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Bayesian modeling techniques enable sensitivity analyses that incorporate detailed expectations
regarding future experiments. A model-based approach also allows one to evaluate inferences and
predicted outcomes, by calibrating (or measuring) the consequences incurred when certain results
are reported. We present procedures for calibrating predictions of an experiment’s sensitivity to
both continuous and discrete parameters. Using these procedures and a new Bayesian model of the
β-decay spectrum, we assess a high-precision β-decay experiment’s sensitivity to the neutrino mass
scale and ordering, for one assumed design scenario. We find that such an experiment could measure
the electron-weighted neutrino mass within ∼ 40 meV after 1 year (90% credibility). Neutrino
masses > 500 meV could be measured within ≈5meV. Using only β-decay and external reactor
neutrino data, we find that next-generation β-decay experiments could potentially constrain the
mass ordering using a two-neutrino spectral model analysis. By calibrating mass ordering results,
we identify reporting criteria that can be tuned to suppress false ordering claims. In some cases, a
two-neutrino analysis can reveal that the mass ordering is inverted, an unobtainable result for the
traditional one-neutrino analysis approach.

I. INTRODUCTION

Model-based simulation is a standard tool for inform-
ing the design of physics experiments and predicting their
outcomes [1]. Such model-based approaches allow one to
incorporate detailed expectations regarding future data
by performing pseudo-experiments that reflect the span
of possible experimental and physical parameter values.
In Bayesian sensitivity studies, specifically, those param-
eter values are weighted by prior probabilities. By con-
trast, computing and reporting predicted outcomes for
“best guess” values ignores information by excluding re-
gions of parameter space.
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Moreover, inferential models lend themselves to proce-
dures for investigating the consequences of assumptions
made during analysis. Bayesian methods, in particular,
illuminate the effects of assumptions underlying infer-
ence (i.e., extracting information from data) and deci-
sion making (i.e., claiming results based on inferences)
by decoupling the two processes. Thus, when assessing
an experiment’s sensitivity, one can quantify, or calibrate,
the expected success or accuracy of procedures that one
plans to use to both analyze data and report results in a
certain format. It is also possible to perform conditional
Bayesian calibration by fixing one or more parameters
before simulating data [2–5].

Here, we employ Bayesian modeling to perform a sensi-
tivity study for a physics experiment. Among physicists,
sensitivity typically denotes the level of precision with
which experimenters can expect to resolve a parameter
of interest, assuming a reasonably accurate measurement.
(We adopt that usage here, though among statisticians,
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Term Definition Notes

Credibility Fraction of Bayesian posterior probability mass that falls Result of a single real or
within a reported interval simulated experiment

Coverage Fraction of likely experiments for which the reported interval Result of multiple
contains the true parameter value, within model assumptions simulated experiments

Confidence interval Interval constructed to have a coverage that equals or exceeds Frequentist term; not used
a chosen probability (or “confidence level”) in this analysis

Sensitivity analysis Study of how result precision & accuracy change under reaso- Requires simulated
nable variation of all parameters, within model assumptions experiments (pseudo-data)

Sensitivity (to very Upper limit on a parameter, to some confidence level Usage by the KATRIN
small parameter) experiment [6]
Sensitivity (to parameter Width of a posterior interval with a chosen credibility Definition in this paper
of any magnitude)

TABLE I. Definitions are consistent with Particle Data Group descriptions [1] with the exception of the two definitions of
“sensitivity,” which capture a common but less standard usage. The last row describes how “sensitivity” is used in this paper.

sensitivity can refer to how a decision making process’ ac-
curacy depends on model parameters [2, 3].) For physics
experiments, in particular, Bayesian sensitivity methods
allow researchers to capitalize on their often extensive
knowledge of experimental configurations, physical pro-
cesses, and expected uncertainties to construct priors.
More broadly, model-based analyses offer potential tools
for physicists to collectively interpret results and judge
whether discovery claims are warranted [2, 7] (see Sec-
tion II). These tools thus provide possible alternatives to
a 5σ confidence requirement.

To assess sensitivity, we develop a model of an exper-
iment’s measurement process, then employ that model
to repeatedly generate and analyze pseudo-data—where
“analyze” means “infer posterior distributions.” Parame-
ters assumed for data generation are sampled from priors.
Next, expectations and intervals are computed from the
posteriors, yielding sensitivity results. Finally, we calcu-
late how often these results reflect “true” values under-
lying the generated data (a calibration). In doing so, we
quantify the consequences of our modeling and reporting
assumptions. For relevant statistical term definitions, see
Table I.

The above procedure is applied here to assess sensitiv-
ity to the neutrino mass scale and ordering. Neutrinos
are produced in one of three flavor states, each of which
interacts with electrons, muons or tau leptons. The dis-
covery of neutrino oscillations demonstrated that each
flavor state can be represented as a superposition of mass
states with eigenvalues m1, m2 and m3, at least two of
which are nonzero [8–10]. While nuclear and particle
physics experiments as well as cosmological models have
placed upper bounds on the masses and measured the
squared mass differences [1], the absolute neutrino mass
scale is unknown. In addition, two orderings of the mass
spectrum are possible: if m1 < m2 < m3, the masses are
said to obey a normal ordering, while if m3 < m1 < m2,
they follow an inverted ordering. Although recent data
are beginning to shed light on the ordering question, it
remains unanswered to date. Sensitivity to the ordering

in oscillation experiments is discussed in Qian et al. [11].
A promising approach to resolving the mass scale in-

volves analyzing the shape of the electron spectrum pro-
duced when nuclei β-decay. This “direct mass measure-
ment” method is so named because it depends chiefly
on decay kinematics imposed by energy conservation.
Direct mass experiments probe the electron-weighted

neutrino mass mβ =
√∑3

i=1 |Uei|2m2
i (hereafter “neu-

trino mass”), where Uei are Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix elements.1 The size of mβ corre-
sponds to a shift in the electron’s maximal kinetic energy
and causes a distortion in the β spectrum shape. A pre-
cise mβ measurement would determine the mass scale,
and as a by-product, it could constrain the ordering at
masses / 48 meV—the 95% lower limit on the inverted
ordering mass [1]. Furthermore, the β-decay shape de-
pends distinctly on each mi [12]. Thus, we propose that,
if a β-decay experiment is sensitive to the fractional con-
tributions of individual neutrino masses to the full spec-
tral shape, such information might enable a clearer mass
ordering determination. By modeling the shape of a β
spectrum, one can thus assess a direct mass experiment’s
sensitivity to the ordering—accounting for both the mag-
nitude of mβ and finer spectral features (see Figure 1).

In this paper, we develop a β-decay spectral model
suited to Bayesian inference. The model uses a two-
neutrino approximation (motivated by the fact that
∆m2

21 � |∆m2
13|) and formulates the mass ordering ques-

tion in terms of a parameter η, the fractional contribu-
tion of the lighter mass to the spectrum. Constraints on
η are most directly accessible via reactor neutrino exper-
iments. Thus, for a β-decay experiment to potentially
resolve the mass ordering, the only external data needed
for the analysis are reactor data. Current as well as fu-
ture direct mass experiments could employ this spectral

1 For either neutrino mass ordering, mβ = m1 to 1% accuracy
for m1 ' 0.05 eV. Hence, with knowledge of the ordering and
splittings, an mβ measurement determines all three masses.
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FIG. 1. A comparison of atomic tritium β-decay spectra for
the two allowed neutrino mass orderings shows how a spectral
shape analysis could be sensitive to the mass ordering. A
background of 10−6/eV is assumed.

model to examine their sensitivity to the neutrino mass
scale and ordering. As a case study, we use the model to
assess sensitivity to these neutrino mass parameters for
one possible design scenario of the Project 8 experiment,
a high-precision β-decay experiment [13, 14].

