

Faisceaulogie – dosimétrie Développements de détecteurs diamant innovants 11/06/2021

Marie-Laure Gallin-Martel *
Laboratoire de Physique Subatomique et de Cosmologie, LPSC, Grenoble

The scientific context

Nuclear Physics

Spectroscopy

- Alpha particles
- Short range particles detection
- Neutrons

Particle Physics

Beam monitoring

- LHC
- KEK
- J-PARC

Medical Physics

Beam monitoring

position, time stamp

Dosimetry

charge counting

Innovative diamond detectors development from:

diamond growth + ion implantation + electronic development (fast preamplifier, QDC, TDC, ASIC and discrete FE readout electronics) + detector assembly + access to radiation facilities

- ⇒ ΔE E diamond monolithic detector
- ⇒ PN junction development

 Measurement of beam line

 activation for new generation of

 accelerators

⇒ Need for high quality, pure, affordable, reliable, large area diamond single-crystal detectors

ML Gallin-Martel IN2P3-IRSN Workshop

⇒ Compact multi stripped diamond detector associated to a multi-channel readout electronics (fast preamplifier, QDC, TDC)

Diamond a solution for very innovative detectors with remarkable properties

Properties	Diamond	Silicon
Density [g.cm ³]	3.52	2.33
Gap [eV]	5.48	1.12
Energy required to produce e-h [eV]	13.1	3.62
Mean signal MIP [e-/μm]	36	89
Resistivity [Ω .cm]	$10^{13} - 10^{16}$	$10^5 - 10^6$
Thermal conductivity [W.cm ⁻¹ .K ⁻¹]	>1800	1.48
Displacement energy [eV]	43	25
Electron mobility [cm ² .V ⁻¹ .s ⁻¹]	1900	1450
Hole mobility [cm ² .V ⁻¹ .s ⁻¹]	2300	505

- → Very low leakage current
- → Low noise
- → Radiation hard
- \rightarrow Fast timing
- → Room temperature

R&D with diamond detectors and complementarity of the consortium

Metallized diamond detector assembly

KEK – LPSC – NANOFAB Néel

Diamond detector electronic read-out development

Diamond detector performances evaluation with radiation facilities

KEK - LPSC - IJCLab- SUBATECH

Diamond = solid state ionization chamber

NIMS -AIST- Institut Néel – LSPM-DiamFab

The scientific context

Nuclear Physics

Spectroscopy

- Alpha particles
- Short range particles detection
- Neutrons

Particle Physics

Beam monitoring

- LHC
- KEK
- J-PARC

Medical Physics

Beam monitoring

position, time stamp

Dosimetry

charge counting

The objectives of our projects

Innovative diamond detectors development from:

diamond growth + ion implantation + electronic development (fast preamplifier, QDC, TDC, ASIC and discrete FE readout electronics) + detector assembly + access to radiation facilities

- ⇒ ΔE − E diamond monolithic detector
- ⇒ PN junction development

 Measurement of beam line

 activation for new generation of

 accelerators

⇒ Need for high quality, pure, affordable, reliable, large area diamond single-crystal detectors

ML Gallin-Martel IN2P3-IRSN Workshop

Compact multi stripped
 diamond detector associated
 to a multi-channel readout
 electronics (fast preamplifier,
 QDC, TDC)

LHC ATLAS and CMS

ATLAS BCM

RD42 collaboration @ CERN https://rd42.web.cern.ch/rd42/

ATLAS BCM' HL-LHC

F. Rarbi, J Collot (LPSC)

ANR MONODIAM

SUPERKEK B

A fast luminosity monitor based on diamond detectors for the SuperKEKB collider

Ph. Bambade (IJCLab), C. G. Pang et al.: Nucl. Instrum. Meth. A931 (2019) 225-235

https://doi.org/10.1016/j.nima.2019.03.071

Diamond detector

COMET experiment

Search for the muon to electron (μ - e) conversion in nuclei with the sensitivity below 10^{-16=>} development of a diamond based proton beam monitor

Y. Fujii, **H Nishiguchi**, S. Mihara, Y Hashimoto (KEK Tsukuba) 14th Pisa meeting On Advanced Detectors Labiodola, Isola d'Elba, Italy, 2018

https://agenda.infn.it/event/17834/contributions/83592/attachments/60425/71543/276-Poster-fujii-yuki Pisameet18.pdf

The scientific context

Nuclear Physics

Spectroscopy

- Alpha particles
- Short range particles detection
- Neutrons

Particle Physics

Beam monitoring

- · LHC
- KEK
- J-PARC

Medical Physics

Beam monitoring

position, time stamp

Dosimetry

charge counting

The objectives of our projects

Innovative diamond detectors development from:

diamond growth + ion implantation + electronic development (fast preamplifier, QDC, TDC, ASIC and discrete FE readout electronics) + detector assembly + access to radiation facilities

