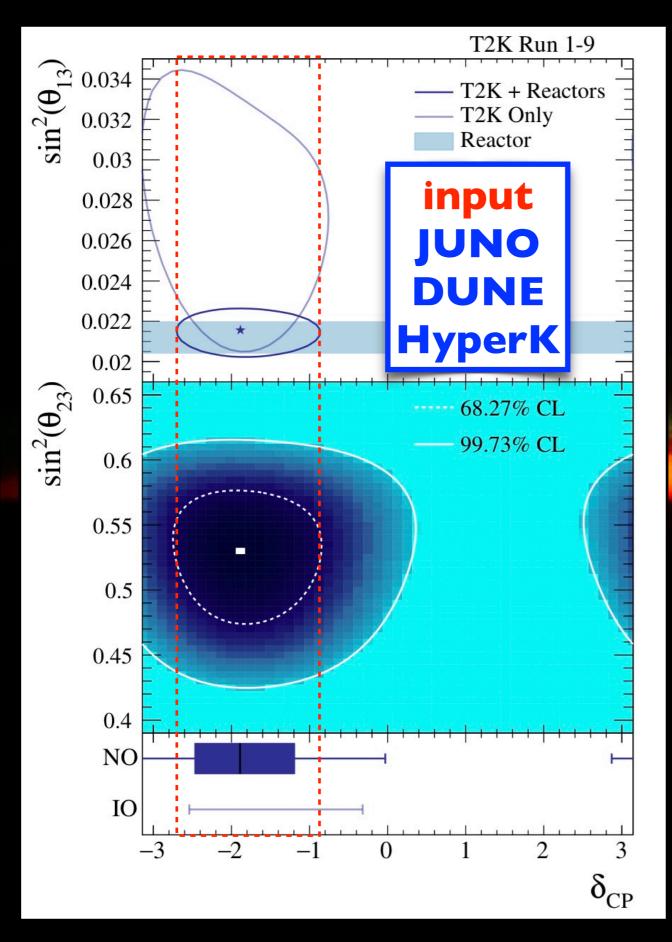
Neutrino Mass Ordering resolution...

•fully resolved (≥5σ) by ≥2026: JUNO⊕NOvA⊕T2K (current and extra **atmospheric neutrino**→even better)

first measurement a mixture of vacuum(JUNO)@matter(NOvA,T2K,etc),
 including atmospheric

ultimate vacuum(JUNO) vs matter(DUNE): discovery?

anatael@in2p3.fr


merci...

спасибі... ありがとう...

danke... 고맙습니다... obrigado... Спасибо... grazie... 谢谢... hvala...

gracias... gracias... شکرا thanks...

T2K⊕reactor best knowledge CP-Violation...

20

CPV phase vs θ23

[octant ambiguity]

CPV phase vs (Atmospheric) Mass Ordering

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)