II. A MODEL-BASED APPROACH TO
CALIBRATING SENSITIVITY RESULTS

Predictive analyses project whether, given some ex-
pected data, one will be able to report a particular
result—for example, “mβ falls between 0.05 and 0.09
eV with 90% credibility” or “the mass ordering is nor-
mal.” In Bayesian analysis, the decision of whether to
claim a particular result occurs after the process of infer-
ence. Bayesian inference produces posterior distributions
π(θ|y) for parameters θ given data y. Such inference ex-
ploits Bayes’ rule π(θ|y) ∝ π(y|θ) · π(θ), where π(y|θ) is
the likelihood of y given θ, and π(θ) are prior probabil-
ity distributions on θ. Experimenters make claims about
physics underlying their data by computing expectations
(e.g. means and intervals) from posteriors.

In practice, there is no guarantee that the process by
which one decides to claim a scientific result will perform
well when faced with real data. To provide some assur-
ance of the decision making process’ good performance, it
is necessary to calibrate the process by evaluating it with
respect to possible “model configurations,” i.e., combina-
tions of true parameter values.

Decision-making procedures are, in this context, cost-
benefit analyses. A calibration requires an inferential loss
(or utility) function that expresses the relative loss L in-
curred when an experimenter makes different reporting
choices. In this work, L lies between 0 and 1. A com-
mon choice for L (used in Section II A) is a function that
equals 0 if a credible or confidence interval obtained by

analyzing a pseudo-dataset contains the true parameter
value, or 1 if it does not. The expected loss is then
estimated by finding the average loss L̄ for a group of
pseudo-datasets. In the case just described, L̄ would be
the fraction of datasets for which the interval does not
contain the true value. Given multiple reporting options,
the experimenter should select the option with the small-
est average loss over a group of pseudo-experiments [2, 7].
(For example, this enables a decision of whether to report
quantile or highest density intervals, as discussed further
in Section II A.)

There is no one correct loss function for a given model,
but the function should quantify the agreement or dis-
crepancy between inputted and reported values. Given
some loss function, model-based calibration then serves
to compute how often one reports accurate results, across
many pseudo-experiments with likely model configura-
tions [2, 7, 15].

Frequentist calibration entails finding the worst-case
loss over all model configurations. Such calibration re-
quires tools like the Feldman-Cousins method, which ad-
dresses the fact that typical, Gaussian confidence in-
tervals are inaccurate for bounded parameters, such as
the positive neutrino mass [16, 17]. This approach is
too time-consuming to implement fully, as it requires
that likelihood functions be computed and integrated for
all reasonable parameter values (or a fine grid). While
asymptotic approximations can make frequentist calibra-
tion computationally viable, they do not fully hold for
the complex statistical models used in modern analy-
ses [18, 19].

Bayesian calibration, on the other hand, does not re-
quire that one determine the worst-case loss; instead, it
entails finding the expected loss with respect to the prior
distribution. This is a probabilistic calculation that can
be readily implemented with sampling methods. In a
Bayesian analysis, it is not necessary to consider all possi-
ble truths—only enough to accurately estimate expected
losses [19]. Here, we lay out Bayesian calibration pro-
cedures for sensitivity to the electron-weighted neutrino
mass and mass ordering.

A. Calibrating Neutrino Mass Sensitivity Claims

The Bayesian result of a physics experiment will of-
ten be a posterior credible window—that is, the window
within which some fraction of a parameter’s posterior
probability mass falls. This reporting scheme is sensible
for continuous-domain parameters. If a posterior on mβ

is inferred from a β spectrum, experimenters can present
their result as a credible window of neutrino masses (in
eV). We call the width of this window “sensitivity to the
neutrino mass.” The reported mass window may consist
of either an upper limit with a lower bound at zero, or a
credible interval with upper and lower bounds. If poste-
riors are inferred for a large number of pseudo-data sets,
one may predict an experiment’s sensitivity by comput-
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ing an expectation value (e.g. mean width or median
width) from these credible windows. For a discussion
of the frequentist and Bayesian perspectives underlying
the use of confidence and credible intervals, respectively,
see [2].

In the continuous-domain case, the loss function pro-
vides a method for computing the proportion of likely
data sets for which a posterior interval contains the true
parameter value. For an analysis of sensitivity to mβ ,
a calibration involves computing the fraction of pseudo-
data sets C ≡ 1 − L̄ for which the credible window in-
cludes the true neutrino mass m̃β , where L̄ is the average
loss for an ensemble of pseudo-experiments. (L̄ serves to
estimate the expected loss with respect to the prior distri-
bution.) The fraction C is known as the Bayesian “model
coverage,” and it estimates the expected accuracy of a
sensitivity prediction.2 We find C by repeatedly generat-
ing and analyzing data given an appropriate distribution
of inputted m̃β values [2].

The calibration procedure is as follows:

1. Develop a generation model of the data, and if nec-
essary, a second analysis model. The latter may
be approximate but is believed to adequately de-
scribe the data. Both models depend on a set of
parameters θ (which includes mβ).

2. Select “true” values θ̃ by sampling from priors π(θ),
which incorporate as much external knowledge as
is reasonable.

3. Generate spectral data ỹ using the generation
model, with θ̃ as inputs.

4. Use the analysis model from #1 to infer a posterior
π(mβ |ỹ).

5. Determine the posterior values ϑ that contain some
fraction (credibility) α of the posterior probability
mass on mβ . For a credible interval, calculate the
loss function

Lmβ ≡

{
0, m̃β ∈

[
ϑ(1−α)/2, ϑ(1+α)/2

]
1, Otherwise,

(1)

where upper and lower posterior bounds ϑ(1±α)/2

are computed so that∫ ϑ(1±α)/2

0

dmβ π(mβ |ỹ) =
1± α

2
. (2)

2 Note that credible intervals do not guarantee any frequentist cov-
erage. Constructing confidence intervals and computing frequen-
tist coverages would require analyzing an ensemble of pseudo-
experiments for a multi-dimensional grid of input parameter
configurations. This becomes impractical in many dimensions,
where the number of configurations on any reasonably sized grid
grows exponentially fast [18].

That is, a fraction (1 ± α)/2 of the posterior
probability mass on mβ lies below the mass value
ϑ(1±α)/2. For a limit, the credible window is [0, ϑα].

6. Repeat steps 2–5 Ntrial times. Each repetition con-
stitutes a “pseudo-experiment.”

7. Compute C by subtracting the mean over resulting
Lmβ values from 1. Potentially, adjust α to obtain
a satisfying coverage—that is, to achieve an accept-
able number of true and false positive results.

C may not equal α for all α; the relationship between
these two values depends on the model and priors. The
uncertainty on C is

√
C · (1− C)/Ntrial, assuming the

number of true positive results is binomially distributed.
A calibrated sensitivity result then consists of a pro-

jected (e.g., mean or median) credible window and its
coverage. It is necessary to sample all input values from
priors before generation (step 2). This creates an ensem-
ble of many realistic data sets, where the probabilities of
possible model configurations are weighted appropriately.
If a model-based sensitivity analysis uses fixed generation
inputs (or a grid of inputs, unweighted by prior probabili-
ties), it risks biasing results and under- or over-estimating
coverages. It is also crucial to generate pseudo-data that
is as realistic as possible, so that the coverage will re-
flect the potential consequences of all known assumptions
made when devising the analysis model or choosing how
to report results [2].

