
IRN Neutrino meeting - 10 June 2021 

Status of the 
JUNO experiment

Monica Sisti
INFN Milano-Bicocca

on behalf of the JUNO collaboration



Jiangmen Underground Neutrino Observatory
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Huge mass: ~20 kton Liquid Scintillator (LS)
Underground: ~700 m overburden
Unprecedented energy resolution: 3% / √E (MeV)
Energy scale precision: < 1%

arXiv:2104.02565
JPG 43 (2016) 030401
arXiv:1508.07166

Main physics goal:
ν Mass Ordering determination

↳ rich physics possibilities



Jiangmen Underground Neutrino Observatory
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Cosmic muons 
~ 250k/day

Atmospheric ν  
several/day

Geo-ν 
1-2/day

Solar ν 
(10s-1000s)/day 700 m

Supernova ν 
~ 5k in 10s for 10kpc

26.6 GWth, 53 km

0.004 Hz/m2, 207 GeV 
10% multiple-muon

Neutrino Rates at JUNO

Reactor ν 
~ 60/day



JUNO location
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Yangjiang NPP

Taishan 
NPP

Daya Bay 
NPP

Huizhou 
NPP

Lufeng 
NPP

53 km
53 km

Hong Kong

Macau

Guang Zhou

Shen Zhen

Zhu Hai

2.5 h drive
1800 m.w.e.

NPP Daya Bay Huizhou Lufeng Yangjiang  Taishan

Status Operational Planned Planned Operational Operational / Planned
Power 17.4 GW 17.4 GW 17.4 GW 17.4 GW 9.2 GW / 18.4 GW

now operating: 26.6 GW

Total Power:
35.8 → 26.6 GWth

JUNO underground hall



Neutrino mass ordering at reactors
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SLOW Δmsol
2

FAST Δmatm
2

νe survival probability:

normal ordering (NO) inverted ordering (NO)

NO:
IO:

Independent of 
θ23 and CP phase



Energy threshold: 1.8 MeV

Reactor antineutrino detection
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Antineutrinos from reactors

Cascade of beta decays from 
unstable fission fragments:
3 GWth reactor → ~1021 νe/s 

• Evis (e+) ≃ E (νe) – 0.78 MeV
• Space-Time coincidences between 
prompt and delayed signals to 
reject uncorrelated background 

Inverse Beta Decay (IBD) reaction



Stainless steel latticed shell: ID 40.1 m

Acrylic vessel: ID 35.4 m

Detector challenges
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Experiment Daya Bay BOREXINO KamLAND JUNO
LS mass 20 ton ∼ 300 ton ∼ 1 kton 20 kton

Coverage ∼ 12% ∼ 34% ∼ 34% ∼ 78%
Energy 

resolution
∼ 7.5% /√E ∼ 5% /√E ∼ 6% /√E ∼ 3% /√E

Light yield ∼ 160 p.e. /MeV ∼ 500 p.e. /MeV ∼ 250 p.e. /MeV ∼ 1300 p.e. /MeV

Top Tracker (TT): 
3 plastic scintillator layers

Water Cherenkov Detector (WCD): 
∼ 2400 20-inch PMTs

Central Detector (CD): 
Steel structure + 
Acrylic vessel + 

20 kton Liquid Scintillator (LS)

Pool’s dimensions 
• height: 44 m 
• diameter: 43.5 m 
• water depth: 43.5 m

Light read-out: 
∼ 17612 20-inch PMTs 
∼ 25600 3-inch PMTs

Calibration house

Earth magnetic field 
shielding coils



Overall detector design
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Central detector:
• acrylic vessel with liquid 
scintillator

• 17612 large PMTs (20-inch) 
• 25600 small PMTs (3-inch) 
• ∼ 78% PMT coverage
• PMTs in water buffer

Water Cherenkov Detector (veto):
• 2400 20-inch PMTs
• 35 ktons ultra-pure water
• Muon detection efficiency > 99%

Top Tracker (veto):
• Precision muon tracking
• 3 plastic scintillator layers
• Covering half of the top of the 
water pool 



Muon Veto
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Tasks: 
• Shield rock-related backgrounds 
• Tag & reconstruct cosmic-rays tracks 
Detectors: 
• Top tracker: refurbished OPERA 
scintillators

• Water Cherenkov detector

Main features:
‣ Careful temperature stabilization of the 
water at 21±1 °C

‣ Radon control in water → target 10 mBq/m3 
‣ Earth magnetic field compensation coil 
(needed for 20-inch PMTs)

‣ Pool lining: HDPE
‣ Pool sealing with a black rubber



Central Detector:
Steel Truss & Acrylic vessel
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• Stainless Steel Structure to hold the acrylic 
sphere and to anchor the PMTs

‣ rooted on the concrete floor of the water pool
‣ supporting bars to hold the acrylic vessel
‣ mechanical precision for 3 mm PMT clearance 
‣ earthquake-safe structure
‣ Steel radiopurity U/Th/K: ≾ ppb

