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1. Definition and structure of QSE

Software Engineering (SE) (Friedrich L. Bauer):

The establishment and use of sound engineering

principles in order to obtain economically software that is

reliable and works efficiently on real machines

Nanostructure industrial Nanostructures methods

design applications

39%

Nanostructures
production for
quantum computer

Quantum algorithms and
Quantum software ,engineering

Jianjun Zhao (2020), Quantum Software Engineering Landscapes and
Horizons https://arxiv.org/pdf/2007.07047.pdf)

Quantum software engineering (QSE) is the use of sound
engineering principles for the development, operation, and

» maintenance of quantum software and the associated document

to obtain economically quantum software that is reliable

and works efficiently on quantum computers.

In this definition, we would like to highlight three important |
issues in QSE. :
First, it is important to apply the "sound engineering principles” |
to quantum software development. I
Second, the quantum software should be built "economically.” |
Finally, the quantum software should be "reliable” and needs :
to work "efficiently" on quantum computers. |
Quantum software engineering can be regarded as a branch of !
systems engineering, which involves the development of large and :
complex quantum software systems. |

V.V. Korenkov, A.G. Reshetnikov, S.V. Ulyanov, Quantum software engineering Pt 3: Quantum
supremacy modelling. — M.: Kurs, 2021.
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2. Quantum computational
intelligence toolkit
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Quantum massive parallel computing
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ntrol structure of quantum algorithm_

Control structure of

Juswe|buejug

N
c
o
O 9
-
SE
=)
o
c
€06
O ¢
O ¢
— ®©
O
o o

sliojesado
uoljeyndwo
Juabijayu

A

Background of HW

implementation




Quantum algorithm gate Gate correction
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3. Quantum Engineering LIT:
JINR projects examples

Quantum computing in quantum robust control design

e Control of nitrogen consumption in superconducting-coil
electromagnet

e Control of high frequency station
* Intelligent robotics control

Quantum algorithms approach in the search structure of super-heavy
elements



| JINR Laboratory Projects
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B.N. Petroy, I.I. Goldenblat, S.V. Ulyanov, Control problems of

Embedding of quantum control algorithm in e :
guantum relativistic dynamic systems. — M.: Nauka, 1982.
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Physical features of the control object and the
physical process

Features of an autonomous object P s s e e s Y
«Non-standard heat intakes : The control task is to maln.ta.\m the !
*Eddy currents in the core (heat the core) L state of superconductivity |
*The dependence of the quality of the magnetic field on the quality The state of superconductivity
of cooling HoA
*Flashing of the wall and uneven cooling in the connecting nodes T Ry

\\ Normal state
N\,
N\
\

\
Superconducting  \
state

\

1
1
1

Te

(a)
The point of equilibrium in space and

the permissible range of changes in
current, temperature, and magnetic
field

Features of the group of magnetiC elements
*Different eddy currents in the core
*Minor differences in magnets elements

The principle of intelligent control: Compensation of the indeterminate and inaccurate parameters of the magnetic element
existing in a real object through the use of soft and quantum computing technologies



Intelligent robotic
gquantum control

Intelligent robotics based on quantum fuzzy inference

o Structure of self-organized intelligent control system

o Robotic redundant 7 DoF manipulator

o Autonomous and swarm robots with information exchange (video)



Robust Intelligent Control
in Unpredicted Control Situations
Relative to Quantum Knowledge:
KB Self-organization Phenomena
based on Quantum Fuzzy Inference

* ExXamples of simulation and benchmarks
demo

(cart — pole dynamic system)



Benchmark%20simulation.ppt

Inverted Pendulum

Intelligent control of the pendulum based on the
physical measurements

Without The knowledge of his mathematical model



Inverted pendulum hardware

model

length Ly 0.29 m
Pendulum mass M, 1.23E-2 kg
momentum [ 8.62E-5 kgm?
inertia
length L, 0.23 m
Arm mass My 1.12E-2 kg
momentum 1, | 493E-5 kgm?
inertia
mass M3 1.00E-2 kg
Rotary encoder
damping Dy 5.00E-5 Ns/m

Rotary encoder

Servo motor
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| —

L,

|‘



Direct Swing-Up Optimization by QSCOptimizer

Minimize Energy 5 P
and
switch to LQR controller

Swing-up Control

Optimization

PC
T
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0
E u
- +. » Fuzzy Controller
u=Sat,, (K (E,—E))sign(6, cos6,)

Physical Model



Direct Swing-Up Optimization by SCOptimizer

Swing-up Control
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I Structure of self-organized intelligent control system
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Quantum intelligent control

* Quantum deep learning

* Quantum control of relativistic physical objects



Deep Quantum Learning Evaluate Gradients &
Update Parameters
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The 2 qubit operations are CNOT gates, R is a rotation about a designated axis on the Bloch sphere, and the w
values are functions of the system parameters K.