- ⇒ ΔE E diamond monolithic detector
- ⇒ PN junction development

 Measurement of beam line

 activation for new generation of

 accelerators

⇒ Need for high quality, pure, affordable, reliable, large area diamond single-crystal detectors

ML Gallin-Martel IN2P3-IRSN Workshop

⇒ Compact multi stripped
 diamond detector associated
 to a multi-channel readout
 electronics (fast preamplifier,
 QDC, TDC)

Beam tagging hodoscope for online ion range verification in hadrontherapy

Prompt Gamma detection

Ion range monitoring in patient body: Bragg peak location

Prompt gamma detection : experiment using 12C @95 MeV/u on PMMA (human body phantom)

Time of Flight Spectrum

Krimmer et al., Nucl. Instr. Meth. A, 878 (2017) 58-73

Beam tagging hodoscope for online ion range verification in hadrontherapy

Prompt Gamma detection

Time of Flight: gamma detector vs beam monitor => prompt gamma selection

Diamond Sensor Instrumentation for test @ laboratory or in beam

Detector assembly

Read-out electronics

- Fast current preamplifier
- Charge preamplifier
- Electrometer

Band Width: 2 GHz

Gain: 40 dB

Impedance: 50Ω

Dynamic range: ~ +/- 1 V

Power Supply: 12 V / 100 mA

Diamond detector for beam monitoring: sCVD? pCVD? DOI?

@ ESRF (France): Photons 8.5 keV (XBIC) => 2D map

ML Gallin-Martel Diamond and related materials 112 (2021) 108236

Beam tagging hodoscope for online ion range verification in hadrontherapy

S. Marcatili et al. Phys Med Biol 65 (2020) 245033

@ ARRONAX: Protons (68 MeV)

Charbel Koumeir (ARRONAX)

@ CAL : Protons (Hadronthérapie)

@ GANIL : C

Carbon beam in GANIL (95 MeV/u)

- S. Curtoni, LPSC, Thèse, Novembre 2020
- S. Curtoni et al., arXiv:2105.05053, 2021

@ ARRONAX: Protons (68 MeV) Continuous mode

Pulsed mode

F. Poirier et al. IPAC 2019

Continuous mode

Particle counting vs I_{beam}: preliminary measurement

Collim. Ø 1mm

https://arxiv.org/abs/2105.05053

Continuous mode and reduced intensity

First prototype of diamond beam monitor + FE electronic + Data acquisition

Pulsed mode: flash therapy?

https://arxiv.org/abs/2105.05053

Pulsed mode and $\langle I \rangle_{beam} = 100 \ pA$

Pulsed mode: flash therapy?

The scientific context

Nuclear Physics

Spectroscopy

- Alpha particles
- Short range particles detection
- Neutrons

Particle Physics

Beam monitoring

- · LHC
- KEK
- J-PARC

Medical Physics

Beam monitoring

position, time stamp

Dosimetry

charge counting

Innovative diamond detectors development from:

diamond growth + ion implantation + electronic development (fast preamplifier, QDC, TDC, ASIC and discrete FE readout electronics) + detector assembly + access to radiation facilities

- ⇒ ΔE − E diamond monolithic detector
- ⇒ PN junction development

 Measurement of beam line

 activation for new generation of

 accelerators

⇒ Need for high quality, pure, affordable, reliable, large area diamond single-crystal detectors

ML Gallin-Martel IN2P3-IRSN Workshop

 ⇒ Compact multi stripped diamond detector associated to a multi-channel readout electronics (fast preamplifier, QDC, TDC)

Xrays @ESRF Micro Beam Radiation Therapy (MRT)

Innovative radiotherapies using spatially segmented photon beams Energy 50-200 keV compensated by very high dose rate 10⁴ Gy/s

Fluence measurement in Micro-beam Radiation Therapy

Collaborations:

- LPSC (IN2P3), STROBE (Université Grenoble Alpes INSERM)
- > ESRF medical beam line ID17

Synchrotron radiation on-line monitoring

- → X-Rays detection
- → Spatial fractionation (micro beams)
- → Huge dynamics (High dose rate)

N. Rosuel PhD thesis (2018-2021)

Xrays @ESRF Micro Beam Radiation Therapy (MRT)

Innovative radiotherapies using spatially segmented photon beams Energy 50-200 keV compensated by very high dose rate 10⁴ Gy/s

Fluence measurement in Micro-beam Radiation Therapy

Collaborations:

- LPSC (IN2P3), STROBE (Université Grenoble Alpes INSERM)
- ESRF medical beam line ID17

Synchrotron radiation on-line monitoring

- → X-Rays detection
- → Spatial fractionation (micro beams)
- → Huge dynamics (High dose rate)

N. Rosuel PhD thesis (2018-2021)

Diamond 1D monitoring

sCVD x 8

11/06/21

Xrays @ESRF Micro Beam Radiation Therapy (MRT)