Note that expected fluctuations in the data itself (i.e.,
statistical uncertainties) are incorporated into priors used
for both data generation and analysis—steps 3 and 4.
By contrast, uncertainties representing a lack of clarity
in one’s knowledge of fixed parameters (i.e., systematic
uncertainties) are incorporated into pre-generation sam-
pling and analysis priors—steps 2 and 4.

Eq. 2 in step 5 of the above procedure does not
uniquely define a credible window, because the equation
fails to specify the window’s central value. A straight-
forward choice of window is the quantile interval, which
contains an equal amount of probability mass above and
below the posterior median. For asymmetric posteriors,
however, highest density intervals (HDIs) may be prefer-
able. An HDI is computed by finding all credible inter-
vals for a given α and selecting the narrowest interval.
For a continuous posterior, this is equivalent to lowering
a horizontal line over the posterior until the outermost
intersection points between the line and curve contain a
fraction α of posterior probability mass [20]. For a par-
ticular ensemble of posteriors, assuming both of these
interval types are qualitatively sensible, one can decide
which to adopt by computing and comparing coverages
for each.

When measuring a continuous parameter like mβ ,
physicists are often concerned not only with precision,
but also with “discovery potential”: the probability that
the parameter is nonzero. While neutrinos have been
found to be massive through oscillation experiments, a
beta-decay result distinguishing mβ from zero with high



5

confidence or credibility would provide strong verification
of physicists’ interpretation of these oscillation data [6].
Here, we claim a continuous parameter is nonzero if its
highest density credible interval does not intersect with
zero. (In practice, the mβ prior affects the outcome; see
the end of Section IV A.)

To verify that a scheme for assessing discovery poten-
tial is sound, a second calibration is required. This in-
volves inputting a “true” mass value of zero for an ensem-
ble of pseudo-experiments, then constructing HDIs with
some credibility. Next, one confirms that the interval
credibility approximately equals the fraction (coverage)
of experiments for which the interval contains zero.

B. Calibrating Mass Ordering Sensitivity Claims

It is similarly possible to calibrate the process of claim-
ing that the neutrino masses obey one ordering. This
process is an example of result reporting for a discrete-
domain parameter. In that case, we follow the above
procedure through step 4, replacing mβ with a param-
eter that encodes mass ordering information. For our
β spectral model, that parameter is η, the lighter mass’
contribution to the spectrum. For normal and inverted
orderings, respectively, η tends toward precisely known
values ηN and ηI (see Section III). We claim a hypotheti-
cal ordering result when the posterior π(η|ỹ) clusters near
the predicted value for one ordering.

Specifically, as a suggested decision making scheme, we
report a normal (inverted) ordering result when a poste-
rior interval on η with credibility κ contains ηN (ηI) but
not ηI (ηN ). For a credible interval T on η, the associated
loss functions for each ordering are

LN ≡

{
0, (ηN ∈ T ) and (ηI /∈ T )

1, Otherwise

LI ≡

{
0, (ηI ∈ T ) and (ηN /∈ T )

1, Otherwise

T =
[
φ(1−κ)/2, φ(1+κ)/2

]
,

(3)

where posterior bounds on η are computed so that∫ φ(1±κ)/2

0

dη π(η|ỹ) =
1± κ

2
.

These bounds may be selected using either a quantile or
a highest density approach, depending on which yields
higher coverage. If LN = LI = 0 or 1, neither ordering
is strongly favored and nothing can be claimed.

For each “true” mass ordering, given a series of pseudo-
experiments, we then compute the rates at which we re-
port correct and incorrect mass ordering results (see Sec-
tion IV B). These true and false claim rates enable ex-
perimenters to select a credibility κ—i.e., to decide how
stringent to make their reporting criterion. As in the

continuous parameter case, this calibration of sensitiv-
ity to the mass ordering should be performed for a large
number of model configurations sampled from priors. A
similar calibration procedure would apply to accelerator,
atmospheric and reactor experiments seeking to resolve
the ordering [21], given an η-like parameter expressing
mass ordering information.

We implement the above two procedures using the Stan
software platform for Bayesian inference, which estimates
posteriors by exploring a probability density parameter
space using Markov Chain Monte Carlo methods (specif-
ically, Hamiltonian Monte Carlo [22, 23]). Stan is a valu-
able predictive analysis tool because it deals well with
high dimensional problems and allows users to focus on
modeling systems instead of developing computational
architecture [24, 25]. Along with Stan, we employ mor-
pho, a python-based tool we developed to organize infor-
mation input to and output from Stan. Morpho facili-
tates a Stan workflow involving convergence checks and
analysis of posteriors, and it is designed to suit general
Stan users [26].

III. MODEL FORMALISM FOR A BETA
DECAY EXPERIMENT

The differential spectrum predicted for beta decay has
a well understood analytic distribution, especially for su-
perallowed transitions. The rate at which electrons are
ejected as a function of their total energies is described
by the equation

dN

dEe
=

[
G2
F |Vud|2

2π3
|Mnuc|2F (Z, pe)peEe

]
×[

3∑
i=1

|Uei|2εν
√
ε2ν −m2

iΘ(εν −mi)

]
.

(4)

In the electron phase space term (first bracketed term),
GF is the Fermi coupling constant, Vud is the Cab-
bibo mixing angle, Mnuc is the nuclear matrix element,
Ee(pe) is the outgoing electron energy (momentum), and
F (Z, pe) is the Fermi function, for a daughter nucleus
with charge Z. In the neutrino phase space term (sec-
ond bracketed term), Uei are the electron neutrino mixing

matrix elements, εν and
√
ε2ν −m2

i represent the total
energy and momenta of the released neutrino, and Θ is
the Heaviside step function. We also define the kinetic
energy of the electron, Ke = Ee −me.

In this section, we first justify our choice to hold the
electron phase space term constant with respect to en-
ergy, allowing us to model spectral data by focusing on
the second, neutrino-specific term. We then approxi-
mate and re-parameterize the neutrino phase space, pro-
ducing an analytic spectral form that both incorporates
expected features of a real data set and is suitable for
Bayesian modeling.
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A. Approximations to the Beta Spectrum

For this model, we consider an eV-scale energy region
near the high-energy end of a spectrum produced by β-
decay. For tritium decay, only superallowed transitions
occur, so Mnuc is simply the sum of the vector (gV ) and
axial vector (gA) coupling constants:

|Mnuc|2 = g2
V + 3g2

A.

Mnuc is therefore independent of electron energy.

The relativistic correction to the Fermi function is neg-
ligible at these energies, so the non-relativistic form is
used:

F (Z, pe) =
2παZ/β

1− e−2παZ/β
, (5)

where α is the fine structure constant and β ≡ pe/Ee is
the electron’s velocity. Since we confine our analysis to
a region of width δKe ∼ 10 eV, and the variation in β is
of order δKe/pe � pmax

e /Emax
e , β can be approximated

as constant. Given Eq. 5, then, F (Z, pe) ' F (Z, pmax
e ).

Similarly, we treat peEe ' pmax
e ·Emax

e as constant, given
that δKe � Emax

e ,me. Thus, we can define a constant

A ≡ G2
F |Vud|

2

2π3 |Mnuc|2F (Z, pmax
e )pmax

e Emax
e , representing

the electron phase space.

