# CRAB

# Calibrated Recoils for Accurate Bolometry

Calibration of nuclear recoils at the 100 eV scale using neutron capture



David Lhuillier IRN Neutrino Meeting June 10-11 2021

# Sub-keV Nuclear Recoils – Scientific Case

Few 10 eV nuclear recoils can now be detected in 1-10 g scale cryogenic detectors



Light Dark Matter

Low mass / low recoil area to be explored

### Coherent Scattering of Reactor $\nu$ 's



Region Of Interest = 10-100 eV scale

2

# Understanding Energy Losses



Complex model of detector response depends on:

- Detector crystal
- Recoiling particle: quenched nuclear recoils w.r.t. e-recoils
- Energy range

- Strong evolution of quenching factors
- Approximations of reference work by Lindhard not valid anymore
- Efforts of all experiments to measure their own quenching factors at low energy

# **Understanding Energy Losses**



Complex model of detector response depends on:

- Detector crystal
- Recoiling particle: quenched nuclear recoils w.r.t. e-recoils
- Energy range



Phonons only limit at very low E<sub>recoil</sub>



- Residual impact of energy stored in lattice defects?
- Sensitivity to recoiling particle?
- $\rightarrow$  Need **direct** measurement

# Sub-keV Nuclear Recoils



Equivalent kinematics for several neutral particles:

- MeV neutrinos
- GeV DM

Signal for

new physics



• keV neutrons

Background or ... Calibration tools

# Principle of the CRAB Method



- 1. Capture of a thermal (~25 meV) neutron
- Emission of a single, several MeV, γ-ray by the compound nucleus. Escapes the detector with no energy deposit.
- Pure signal of a calibrated nuclear recoil from the 2-body kinematics, in the 100 eV region.



# **CRAB Meets all Specifications**

□ With 1 barn-scale capture cross-sections, the **volume** of cm-size detectors is **uniformly probed**.

□ The signal is induced by **nuclear recoils.** 

□ In the **100 eV energy range of interes**t for physics.

- The process can be tagged by the detection in coincidence of the emitted high-E  $\gamma$ . In principle each isotope of the detector can provide a different calibration line.
- $\rightarrow$  Potential for low background and accurate calibration + linearity study.

A simple idea but implementation for heavy nuclei implies complex nuclear physics...

# **FIFRELIN Simulation Software**



- FIFRELIN code designed to describe the de-excitation of all fission fragments <u>O. Litaize et al., Eur. Phys. J. A 51, 1 (2015)</u>
- After a n-capture, the compound nucleus has an excitation energy of S<sub>n</sub> (neutron separation energy). γ-cascades are generated by sampling transitions in level schemes:
  - Including all measured transitions
  - Completed by level density models
- Predictions validated with the independent code DICEBOX + improved n-Gd detection in the STEREO detector <u>H. Almazán et al., Eur. Phys. J. A 55, 183 (2019).</u>

Calibration signal: peak of mono-energetic recoils from the single- $\gamma$  transitions.

# Good Candidates from Nuclear Data

n<sub>thermal</sub> +

### Target nucleus:

- High natural isotopic abundance Y<sub>ab</sub>
- High capture cross-section  $\sigma_{n-\gamma}$

### Compound nucleus:

- High branching ratio for single- $\gamma$  transition  $I_{\gamma}^{Prim}$
- Long-lived final state
- Figure of Merit =  $Y_{ab} x \sigma_{n-\gamma} x I_{\gamma}^{Prim}$  is favorable for several tungsten and germanium isotopes.

|                    | Target   |                     | Compound         |                     |        |      |
|--------------------|----------|---------------------|------------------|---------------------|--------|------|
| <b>_</b>           |          | ı                   |                  |                     |        |      |
| Target             | $Y_{ab}$ | $\sigma_{n-\gamma}$ | $S_n$            | $I_{\gamma}^{Prim}$ | Recoil | FoM  |
| Isotope            | (%)      | (barn)              | $(\mathrm{keV})$ | (%)                 | (eV)   |      |
| $^{182}W$          | 26.50    | 20.32               | 6191             | 13.94               | 112.5  | 7506 |
| $^{183}W$          | 14.31    | 9.87                | 7411             | 5.83                | 160.3  | 823  |
| $^{184}W$          | 30.64    | 1.63                | 5754             | 1.48                | 96.1   | 74   |
| $^{186}W$          | 28.43    | 37.89               | 5467             | 0.26                | 85.8   | 281  |
| $^{70}$ Ge         | 20.52    | 3.05                | 7416             | 1.95                | 416.2  | 122  |
| $^{72}\mathrm{Ge}$ | 27.45    | 0.89                | 6783             | 0.0                 | 338.7  | -    |
| $^{73}$ Ge         | 7.76     | 14.70               | 10196            | 0.0                 | 754.9  | -    |
| $^{74}\mathrm{Ge}$ | 36.52    | 0.52                | 6506             | 2.83                | 303.2  | 54   |
| $^{76}$ Ge         | 7.75     | 0.15                | 6073             | 0.0                 | 257.3  | -    |

A+1 X

# Feasibility Study

2011.13803 [physics.ins-det] - accepted in JINST

### **Two practical cases:**

- CaWO<sub>4</sub> CRESST → NUCLEUS <u>Phys. Rev. D96, 022009 (2017)</u>
- **Ge EDELWEISS** → **RICOCHET** *Phys. Rev.* D99, 082003 (2019)

# Emitted $\gamma$ and e<sup>-</sup> Spectra from <sup>183</sup>W atoms

 $n + {}^{182}W \rightarrow {}^{183}W^*$ 



11

# GEANT4 Simulation of $E_{dep}$ in the Detector

Specific physics lists & libraries

- EMZ: low E electromagnetic processes
- Neutron\_HP: low E neutron physics
- NCRYSTAL: neutron interactions in crystals.