Innovative radiotherapies using spatially segmented photon beams Energy 50-200 keV compensated by very high dose rate 10⁴ Gy/s

Fluence measurement in Micro-beam Radiation Therapy

Collaborations:

- > LPSC (IN2P3), STROBE (Université Grenoble Alpes INSERM)
- ESRF medical beam line ID17

Micro Beam Radiation Therapy

Integration on beam line ID17 at ESRF (Xrays up to 10 000 Gy/s)

The scientific context

Nuclear Physics

Spectroscopy

- Alpha particles
- Short range particles detection
- Neutrons

Particle Physics

Beam monitoring

- LHC
- KEK
- J-PARC

Medical Physics

Beam monitoring

- position, time stamp
 - **Dosimetry**
- charge counting

The objectives of our projects

Innovative diamond detectors development from:

diamond growth + ion implantation + electronic development (fast preamplifier, QDC, TDC, ASIC and discrete FE readout electronics) + detector assembly + access to radiation facilities

- ⇒ ΔE − E diamond monolithic detector
- ⇒ PN junction development
 Measurement of beam line
 activation for new generation of
 accelerators

⇒ Need for high quality, pure, affordable, reliable, large area diamond single-crystal detectors

ML Gallin-Martel IN2P3-IRSN Workshop

⇒ Compact multi stripped diamond detector associated to a multi-channel readout electronics (fast preamplifier, QDC, TDC)
25

@ ILL Lohengrin: Ions (PF), Alpha

11/06/21 ML Gallin-Martel IN2P3-IRSN Workshop 26

Design of a monolithic diamond ΔE -E telescope and PN junction for short range particle detection

Neutron detection + short range particle detection

DiamFab Institut Néel
CVD process of a high quality epitaxial diamond layer with a good-controlled boron doping concentration

NIMS, KEK → pn (PIN) junction device formation by nand p-type doping with high quality device processing combined with KEK radiation sensing technologies.

➤ High quality pin structure will be formed to detect alpha and beta particles with intrinsic electric field.

Work in progress since 2020: monolithic diamond ΔE-E telescope prototype

@ AIFIRA – CENBG: 3 MeV lons

Active area of the junction : $^{\sim}1 \mu m$

Bounding wires are used to read signals and polarized the junction.

The PN junction was set on a LPSC holder for tests

Electron beam at Institut Néel

Mapping of the hits for E − ADC ∈]130; 160[

Alpha beam
(3MeV) in
AIFIRA-CENBG
France

@ Institut Néel ToF electron Beam Induced Current (eBIC)

Sample = intrinsic sCVD commercial diamond from Element 6

SEM mapping picture

Mapping of detector charge response (10 h acquisition – Pixels size: $70x80 \ \mu m$)

Conclusion 1/2

These developments are

- > in connection with collaborations established at IN2P3 (CLaRyS / ClaRyS-UFT- DIAMTECH ANR DIAMMONI)
- > in a context of interdisciplinary research at CNRS (IN2P3, INP, INC): skills exchanges take place between
 - characterization: sources (labs) + eBIC (Institut Néel) + accelerator beams @ IN2P3 (IP2I GENESIS GANIL AIFIRA...), GIP ARRONAX, ESRF +...
 - Instrumentation (IN2P3 labs, Institut Néel, etc.)

Beam monitoring

- > the proposed detection systems will bring significant added value to the transfer of high dose rate flash radiotherapy to clinical trials
 - Microbeam Radiation Therapy: **IDSYNCHRO** @ ESRF on ID17 medical beam line: "flash effect" with a 10⁴ Gy/s dose rate
 - Proton therapy: a monitoring system derived from the system studied for flash intensities in **DIAMMONI** can be easily implemented in a clinical environment (a few detectors located at ~ 1m from the patient).

Dosimetry

> the proposed detection system will permit to make dosimetry with the Δ E- E development or the portal imaging system IDSYNCHRO

Conclusion 2/2

- The LPSC has an expertise in detector development for particle physics (ATLAS) and medical physics (beam hodoscope).
- LPSC and LPC Caen collaborate for FE electronic development (ASIC)
- > SUBATECH, GIP-ARRONAX, GANIL, CENBG are skilled with the problematic of physics with accelerators.
- > The IJCLab is already involved in the lumiBELLE2 project and is used to the use of diamond for fast luminosity measurement at KEK.
- The KEK group is experimented by problematics linked to particle physics and beam accelerators. KEK-NIMS-AIST-University of Tsukuba has developed a new diamond-base beam monitor for J-PARC proton accelerator
- NIMS, AIST, Tsukuba University and LSPM, DIAMFAB has an expertise in diamond growth and doping.
- Néel has an international recognition in development of diamond high power electronic devices, diamond processing and eBIC.