In addition, the spectrum’s neutrino-dependent term
can be expressed in terms of the kinetic energy of the
electron Ke. The neutrino phase space strongly depends
on the final state of the daughter. When multiple final
state configurations are possible—for example, in molec-
ular tritium decay—all possible final state configurations
need to be taken into account. In this case, however,
we focus solely on atomic tritium (T) decay to singly-
ionized 3He+ (the process of interest for the Project 8
experiment [14]).

Assuming the decaying source is composed of nearly
pure T, we need only consider a transition to one final
state configuration of the helium-3 nucleus. Energy con-
servation then allows us to define εν as

εν ' (Q0
T +me − Erecoil − Ee) ≡ (QT −Ke),

Q0
T ≡ Mi −Mf −me − δb,

Emax
recoil '

Q0
T(Q0

T + 2me)

2MfQ0
T

,

where Mi(f) is the parent (daughter) nucleus mass, δb is
the difference in binding energy between the parent and
daughter atoms, and Erecoil is the recoil energy of the
decay nucleus (with maximum Emax

recoil). The recoil energy
varies by ∼ 0.5 eV over the spectrum’s last 3.5 keV, so
we approximate Erecoil as constant near the end of the
spectrum [27]. This allows us to write the β spectrum in
terms of an endpoint energy parameter that is assumed
not to differ from decay-to-decay: QT ≡ Q0

T−Emax
recoil. For

atomic tritium, Q0
T has an experimentally determined

mean value of 18566.66 eV, and Emax
recoil is 3.41 eV [27].

Putting this together with the constant electron phase
space approximation, we formulate a spectral model P:

P(Ke) ≡A
∑
i

|Uei|2(QT −Ke)
√

(QT −Ke)2 −m2
i

·Θ(QT −Ke −mi) ≡
∑
i

|Uei|2Pi(Ke). (6)

Second-order effects are small compared with the overall
spectral shape in and around our narrow analysis win-
dow. Hence, our analytic model ignores second-order
corrections, including terms that account for finite nu-
clear radii and radiative corrections.

B. One- and Two-Neutrino Spectral Models with
Finite Energy Resolution

We must transform the function P(Ke) so that it in-
cludes features seen in experimental data, including an
energy resolution, background events, and kinetic energy
bounds. In performing these transformations, P(Ke)
must meet two conditions to be suitable for Bayesian
inference. First, we require that the function be normal-
izable, because Bayesian models are formulated as prob-
ability density functions (PDFs). Specifically, in Stan,
one specifies features of a likelihood space by adding
log PDFs to a total log probability. While strictly, the
function’s normalization need not be analytic because
Stan provides for 1D integration, inference with analytic
PDFs is less computationally expensive. By incorporat-
ing smearing from an experimental energy resolution, we
are able to formulate an analytically normalized version
of P. Second, to assess sensitivity to the mass ordering,
our model must include a parameter η, as described in
Section II B—or more generally, a variable that strongly
depends on the ordering.

We consider two experimental factors: the uncertainty
associated with reconstructing an energy spectrum and
the presence of background events. As opposed to con-
sidering an integrating spectrometer (like the one used by
KATRIN), we focus on differential spectrometers (used
by Project 8, ECHO and HOLMES) capable of measur-
ing individual electron kinetic energies [28]. This al-
lows us to assume that true kinetic energies are nor-
mally distributed around K. The mapping distribution is
N (Ke|K,σ) for a standard deviation—that is, an energy
resolution—σ.

The convolution of the neutrino phase space term with
N is not analytically integrable. We address this issue by
expanding each neutrino mass term Pi within P (Eq. 6)
to first order in m2

i :

Pi(Ke) ' A ·
[
(QT −Ke)

2 −m2
i /2
]
Θ(QT −Ke −mi).

This expansion is justified for m2
i � (QT −Ke)

2, which
holds for all data points except those very close to the
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endpoint. Moreover, once the spectral shape is smeared
by convolving it with N , the exact and approximated
curves appear very similar even near the endpoint, as
seen in Figure 2. When analyzing a full spectral shape,
the expansion holds except for large quantities of data.

(The count number at which the approximation breaks
down depends on the analysis window and binning,
among other factors.)

Given the expansion in m2
i , we can define and integrate

a reconstructed energy spectrum Fi:

Fi(K|QT,Kmin,mi, σ) ≡ Fi(K) ∝
∫
Pi(Ke) · N (Ke|K,σ) ·Θ(Ke −Kmin) · dKe →

dN

dK

= N(mi, QT −Kmin) ·
[
ξ(K|QT,mi, σ,mi)− ξ(K|QT,mi, σ,QT −Kmin)

]
(7)

ξ(K|QT,mi, σ, t) = (QT − K + t)σ2N (QT −K|t, σ) +
1

2

(
− m2

i

2
+ (QT −K)2 + σ2

)
· Erfc

(
t−QT +K√

2σ

)

This model describes signal data in a kinetic energy
window [Kmin, QT]. Its normalization term is defined
based on the size δKe of this window:

N(mi, δKe) =
6

2(δKe)3 − 3m2
i δKe +m3

i

The practical need to filter out events below some en-
ergy motivates our choice to include a minimum energy
parameter. Because of the uncertainty σ associated with
the reconstruction of Kmin, this lower bound is soft.
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FIG. 2. Approximated spectral model (Eq. 7) superimposed
on a numerical convolution of a Gaussian with the exact
T spectrum (Eq. 4) and one year of data generated with the
exact model. The signal activity is 1.7×108/yr in the analysis
window, mβ = 8.5 meV, Kmin = QT−mβ−10 eV, and σ =
54 meV (see Section IV A).

The background is assumed to be uniform in kinetic
energy. If we include a smeared (i.e., convolved with N )
background B, the normalized spectral model for a single

neutrino mass mi is given by the master equation:

Mi(K) = fs · Fi(K) + (1− fs) · B(K|Kmin,Kmax, σ)(8)

B(K|Kmin,Kmax, σ) =
Erf(Kmax−K√

2σ
)− Erf(Kmin−K√

2σ
)

2(Kmax −Kmin)
.

Here, fs is the signal fraction of a data set. SinceMi(K)
is analytic and normalized, it can be formulated as a PDF
and thus used for statistical inference in Stan. Moreover,
Eq. 8 allows us to assess an experiment’s sensitivity to
the mass scale. Specifically, the calibration procedure in
Section II A can be applied for posteriors on masses mi

inferred using this model.

Experimentally, K is constructed from some observed
variable vo—for example, in Project 8’s case, an electron
cyclotron frequency (see Section IV). The energy resolu-
tion derives in large part from statistical uncertainties on
the quantities used to map vo → K. While these quan-
tities and their errors are expected to be well known,
a mapping bias that shifts the overall energy scale is
possible. We model this bias by constructing a prior on
Kmin which allows the minimum energy to shift slightly
relative to QT.

We bin data to reduce computation time, though un-
binned analyses are possible in Stan. Details in the spec-
tral shape on the order of a few meV only inform the neu-
trino mass measurement if they occur in the last ≈ 1 eV.
Thus, data should be binned finely near the endpoint
and coarsely (for computing efficiency) at lower ener-
gies. For narrow bins, the fraction of counts per bin can
be fitted to the spectral rate at each bin center. How-
ever, modeling large bins (O(1 eV) width) in this way
biases mβ posteriors upward relative to inputs, due to
the changing slope of the spectrum within each bin. To
address this, we derive the cumulative distribution func-
tion GCDF

i (K) corresponding to the PDF model in Eq. 7,
then set the number of events in a bin [Kn,Kn+1] equal
to GCDF

i (Kn) − GCDF
i (Kn+1). The CDF is provided in

Appendix A.