• Acrylic Vessel main issues:
‣ built by bulk polymerization of 265 spherical 
panels

‣ maximal stress < 3.5 MPa everywhere
‣ thermal expansion matching: 21°C ± 1°C
‣ transparency > 96%
‣ Acrylic radiopurity U/Th/K: ≺ 1 ppt



Central Detector:
Steel Truss & Acrylic vessel
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Panel size: 3 m × 8 m × 120 mm

Acrylic panel mass production ongoing

Pre-assemble of lifting platform

Acrylic panel assembly test Production of stainless steel structure



Central Detector: Liquid Scintillator
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Required radiopurity:
! Reactor neutrinos: 
  238U / 232Th < 10-15 g/g 
  40K < 10-16 g/g 
  210Pb < 10-22 g/g
! Solar neutrinos: 
  238U / 232Th < 10-17 g/g 
  40K < 10-18 g/g 
  210Pb < 10-24 g/g 

Purification of LAB in 4 steps:

• Al2O3 filtration column 
➡ improvement of optical properties

• Distillation
➡ removal of heavy metals
➡ improvement of transparency

• Water Extraction (underground) 
➡ removal of radioisotopes from U/Th/K

• Steam / Nitrogen Stripping (underground) 
➡ removal of gaseous impurities (Ar, Kr, Rn)

Linear Alkyl Benzene (LAB) + 2.5 g/L PPO + 3 mg/L bis-MSB



Underground LS hall

Central Detector: Liquid Scintillator
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Distillation plant

Stripping plant



Online Scintillator Internal Radioactivity Investigation System
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Total expected background contribution in OSIRIS

• Exploit fast coincidences in the 
238U and 232Th chains

• 18 ton LS volume (Ø=3 m, H=3 m) 

• Instrumentation: 
68x 20” PMTs for the scintillator  
12x 20” PMTs for the muon veto 

OSIRIS Detector



Online Scintillator Internal Radioactivity Investigation System
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OSIRIS Detector

Few hours to verify compliance to JUNO IBD requirements



Central Detector: Large (20”)PMT system
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• 15000 MCP-PMTs from NNVT (Northern Night Vision Technology)
• 5000 dynode PMTs from Hamamatsu (R12860 HQE)
• 17612 PMTs will collect the scintillation light of the CD
• In production since 2016
• Bare PMT testing completed 

SpecificaMons Unit MCP-PMT (NNVT) R12860 Hamamatsu HQE

Det. Efficiency (QE*CE) 
(PDE)

% 26.9% (new Type: 30.1%) 28.1%

Peak to Valley of SPE 3.5, (>2.8) 3, (>2.5)

TTS on the top point ns 12, (<15) 2.7, (<3.5)

Rise Mme / Fall Time ns RT∼2, FT∼12 RT∼5, FT∼9

Anode Dark Count kHz 20, (<30) 10, (<50)

Aaer Pulse Rate % 1, (<2) 10, (<15)

RadioacMvity (glass) ppb 238U: 200 
232Th: 120 

40K: 4

238U: 400 
232Th: 400 

40K: 40

Hamamatsu PMT

NNVT PMT



Large PMT testing facility
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PMT Testing Containers (all PMTs): 
• Capacity: 36 (-5) PMTs per Container
• Relative PDE Measurement: 

1 fixed & 4 rotating reference PMTs
• Magnetic shielding: 10% EMF
• Climate control systems

Average PDE for all PMTs: 29.1%

Average DCR < 50 kHz for all PMTs 

Scanning Station (5-10% of PMTs):
• Provide non-uniformity 
measurement of PMT parameters 

• Study dependence of PMT 
performance on magnetic field

• Provide a tool for precise PMT 
studies and cross calibration



Large PMT electronics
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• 20000 ch. for LPMT

• Final solution: 

‣ 1 GHz sampling FADC in a small under water 
box (UWB) in water (×3 ch.) 

‣ all cables in corrugated pipes

• Cable length: 

‣ 1.5 m from PMT to UWB 
‣ 30 to 100 m cable from UWB to back-end

• Dynamic range:  1- 4000 PE

• Noise: < 10% @ 1 PE

• Resolution: 10% at 1 PE, 1% at 100 PE

• Failure rate: < 0.5% over 6 years



Central Detector: Small (3”) PMT system
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‣ Double calorimetry 

‣ Always in photon counting mode in 1∼10 MeV range 
‣ Almost no instrumental non-linearity: calibration 
of large PMT array 

‣ Mitigate saturation effects at high energies 

‣ 25600 small PMTs in the Central Detector 
• 2.7% coverage
• Provided by HZC Photonics (Hainan, PR China)

‣ Independent physics measurements:  
• Muon tracking (+ shower muon calorimetry)
• Solar oscillation parameter measurement
• Supernova readout



Calibration system
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Strategy: 
• Many sources (LS non-linearity)
• Tunable photon source (electronics non-linearity)
• Many locations (detector non-uniformity)



Expected calibration performance
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Simulated scintillator non-linearity
Instrumental non-linearity

Energy resolution

JHEP 03 (2021) 004



Civil construction
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Preparation for side wall concrete, 15 April 2021

Tunnel, 3 February  2021

Campus, 28 January 2021

Water pool, 2 February 2021



Civil construction
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Water pool, 2 May 2021

Water pool, 9 March 2021



Cosmic Muons 
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JUNO site
~ 700 m overburden, 1800 m.w.e.