Detailed geometry



### 1<sup>st</sup> step:

- Send n<sub>th</sub> beam.
- Record n-capture vertices in the crystal.
- Track scattered neutrons.

### 2<sup>nd</sup> step:

- From each n-capture vertex in the crystal, send a cascade of particles as predicted by FIFRELIN for the compound nucleus.
- Record the energy deposited in the detector.
- Compute the nuclear recoil from conservation of total momentum.
- Smear the total deposited energy by the expected resolution.

# Favorable Nuclear & Electromagnetic Physics



- Clear single-γ calibration lines above the continuous distribution from multi-γ cascades!
- The 0-200 eV Region Of Interest (ROI) is dominated by pure nuclear recoils. Electromagnetic E deposits are either 0 or way above the ROI.



# Recoil spectrum in a CaWO<sub>4</sub> Nucleus crystal





- Detector characteristics and background at surface taken as measured in *Phys. Rev. D96*, 022009 (2017). No significant background expected from the ambient γ and n fluxes measured on reactor site.
  - 0.76 g crystal, 5 eV energy resolution (1 $\sigma$ )
  - 3.4 day run with 270 n/cm<sup>2</sup>/s
    → Total of 2.10<sup>6</sup> n-captures
  - Clear calibration peaks at 112 and 160 eV ! 1% stat accuracy on the peak position achievable within 1h.
  - Large and steep background underneath the 3rd peak at 86 eV...

# $\gamma$ -Tagging

Tagging the high-E  $\gamma$  of a primary transition cleans the continuous recoil spectrum from the other transitions/isotopes



- Two  $\Phi$ 3" x 3"  $\gamma$ -detectors
- On both sides of the bolometer, 4 cm away.
- BGO considered here.
- Φ2cm x 2cm BGO crystal already tested at 20 mK.
  5.2% E resol (FWHM) obtained for the<sup>208</sup>Tl line (2.615 MeV). <u>Nature 422, 876 (2003)</u>

### Single mode **Coinc mode** Total n+<sup>182</sup>W Total n+<sup>182</sup>W Multi-γ \_\_\_\_\_\_ ռություն հայտություն հայտություն հայտություն հայտորություն հայտորություն հայտորություն հայտորություն հայտորությ Արտագրություն հայտություն հայտություն հայտորություն հայտորություն հայտորություն հայտորություն հայտորություն հայտ 100 Multi-γ 6000 Reactor OFF Multi- $\gamma = 2$ 80 Counts/1eV 000 n+<sup>186</sup>W Counts/1eV 60 40 2000 20 0<sup>لت</sup> 20 80 100 120 140 160 180 200 40 60 100 120 20 60 80 40 140 160 180 Energy [eV] Energy [eV]

- Requesting 5.47±0.2 MeV in one of the two BGO detectors (2σ E<sub>resol</sub> cut) makes a 3rd calibration peak clearly visible around 80 eV.
- Same approach can be applied to the single- $\gamma$  transitions of the other isotopes.
- $\rightarrow$  3 peaks in the 80 160 eV range allowing an accurate study of the calibration coeff. and linearity

# $\gamma$ -Tagging - CaWO<sub>4</sub> Case

# Single Rates in the BGO Detectors





- Total rate ~10 Hz with no threshold. Dominant contribution from muons could be further reduced with a veto counter.
- No pile-up or dead-time issue, negligible accidental coincidences

## Ge Case



- 30 g Ge crystal (1.8 cm size) from EDELWEISS R&D Phys. Rev. D99, 082003 (2019)
- **5**  $n/cm^2/s \rightarrow \sim 2$  n-capture/s (slower time response in larger crystal)
- 7 day run
- Critical impact of energy resolution taken as 20 eV (1σ)

## Ge Case





 Calibration peak of n+<sup>70</sup>Ge stands on top of a large and steep background. **Coinc mode:**  $E_{\gamma}$  = 7.4±0.2 MeV in one of the BGO's



- Nice calibration peak at the expected 416 eV.
- Mean position retrieved with 1%-level bias from simple fit with 2 gauss functions – no detailed knowledge of the multi-γ background is needed.

# Conclusion

- A detailed feasibility study shows a strong potential of the CRAB method with a unique combination of key features:
  - Pure nuclear recoils
  - In the (few) 100 eV range
  - Uniformly distributed in the detector volume
  - High accuracy expected from comfortable S/B and rates.
- Transportation to other experiments using simultaneous measurements with e-recoil techniques (X-rays sources, LED pulses)
- Tungsten is a golden nucleus → first validation of the method is possible with CaWO<sub>4</sub> crystals in single mode.
- Coinc mode with γ-tagging: allows application of the CRAB method to Germanium and/or lower resolution detectors!

# Perspectives

- First measurement foreseen in 2023 at the Vienna reactor
- Various materials can be tested with the FIFRELIN+GEANT4 toolkit
- Measurement of quenching factors in the sub-keV regime
- Bolometer-γ-γ triple coincidence could probe even lower recoils
- The γ-tagging defines the direction of the nuclear recoil → sensitivity to the orientation w.r.t. the crystal lattice could be investigated...

CRAB proto-collaboration under construction