To report mass ordering results based on inferred pos-
teriors, we modify the spectral model in a second way.
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If one considers the smaller mass splitting (∆m2
21 ≡

m2
2−m2

1) to be negligible, the signal (Eq. 7) can be writ-
ten in terms of only two neutrino masses, mL and mH .
Here, mH > mL, with a splitting ∆m2

ee ≡ m2
H −m2

L '
|∆m2

13| ' |∆m2
23|. The signal is then simply a weighted

sum of two spectra, corresponding to the two mass scales:

F ′(K) = η · FL(K|QT,Kmin,mL, σ) +

(1− η) · FH(K|QT,Kmin,mH , σ) (9)

As indicated previously, η is the fractional contribution
of the lighter mass term to the spectral shape.

Since ∆m2
ee is always positive, η is the only parameter

in this model that depends on the ordering. Specifically,
η should tend toward one value (ηN ) if the ordering is
normal and another (ηI) if it is inverted, where

ηN ≡ |Ue1|2 + |Ue2|2 = cos2 (θ13)

ηI = 1− ηN = |Ue3|2 = sin2 (θ13).

The ordering question can thus be formulated solely in
terms of the large mass splitting and θ13, both of which
are measured by reactor antineutrino disappearance ex-
periments. Hence, the above model enables a mass order-
ing determination using only a β spectrum and reactor
experiment results.

To perform a mass ordering sensitivity study, we sub-
stitute Fi(K)→ F ′(K) in Eq. 8. Then, by implementing
the decision making scheme in Section II B for posteriors
on η, we can calibrate the analysis by estimating the
expected accuracy of reporting different ordering results
based on β spectra. Consequently, we have here de-
veloped a probability distribution that serves two key
purposes: It acts as a likelihood function for Bayesian
modeling, and it can be used to assess a direct mass ex-
periment’s sensitivity to the mass ordering.

IV. RESULTS

Our analysis seeks to determine how experimental pa-
rameters such as energy resolution and number of β-
decay events affect sensitivity to mβ as well as the mass
ordering. To construct concrete, realistic priors that re-
flect what parameter values an experiment might see,
we incorporate information related to the Project 8 ex-
periment. The Project 8 Collaboration developed the
technique of Cyclotron Radiation Emission Spectroscopy
(CRES) for obtaining a β spectrum at high precision,
as originally proposed by [13]. CRES involves measur-
ing the cyclotron frequencies of electrons in a magnetic
field, then computing corresponding energies. In its final
stage, Project 8 aims to measure the neutrino mass scale
by analyzing a spectrum produced by atomic tritium β-
decay. The Collaboration is working to reach a neutrino
mass sensitivity of about 40 meV [14].

A. Sensitivity to Absolute Neutrino Mass Scale

1. Pseudo-Data Generation and Analysis

This study follows the procedure for calibrating sensi-
tivity claims described in Section IIA. We perform 220
pseudo-experiments (that is, repetitions of steps 2-5 in
the procedure), assuming a runtime ∆t = 1 yr. For each
experiment, data is generated with a β-spectrum model
that is much more detailed than the inferential model,
to reveal any biases arising from analysis assumptions.
The generation model includes an energy-dependent rel-
ativistic Fermi function, as well as correction terms stem-
ming from atomic physics phenomena. These terms ac-
count for the emitted electron’s recoiling charge distri-
bution, radiative effects from real and virtual photons,
three-body recoil effects from weak-magnetism and V-A
interference, 1s-orbital electron interactions with the β
and screening of the 3He+ Coulomb field, and the 3He+

nucleus’ structure. The formulae for these corrections
are taken from [29]. In this subsection, we generate data
with a one-neutrino mass model and call that mass mβ .

To compose a full data generation model, the detailed
β-spectrum is broadened by numerically convolving it
with a Gaussian of width σ. A nearly flat background
(Eq. 8) is then added to the spectrum. Before convolu-
tion, the data is confined within a ≈ 20 eV window cen-
tered on the mean energy at which the spectrum vanishes:
QT −mβ , where QT is the mean T endpoint. The win-
dow’s width varies modestly from spectrum-to-spectrum
because its lower bound is sampled from a prior, as dis-
cussed below.

In Stan, we implement the one-neutrino spectral model
M from Eq. 8, for mi → mβ . Each pseudo-spectrum is
analyzed using this model. The data is histogrammed
with 300 bins covering the 1 eV directly below the end-
point, nine ≈ 1 eV-wide bins at lower energies, and
one bin containing any background events above the
endpoint. For each of the 300 narrow bins bounded
by [Kn,Kn+1], we model the number of counts as a
value sampled from a Poisson distribution with rate

M
(
Kn+Kn+1

2

)
× (Kn+1 − Kn). For the 9 wider signal

bins, since the β-spectrum decreases monotonically, the
signal Poisson rate can be approximated as GCDF(Kn)−
GCDF(Kn+1) (see Appendix A). To test the effect of
bin size near the endpoint, a small analysis (40 pseudo-
experiments) was performed with 500 bins in the eV be-
low the endpoint. It yielded median mβ sensitivities and
coverages consistent with those presented in Table III,
within statistical uncertainty.

2. Selection of Priors

Each model parameter requires an associated prior,
both for sampling “true” values (generator inputs) and
for inferring posteriors from data. By sampling from



9

Prior Model Prior Source
QT N ([18563.25, 0.07]eV) 1, 2 Measured
σdopp γ(59.82, 2868 eV−1) 1, 2 Measured
σinst N (µinst, δinst) 1, 2 Design
Kmin N ([QT−mβ,L−10, 0.01]eV) 1, 2 Design
Ab lognorm(-27.31, 0.5678) 1, 2 Design
Natoms lognorm(44.07, 0.5677) 1, 2 Design
mβ γ(1.135, 2.302 eV−1) 1 Measured
∆m2

ee γ(314.5, 122700 eV−2) 2 Measured
mL γ(2.186, 126.1 eV−1) 2 N/A

TABLE II. Priors for data generation and analysis using one-
and two-neutrino models, denoted by “1” and “2,” respec-
tively. “Design” quantities reflect goals for Project 8, while
“measured” ones derive from past experiments. Prior func-
tions are defined in Appendix B.

these priors repeatedly, creating an ensemble of model
configurations, we can approach an analysis that ac-
counts for the full range of possible spectra—given antici-
pated statistical and systematic errors. To construct pri-
ors, we select functional forms with boundary conditions
that accord with physical limits on parameters. For pos-
itive quantities, we therefore generally chose log-normal
or gamma (γ) distributions—the former when likely val-
ues span multiple orders of magnitude, and the latter
otherwise. See Table II for a summary of priors.

The one-neutrino model includes parameters mβ , QT,
σ, Kmin, and fs. A γ prior on mβ was constructed so
that 1% of its probability mass would fall below 0.008
eV, reflecting the lower bound from mass splitting mea-
surements [1]. (This bound is not strict because of small
uncertainties on those measurements.) Ten percent of the
prior mass on mβ falls above 1.1 eV, the 90% confidence
upper bound reported by KATRIN in 2019 [30].

We employ a normal prior on QT but define the pa-
rameter as positive in Stan, truncating a negligible neg-
ative portion of the normal distribution. The mean of
the prior is the extrapolated tritium endpoint minus the
electron mass, as calculated by Bodine et al. [27]. The
largest contribution to the QT uncertainty is from the
T-3He mass difference, which has been measured in Pen-
ning traps [31]. That quantity serves as the QT prior
standard deviation.