Expected muon rate
• The muon flux at the JUNO site is ~0.004 Hz/m2 with a mean energy of 207 GeV
• The rate of muons passing through the liquid scintillator is 3.6 Hz
• The rate of muons passing through the ultra pure water is 10 Hz

Tagging efficiency in the liquid scintillator: ∼100%

Muon veto strategies using WCD and TT to cope with induced background impact 
requirements



Muon induced background
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Fast neutron background
• Neutrons are produced by muons passing through rock and detector materials: if they 
reach the liquid scintillator (fast neutrons) they may induce a prompt proton 
recoil and then be captured by H or C → can mimic an IBD event

• Muon tagging removes this background (99.8% efficiency of Water Cherenkov detector)
• Fast neutron background < 0.1 c/day (even lower if including Top Tracker tagging)

Cosmogenic background
• Muons and muon showers interact with 12C in LS producing Z ≤ 6 isotopes by hadronic 
or electromagnetic processes: β–n decaying nuclides are produced that can mimic IBD 
signal

• 9Li and 8He are the most dangerous correlated background sources
• Various physics-driven models for veto strategies to reduce the impact of 
cosmogenic background in the different JUNO physics channels



Natural radioactivity background
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Must be controlled at the lowest possible level 
to reduce accidental count rate.

Target: < 10 Hz in Fiducial Volume (FV)

Current background budget



Signal and background
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Preliminary antineutrino selection criteria:
• fiducial volume: r < 17.2 m
• prompt energy: 0.7 MeV < Ep < 12 MeV
• delayed energy: 1.9 MeV < Ed < 2.5 MeV

• prompt-delay time difference: 𝛥tp-d < 1.0 ms
• prompt-delay distance: Dp-d < 1.5 m

+ muon veto criteria

62
57

45
45

55

Modified from JPG 43 (2016) 030401



Neutrino mass ordering at JUNO
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JUNO is the first experiment to see both Δm2 at the same timeNeutrino MO estimator:

In 6 years of data taking 
(∼100k IBD events):
Expected: 𝛥𝜒2 ∼ 10

Significance: ∼ 3𝜎 

𝛥𝜒2 increase:

• 25% reactor power reduction
• exp. hall shift → overburden reduction (+30% muons)

𝛥𝜒2 decrease:

• measured PMT detection efficiency better than design (+2%) 
• new optical model: higher photo-e- yield
• input reactor spectrum better constrained by TAO detector
• more efficient event selection: live time increase (+10%)

Sensitivity basically unchanged 
w.r.t. JUNO Yellow Book  

J. Phys. G 43, 030401 (2016)



Neutrino oscillation parameters at JUNO
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JUNO is the first experiment to see both Δm2 at the same time

Unique peculiarity of JUNO: 
simultaneous estimation of the 
four oscillation parameters

will be determined with a precision 
of ≲0.6% in 6 years of exposure

A new detailed study is ongoing to incorporate 
several updates to the analysis of the JUNO 
Yellow Book. Results will be soon released.



Spectral uncertainties
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• Large scale fine structures constrained by 
Daya Bay experiment

• A known fine structure does not hurt JUNO 
mass ordering determination 
⇒ Tested with multiple spectra with fine 
local structure from ab initio calculation 
(PRL 114:012502, 2015) → no major effect 
on JUNO sensitivity

• Unknown fine structure might have a larger 
impact

Taishan Antineutrino Observatory (TAO)

A satellite experiment of JUNO to measure 
reactor neutrino spectrum with unprecedented 
energy resolution: < 2% / √E [MeV] 
⇒  provides model-independent reference 
spectrum for JUNO 



TAO detector
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• 2.8 ton Gd-LS in acrylic vessel
• 10 m2 SiPM for light detection on a 
spherical copper shell

• Operated at -50 °C
• High energy resolution
• 3.45 ton buffer liquid
• Cylindrical stainless steel tank insulated 
with 20 cm thick polyurethane (PU)

• Muon veto: water tank + PMTs on side and 
plastic scintillators on top 

• 30 m from Taishan core (4.6 GWth)

Expected event rates

arXiv:2005.08745



Summary
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• JUNO will be the largest neutrino observatory ever built with 
unprecedented energy resolution for detectors of this type

• Main goal: determine the neutrino mass ordering with a sensitivity 
of 3σ (may improve if combined with other experiments)

• First detector to see many oscillation cycles in the same experiment

• Sub-percent measurement of neutrino mixing parameters

• Very rich parallel physics program, including Supernova neutrinos, 
atmospheric neutrinos, solar neutrinos, geo-neutrino, nucleon 
decays, and exotic searches

• Detector construction to be completed by 2022
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