

Alexander Karpov

karpov@jinr.ru

Study of heavy and superheavy elements in the world

- Berkeley National Laboratory, USA
- 2 GANIL, Caen, France
- 3 Helmholtz Centre GSI, Darmstadt, Germany
- 4 JINR, Dubna, Russia
- 5 IMP, Lanzhou, China
- 6 RIKEN, Wako, Japan

Advantages of JINR:

- wide range of accelerated ions;
- availability of actinide isotopes for targets;
- broad international cooperation (JINR Member States; Livermore & Oak Ridge National Laboratories, USA; Paul Scherer Institute, Switzerland, CSNSM Orsay, GANIL, IPHC (Strasburg) France; IMP, Lanzhou, China);
- longstanding traditions and a scientific school;
- ➤ full-time availability of an accelerator complex SHE-Factory.

DRIBS-III ACCELERATOR COMPLEX

FLEROV LABORATORY OF NUCLEAR REACTIONS

FLNR's basic directions of research:

- Heavy and superheavy nuclei
- Light exotic nuclei

- Radiation effects and physical groundwork of nanotechnology
- Accelerator technologies

Fusion reactions: left, right and up

DC-280 beams

Ion	E _{ion} [Mev/nucl.]	I _{INJ} [pμΑ]	I _{EXTR} [pμA]
¹² C ⁺²	5.9	29,8	10
⁴⁰ Ar ⁺⁷	4.9	28.7	10.4
⁴⁸ Ca ⁺¹⁰	4.8	24	7.1
⁴⁸ Ti ⁺¹⁰	4.8	2.2	1
⁵² Cr ⁺¹⁰	5.2	7	2.4
⁸⁴ Kr ⁺¹⁴	5.9	2.9	1.4

Development of 50Ti beam using MIVOC method

Joint work of IPHC (Strasburg) and FLNR. The efficiency of synthesis is more than 90%.

⁵⁰Ti beams are important in particular for synthesis of new superheavy elements 119 and 120 in the reactions ⁵⁰Ti+²⁴⁹Bk,²⁴⁹⁻²⁵¹Cf.

Test reaction:

$$^{206}\text{Pb+}^{48}\text{Ca} \rightarrow ^{252}\text{No+2n}$$

Cross section 0.5 μb

Increase of suppression of background nuclei by more than factor of 200

Energy spectra of all the particles registered by MWPC (top blue line) and of ²⁵²No (bottom black line) nuclei produced in the ²⁰⁶Pb(⁴⁸Ca,2*n*) reaction using separators DGFRS@U400 (a) and DGFRS-2@DC280 (b).

First experiment @ SHE Factory: $^{48}\text{Ca} + ^{243}\text{Am} \rightarrow ^{288-289}\text{Mc} + (2-3)\text{n}$

14.212 MeV

25 / 88

(139 mm)

- 24 days in Nov.-Dec. 2020 & 16 days in Jan.-Feb. 2021;
- 55 decay chains of ²⁸⁸Mc
- 6 decay chains of ²⁸⁹Mc
- Alpha-decay of ²⁶⁸Db and fission of the new isotope ²⁶⁴Lr have been registered for the first time.

13.755 MeV

42/89-90

(142 mm)

10.364 MeV

0.052641 s

file 08dec1

08 Dec 16:22

42 / 89-90

9.820 MeV

0.420417 s

42 / 89-90

206.060 MeV

0.420417 s

42 / 89-90

(184.715+21.345)

Mc 289

Mc 291

DGFRS-2 separator transmission twice bigger compared to DGFRS-1

SHE Factory development

Differential pumping system

Differential pumping system was constructed at the DGFRS-2

- Allows experiments with high-intensity beams provided by the DC-280 cyclotron
- Experiment on synthesis of isotopes of element 114 in reaction ⁴⁸Ca+²⁴²Pu is ongoing

Preparation of forthcoming experiments

Assembling of a new gas-filled separator (DGFRS-3) was completed

 aimed at experiments on nuclear and mass spectroscopy of SHE as well as at studying their chemical properties

New version of the COLD detector for SHE chemistry is under development (PSI-FLNR collaboration)

 First chemical experiments on elements 112 and 114 in the ⁴⁸Ca+²⁴²Pu reaction are planned for beginning of 2022

Beams of Cr with intensities of ~2.4 pμA have been extracted

 Reaction ⁵⁴Cr+²⁴⁸Cm is considered as one of the most promising for synthesis of element 120

Perspectives for chemistry of SHE

nearest plans (2022): ${}^{48}\text{Ca} + {}^{242}\text{Pu} \rightarrow \text{Fl \& Cn chemistry}$

Assembling of DGFRS-3 separator February 2021

Z	Isotope	Half-life
112	²⁸³ Cn	3.6 s
113	²⁸⁴ Nh	0.9 s
114	²⁹⁷ Fl	0.5 s
115	²⁸⁸ Mc	0.16 s
116	²⁹³ Lv	57 ms
117	²⁹⁴ Ts	51 ms
118	²⁹⁴ Og	0.6 ms

Perspectives for chemistry of SHE

nearest plans (2022): ${}^{48}\text{Ca} + {}^{242}\text{Pu} \rightarrow \text{Fl \& Cn chemistry}$

Assembling of DGFRS-3 separator February 2021

Feasibility studies for a new pre-separator

Gamma Alpha Beta Recoil Investigations with the ELectromagnetic Analyser (CSNSM-FLNR-IPHC)

2003: 1st meeting to discuss spectroscopy of SHE@Dubna

2004-2009: GABRIELA@VASSILISSA

- First observation of K isomers in ²⁵⁵Lr, ²⁵³No
- Spectroscopy of ²⁴⁹Fm, ²⁵³No
- Attempt at studying ²⁵⁶No with an exotic ²¹⁰Pb target

2006-2013:SHELS

Design & Construction of SHELS

2013-2020: GABRIELA@SHELS

- Upgrade of GABRIELA
- 1st measurement of pxn channel xsections in the SHE region
- Discovery of K isomers in ^{255,256}No & ²⁵⁵Rf
- Tracking single particle states and the effects of octupole collectivity in the region
- Pinning down excitation energy, spin and parity of known K isomers: ²⁵⁶Rf, ²⁵⁰No
- Measuring fission hindrance from K isomers in ^{250,254}No
- Discovery of new isotopes: ²⁴⁹No

Gas catcher & MR-TOF spectrometer

mass measurements

Massive transfers instead of nuclear fusion

Nobelium isotopes produced by ²³⁸U induced reactions

Thank you for your attention!