We consider two energy resolution effects, summed in
quadrature to yield the total resolution σ: 1) Doppler
broadening σdopp from translational motion of tritium
atoms, and 2) Instrumental broadening σinst from the
process of reconstructing kinetic energies. To select a γ
prior on σdopp, we devised a Stan model that extracts
posteriors for the mean expected energy spread due to
thermal broadening (µdopp) and the uncertainty on that
spread (δdopp), using the formulae in [27]. We set the

mean (
√

variance) of the σdopp prior equal to the mean
of a Gaussian fit to the µdopp (δdopp) posterior, inferred
for a 0.3000± 0.0015 Kelvin gas with negligible T2 con-
tamination.

The primary two expected contributions to the instru-

mental resolution are A) a cyclotron frequency measure-
ment error and B) an uncertainty on the field value in
the frequency to energy conversion. We construct a σinst

prior assuming that the field error ∆B/B ∼ 10−7 is the
larger contribution [14]. In this case, σinst ∼ 0.05 eV.
As Project 8 is considering multiple energy calibration
schemes, the uncertainty on σinst could reasonably fall
anywhere in the large range of ≈ 0.5 − 10%. Accord-
ingly, the σinst prior’s “true” mean and standard devi-
ation (µinst, δinst) are sampled from distributions before
data generation, then fixed to their sampled values during
inference. The σinst prior is thenN (µinst, δinst). The µinst

distribution for pre-generation sampling is γ(25.0, 2 ×
10−3eV−1), with mean 0.05 eV and

√
variance=0.01 eV.

The δinst distribution is γ(1.583, 809.7 eV−1), selected so
that 5% of its probability mass would fall below (above)
2.5× 10−4 eV (5× 10−3 eV). Combining the two sources
of broadening, the mean σ is 0.054 eV.

Experimenters can select Kmin before analysis by fil-
tering out events above some cyclotron frequency. If the
conversion (σ) to K were known exactly, Kmin could be
fixed during inference at a value computed from that fre-
quency. Instead, to allow for a systematic shift in K on
the order of 0.01 eV, we employ a normal prior on Kmin

with that standard deviation.

We also incorporated priors associated with the spec-
tral signal fraction. While external information does not
directly inform a prior on fs, it pertains more directly
to signal and background activities As and Ab. Here,
As (Ab) is the number of events per second generated by
F(K) (B(K)) in the window [Kmin, QT] ([Kmin,Kmax]).
We thus model the signal fraction as fs = S/(S + B),
where S = ∆t ·As and B = ∆t ·Ab are signal and back-
ground Poisson event rates.

To inform the prior on As, a possible expected signal
activity in the unconvolved spectrum’s last electronvolt
can be expressed in terms of both experiment-specific
quantities (atomic source density n; effective source vol-
ume Veff) and physical parameters (T half-life τ1/2; frac-
tion feV of counts between QT−mβ−1 eV and QT−mβ

for σ → 0). Following the approach in [32],

As in the last eV = n · Veff ·
ln(2)

τ1/2
· feV. (10)

Here, the fraction of counts feV in the last eV takes
into account that all events observed in the last elec-
tronvolt are produced by decays to the 3He+ electronic
ground state [27], which comprise 70.06% of the total
tritium decay width [33]. The detailed spectral model
we developed for data generation enabled a new, precise
calculation of feV, a quantity that has historically been
central to projecting the activities of tritium-based neu-
trino mass experiments [6, 32]. Assuming mβ = 0, we
find feV = 1.69× 10−13 for T2 and 2.06× 10−13 for T.

For a number density n = 1018 atoms/m
3

and Veff =
10 m3, target values for an experimental design scenario
considered by the Project 8 Collaboration [14], the ex-
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periment would detect ≈ 1.2 × 105 events per year
above QT −mβ − 1 eV, and a factor of 1000 more above
QT − mβ − 10 eV. We employed a log-normal prior on
Natoms ≡ n · Veff for this scenario, setting its mode and
standard deviation equal to 1019 atoms. For a given ap-
paratus, this allows for some variation in source density
and detection efficiency. As was then computed from
Natoms.

The Ab prior is informed by the Project 8 Collab-
oration’s goal for its dominant source of background
to be cosmic rays passing through the tritium gas.
Since the expected cosmic ray activity is approximately
10−12/eV/s for the n and Veff values assumed above, and
the activity varies with those parameters [14], the Ab
prior distribution is chosen to have mode and standard
deviation equal to 10−12/s for each 1-eV-wide bin of data.

3. Neutrino Mass Scale Sensitivity Results

A close correspondence between “true” neutrino
masses and mβ posteriors indicates that each β-spectrum
strongly informs a neutrino mass determination (see Fig-
ure 3). Each posterior standard deviation on mβ is
at least 22 times smaller than the corresponding prior
spread. See [2, 34] for more information on posterior
shrinkage and evaluating model performance.

Highest density credible intervals (C.I.s) were com-
puted for α = 0.6826, 0.9 and 0.95 (see Eq. 1), and
standard deviations were computed by halving the first
of these. The HDI approach produces higher coverages
than do quantile intervals. To enable reliable C.I. estima-
tion, we required the effective size of each posterior array
(as computed by PyStan [25]) to exceed 6000, so that at
least 150 effective samples fall outside each bound.

We can verify that the process of inference itself was
successful: As expected, posterior means for QT, σinst,
σdopp, Kmin, As and Ab track with input values. During
all 220 analyses, the five Stan convergence diagnostics—
R̂, effective sample size ratio, E-BFMI, tree depth, and
divergences [23, 35, 36]—showed no signs of pathological
behavior. Moreover, the coverage of 90% credible inter-
vals is between 85% and 99% for all parameters.

For true mβ > 0.5 eV, the mean 90% C.I. width
is 0.005 eV. The reported coverage uncertainties are√
C · (1− C)/Ntrial.
The left plot of Figure 4 shows that mass sensitivity

depends weakly on σinst, because the scenario considered
here is relatively statistics-limited and the range in σinst

is small. However, for this scenario, smaller uncertainties
on σinst noticeably improve sensitivity (see Section IV A 4
for an instance of this). We would also expect increasing
the effective volume to improve neutrino mass sensitivity.
Indeed, for an ensemble with fixed energy resolution and
a wide range in Veff values, the widths of mβ credible
intervals depend strongly on Veff, as seen in the right plot
in Figure 4. These results could inform how future direct
mass experiments prioritize their efforts to improve the
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FIG. 3. Neutrino mass posterior means and 90% credible
intervals as a function of inputted mβ , for a one-neutrino
model and the assumed experimental design. Interval widths
(“sensitivities”) decrease with mβ , asymptoting at ∼5 meV.

Interval Sensitivity (eV) Coverage

Median Mean Maximum
90% C.I. 0.0071 0.0112 0.0493 (90.0± 2.0)%
95% C.I. 0.0084 0.0133 0.0598 (93.2± 1.7)%
Stdev. 0.0022 0.0034 0.0158 (70.1± 3.1)%

TABLE III. Sensitivity to mβ after 1 yr, with coverages of
credible intervals.

expected energy resolution, resolution uncertainty, and
statistical yield of an apparatus design.

4. Claiming mβ is Inconsistent With Zero

We also evaluate the ability of an experiment with
the design described here to distinguish the electron-
weighted neutrino mass from zero. As introduced in II A,
for a given β-spectrum, it is possible to claim that the
neutrino mass is nonzero with credibility α if the lower
bound of a posterior highest density α-credible interval
exceeds zero. The mβ prior in Table II is in conflict
with this test, as that prior assumes that it is highly im-
probable for the mass to be zero, considering the lower
bound from oscillations measurements. When Project 8
analyzes real data, its main mass scale analysis can in-
clude anmβ prior with an oscillations-based lower bound.
However, to assess consistency with zero, the data will
need to be re-analyzed with an oscillations-bound-free
prior.