Figure shows entanglement of |110) + B]111) + |000) as a function of both a and B, and
compared with the three-way “tangle” agreement is quite good. The red surface shows the pairwise
entanglement between qubits A and B, the green; 3-way entanglement among A, B, and C; the
magenta is the (analytically calculated) 3-tangle. Entanglemai of a110>+1000>451111>

J.E. Steck, E. C. Behrman, and N. Thompson, :
Machine Learning applied to Programming !
Quantum Computers // Conference paper, 2019. 1

Lagrangian quantum deep learning

The density matrix, p, of a quantum system as a function of time obeys the Schrodinger equation

d, 1
B H, p)

and has the formal solution as © = €Xp (iLt ) P (to) . The time evolution equation for the density matrix maps the

initial state p(t0) (input data for the quantum computer) to the final state p(tf) (output calculated result). Parameters in
the system Hamiltonian 77 are physical interactions and fields in quantum hardware and can be adjusted experimentally
as functions of time. “Programming” this quantum computer involves finding the parameters using machine learning
that yield the desired computation. Thus, we can train the system to evolve in time initial (input) to target final (output)
states; yielding a quantum system that accurately approximates a chosen function, such as: logic gates, benchmark
classification problems, or, since the time evolution is quantum mechanical, a quantum function like entanglement.

The learning rule for the quantum system based on dynamic backpropagation is derived as follows. Given an input
(initial density matrix), po, and a target output, d (a “training pair’’), we develop a weight update rule based on gradient
descent to adjust the system parameters, i.e., train the system “weights”, to reduce the squared error between the target,
d, and the output, Output. While minimizing the squared error, the system's density matrix, p(t), is constrained to
satisfy the Schrédinger equation for all time in the interval (to, tr). We define a Lagrangian, L, to be minimized, as

L=1[d=<0(ty) >1 + [T 27 (®) (B +1[H.p]) y(t) dt

to

where the Lagrange multiplier vectors are A+(t) and y(t) (row and column, respectively), and O is an output measure
(or some function of a measure), which is chosen for the particular problem under consideration. As an example, for
our entanglement witness application, we defined the output as:

(0(tp)) = tr[p(tr)0] = e (wi(tr)0wi(t))

where 77 stands for the trace of the matrix, and where the density matrix is represented in terms of the chosen basis as

p= Z P |Wi><‘//1 | . We take the first variation of L with respect to p, set it equal to zero, then integrate by parts to

give the following equation which can be used to calculate the vector elements of the Lagrange multipliers (“error
deltas” in neural network terminology) that will be used in the learning rule:

Oy, 94 i i
o Yo Vs T 2wty D AH ey =0

which is solved backward in time, with the boundary conditions at the final time # given by
—[d —<O(tf)>] 0,+24(t,)r,(1,)=0.
. L . . oL .
The gradient descent rule to minimize L with respect to wis W, =Ww_ ., — 77% or each “weight” parameter w,

where 7 is the learning rate, and where the derivative is given by

i i [ oOH
2 %fotf AT () [Z_‘I:,P] y(®)dt = %f Z (li(t)%ﬂkﬂ’j — 4 (©)pu
0 gk

ow

OHy;
W y]—> dt

The above technique, since it uses the density matrix, is applicable to any state of the quantum system, pure or mixed.
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Quantum relativistic intelligent control of polarized particle beam
(Long Term Concept of a Scientific IT-ecosystem at JINR)
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Quantum simulation of super-heavy elements of Mendeleev’s table:
Quantum gate based approach

General strategy for quantum simulations of materials using quantum embedding

Quantum
: algorithms
(Quantum embedding theory \ (PEA. VQE)
Environment
Atomistic Active space (DFT) Electronic Electronic properties
structural structure of active of complex materials
model of -' ® L o - regions described with strongly
materials Coulomb interaction by an _effet':tive correlatfad active
@o+——0 Hamiltonian regions
D"'?Ct":c Classical ) |
screening from .
\ onvironmeny algorlthms
(FCI) )

Quantum simulator

Example of effective application in quantum chemistry

29




Quantum simulator

Example of effective application in quantum chemistry



Workflow for calculation of materials properties using quantum algorithm
for many-body problems of inorganic systems

Global electronic
structure calculation

Step 2. U

Effective model construction
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Band structure,
M,, p, etc.
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Step 3.
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Quantum machine learning




The quantum circuit used in VQE to estimate the ground VQE simulation results for molecular hydrogen
state energy for molecular hydrogen in the minimal basis in the minimal basis (STO-6G)
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