As an example sensitivity study, we perform 75 pseudo-
experiments with 10% of the neutrino mass prior proba-
bility falling below 0.005 eV and 10% above 0.1 eV. Re-
sulting posterior credible intervals on mβ are shown in
Figure 5. The neutrino mass can be distinguished from
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FIG. 4. Dependence of mass sensitivity (width of 90% credible intervals) on σinst and volume×efficiency×time. The left plot
assumes the design scenario described in this section. The right plot shows a larger range in signal exposure, for an alternate
scenario where n (3.7 × 1018 m−3) and σ (115 ± 2 meV) are chosen to minimize mβ uncertainty, given a trade-off between
frequency reconstruction error and exposure. The right plot “pessimistically” assumes mβ = 0.008 meV.

zero with 90% credibility in 65 of these analyses. It is
possible to claim the mass is inconsistent from zero for
true mβ & 0.04 eV, with two outliers caused by an un-
derestimation of the true mass, combined with poor mβ

precision due to large inputted uncertainties (i.e., prior
widths) on σinst.

How can one be confident that this method will not
produce frequent false claims? We may perform another
calibration: For β-spectra produced given a true neutrino
mass of zero, we should rarely claim that mβ is distin-
guishable from zero. Indeed, when we analyze 150 such
spectra, the mass is judged to be consistent with zero
93% of the time (α = 0.9).

B. Sensitivity to Neutrino Mass Ordering

The analysis in this section follows the procedure de-
scribed in Section IIB for calibrating sensitivity claims
to discrete parameters. Pseudo-data is generated with
the same detailed spectral model as in Section IV A,
but with two neutrino masses instead of one. Sim-
ilarly, for inference in Stan, we now employ a two-
neutrino model—Eq. 8, with a spectral signal F ′(K)
(Eq. 9)—to analyze data in the approximate window
[QT − mL − 1 eV, QT − mL + 10 eV]. This region ex-
tends only 1 eV below the endpoint so that the likelihood
will be strongly informed by fine-grained mass ordering-
dependent features near QT. To help constrain the over-
all mass scale, data in the next eV below QT−mL−1 eV
are fitted to a one-neutrino mβ model, with the require-
ment m2

β = η ·m2
L + (1− η) ·m2

H .
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FIG. 5. Mass posterior means and 90% credible intervals for
inputted mβ near zero. It is possible to distinguish the mass
from zero for true mβ&0.04 eV, with outliers characterized by
large uncertainties σinst (energy broadening standard dev.).

We repeat this two-neutrino analysis for ∆t = 1 yr
and 2 yrs with at least 170 pseudo-experiments per run-
time, producing coverage uncertainties of 1-5%. Again,
data are binned after generation, then analyzed assum-
ing Poisson-distributed events. The Stan model includes
the same priors on parameters QT, σdopp, σinst, Natoms

and Ab as in the one-neutrino case. The prior on Kmin is
similar, with its mean dependent on mL instead of mβ .
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FIG. 6. For one pseudo-experiment, example posterior probability density plots and 2D-histograms (in both contour and scatter
plot form) for parameters in the two-neutrino spectral model. Posteriors were obtained by analyzing data (∆t = 1 yr) that was
generated assuming a normal mass ordering.

0.30 0.25 0.20 0.15 0.10 0.05 0.00 0.05
 (eV)

10 4

10 3

10 2

PD
F 

of
 sm

ea
re

d 
 sp

ec
tru

m
 (e

V
)

Prediction (N.O.)
Prediction (I.O.)
Normalized pseudo-data (N.O.)
Normalized pseudo-data (I.O.)

FIG. 7. Example pseudo-spectra overlaid on predicted curves
(Eq. 4 numerically convolved with a Gaussian) for normal
and inverted orderings, with mL = 0 eV and a 2 yr runtime.
Spectra are plotted as a function of the difference between
reconstructed energy and the T endpoint.

We also constructed priors on ∆m2
ee and mL (see Ta-

ble II), while mH required no prior, as it was modeled by

transforming those parameters.3

A γ prior on ∆m2
ee was formulated by extracting a

90% confidence interval from a global fit of three reactor
neutrino experiments: [2.38, 2.75]×10−3 eV2 [37]. At the
time when we began the analysis, this was the most up-
to-date global fit of reactor data. As these bounds differ
slightly according to mass ordering, to be conservative,
we selected each bound (either the normal or inverted
ordering limit) so as to obtain a wider prior. Ten percent
of the prior mass on ∆m2

ee falls outside each bound. In
addition, before generation, either ηN or ηI was sampled
from a Gaussian prior, depending on the “true” ordering.
Prior parameters were determined based on the mean
of cos2 θ13 (0.979) and error on that mixing parameter
(0.001), as measured by reactor experiments [37]. Poste-
riors extracted from one of the two-neutrino model fits

3 To avoid non-invertible transforms and the need for Jacobian ad-
justments, in Stan, we define a “positive ordered” transformed

parameter m, with m[1]=mL and m[2]=
√

m2
L + ∆m2

ee (see Sec-

tion 22 of [25]). The entries of m then serve as inputs to the
spectral log probability density function.
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are shown in Fig. 6, and Fig. 7 compares pseudo-datasets
for the normal and inverted orderings.

For the prior onmL, we avoided computing soft bounds
using current limits on the mass scale from particle
physics experiments, as those constraints do not trans-
late easily to bounds on individual masses [1, 38]. In-
stead, we envision a scenario in which mL is restricted
below ≈ 0.05 eV, potentially based on future cosmologi-
cal constraints on the sum of the three neutrino masses.
Specifically, the prior for pre-generation sampling and
inference is γ-shaped with 10% of its mass below 5 meV
and 5% above 40 meV, resulting in mL < 0.08 eV for all
pseudo-experiments. (The distribution peaks near zero,
since there is no oscillations-based lower bound on mL

for the inverted ordering and a very small lower bound
for the normal case.) For true masses above 0.08 eV, one
rarely claims to have resolved the mass ordering using
our reporting scheme. Hence, by choosing a prior local-
ized in a low-mass region, we proportionally inflate true
and false ordering claim rates. This makes the process of
selecting ideal reporting criteria κ based on claim rates
more statistically reliable than it would be for a wider
mL prior.

As in the one-neutrino case, posterior means track with
input values for all parameters. During analysis of most
spectra, no Stan MCMC diagnostics indicated a failure
to converge. However, a quarter of runs exhibited signs of
incomplete convergence [35]: 15% showed a small number
of diverging iterations (1-10 of 15,000), and 10% failed at
least one other check. Mass ordering sensitivity results
are robust despite this, since observing and minimizing
false positive rates ultimately validates the analysis. Still,
a more consistently converging model might improve sen-
sitivity.
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FIG. 8. For 2 yrs of data assuming normal (dots) and inverted
(triangles) orderings, posterior means and intervals on η as a
function of potential sensitivity to mL, defined as C.I. width.

Table IV summarizes results for calibration of sensi-

∆t = 2 yrs, mL . 0.05 eV
Claim N Claim I

Optimal κ 0.985 0.855

Truth: N 86.8%± 3.5% 0.0% (+1.3%)
Truth: I 0.0% (+1.5%) 21.8%± 4.7%

∆t = 1 yr, mL . 0.05 eV
Claim N Claim I

Optimal κ 0.925 0.875

Truth: N 45.6%± 5.2% 0.0% (+1.3%)
Truth: I 0.0% (+1.2%) 23.5%± 4.3%

TABLE IV. Assuming either a normal or inverted true order-
ing, percentages of pseudo-experiments for which the three
possible reporting outcomes (“normal,” “inverted,” or “no
claim”) occur. To minimize false claims, different reporting
criteria κ are used for each ensemble and observed ordering.

tivity to the mass ordering. Uncertainties on 0% claim
rates represent 68.3% confidence limits derived from a bi-
nomial probability law. (Given the ensemble’s finite size,
the actual probability of a false claim is not exactly zero.)
The loss functions LN and LI in Eq. 3 dictated whether
an ordering result should be reported for each pseudo-
experiment. That is, a normal (inverted) ordering claim
was made if a posterior interval on η of credibility κ con-
tained ηN = cos2 θ13 (ηI = 1− ηN ) but not ηI (ηN ) (see
Figure 8). Given the small experimental error on cos2 θ13,
we assumed a known value ηN = 0.978. The credibility
κ acts as a reporting criterion, and modifying κ affects
the rates at which we correctly and incorrectly claim to
have resolved the neutrino mass ordering (see Figure 9).

We recommend an “optimal κ” by selecting the value
for which the relevant correct claim rate is maximized,
given a minimal incorrect rate—which can be zero, in this
study. Values of κ are considered in 0.5% increments.
We observe that, for both 1 yr and 2 yrs of data, false
inverted claims begin to occur for κ values above a lower
number than do false normal claims. In fact, Figure 9
shows that false normal claims are never made for ∆t =
2 yrs, for these pseudo-data sets. Using that knowledge,
for real data, it is possible to boost the probability of
a correct ordering claim without increasing the risk of a
false claim by applying the following procedure:

A) Check what result would be reported using the op-
timal κ for normal ordering true/false claims (as
predicted with pseudo-experiments)—here, 0.925
(0.985) for 1 (2) yr(s).

B) If the result is “normal” or “no claim,” report it.

C) If the result is “inverted,” it could be a false posi-
tive. Reduce κ to the inverted optimal value—0.875
(0.855) for 1 (2) yr(s)—to determine if to report
“inverted” or nothing.

This procedure accounts for the fact that it is easier to
claim a normal than an inverted ordering result for our
model. The procedure enables false claim rates of 0% for
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FIG. 9. Mass ordering reporting frequencies for ∆t = 2 yrs as
a function of κ, the credibility of the η interval (see Eq. 3).
To obtain the rates in Table IV, different κ values are chosen
depending on whether the initially favored result is normal or
inverted. For the upper plot, this adjustment enables one to
reduce the incorrect claim rate.

the pseudo-experiments performed here, with true rates
reaching 87% (22%) for the normal (inverted) ordering
after 2 yrs. We see here that as statistical power improves
over time, sensitivity to the normal ordering improves.

These results indicate that a Project 8-like neutrino
mass experiment could resolve the mass ordering for var-
ious likely combinations of physical and experimental pa-
rameter values. If the neutrinos obey a normal ordering
and the lightest mass is constrained below ≈ 0.05 eV, this
analysis predicts there is a high chance of resolving the
ordering after 2 yrs of data taking. We observe that a
direct mass experiment would resolve the normal order-
ing especially often in the low-mL, small mass sensitivity
region (see Figure 10).

For this study, we chose to employ a two-neutrino spec-
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FIG. 10. Distribution of mass ordering results with respect to
mL and mass sensitivity (∆t = 2 yrs). The normal (inverted)
ordering was reported when a 98.5% (85.5%) η credible inter-
val excluded one ordering and was consistent with the other.

tral model, as opposed to constraining the ordering based
on a single mass measurement —for which mβ / 48 meV
rules out an inverted ordering. While it would be impos-
sible to resolve the inverted ordering using a one-neutrino
model, a two-neutrino analysis can enable an inverted
ordering determination. In other words, the process of
inference is sensitive to fine structure near the endpoint
of the spectrum produced by individual neutrino mass
eigenstates.

V. CONCLUSIONS

In this paper, we presented a Bayesian approach to an-
alyzing sensitivity to the neutrino mass scale and order-
ing. That approach included a calibration, which quanti-
fied the performance of two processes: inferring informa-
tion and reporting results. Our sensitivity and calibra-
tion procedures are applicable to any experiment that
produces information regarding the mass scale and or-
dering. These procedures also serve as templates for sen-
sitivity studies by other physics experiments—whether
they measure continuous or discrete parameters. As de-
sign planning for Project 8’s final phase advances, future
work will include a detailed analysis of systematic fea-
tures to inform more precise priors in a Project 8-specific
study.

Using the β spectrum model developed here, and given
the experimental expectations in Section IV A, we find
that a high-precision direct mass experiment could re-
solve the electron-weighted neutrino mass mβ ≈ m1 in
a 90% credible interval, with a “true claim rate” or cov-
erage of (90.0 ± 2.0)%. For very small mβ , the width of
this interval approaches 40 meV, and for mβ > 0.5 eV,
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the average width is only 5 meV. A similar analysis may
be employed to search for and measure the mass(es) of
sterile neutrino states, each of which would produce one
kink in the β spectrum.

This study also investigates the tritium β-decay tech-
nique’s sensitivity to the neutrino mass ordering. We em-
phasize that, by using a utility function to judge whether
to report an ordering result, it is possible not only to
predict the probability of a false ordering claim, but also
to determine a reporting tolerance (here, the η interval
credibility) that minimizes the risk of false claims. For
the experimental parameters assumed here and a two-
year runtime, we would recommend reporting a normal
ordering result when a 98.5% posterior credible interval
on the light-mass fraction η contains |Ue1|2 + |Ue2|2 but
not |Ue3|2. To report an inverted ordering determination,
the opposite should hold for an 85.5% interval around η.
Those reporting criteria enable the normal (inverted) or-
dering to be resolved ≈ 87% (22%) of the time, with a
≈ 0% false claim rate. It is also possible to infer pos-
teriors on individual neutrino masses. When sensitivity
to the lightest mass is better than 0.03 eV, it is nearly
always possible to resolve the mass ordering.

These results demonstrate that we can access more in-
formation by modeling the full spectral shape than would
be possible using a one-neutrino model in terms of mβ .
As more events are detected, the spectral shape method
becomes increasingly sensitive to count rate kinks that
inform inferences about individual neutrino masses and
their ordering. Direct mass experiments thus offer a
unique potential probe of individual |Uei| matrix ele-
ments, complementary to oscillations-based probes of
their products.
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Appendix A: Approximate spectral model

The approximate β spectral model for Bayesian infer-
ence in Eq. 7 has a corresponding cumulative distribution
function. It is given by

GCDF
i (K) =

∫ ∞
K

Fi(K ′)dK ′ =[
GA(K|mi, QT , σ)−GB(K|mi, QT , σ,Kmin)

]
/C

where

GA = N (QT −K|mi, σ)2σ2 ·
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4σ2 −m2
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i

+ 2
(
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]
C =

[
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]∣∣∣∞
0
.

We implemented this function in Stan and employed it
to analyze fake spectra.

Appendix B: Priors distributions definitions

The prior distributions used in this paper are defined
as follows. Each distribution is implemented via a Stan
function that outputs the log of the probability density
of a parameter y [25].

1. Normal distribution:
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3. Log-normal distribution:

lognorm(µ, σ) ≡ lognorm(y|µ, σ)

=
1√

2πσy
exp

(
− 1

2

( logy − µ
σ

)2
)
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