FREEZE-IN PRODUCED DARK MATTER IN THE ULTRA-RELATIVISTIC REGIME

Simone Biondini

Department of Physics - University of Basel

Strong and Electroweak Matter Conference 2021 (Online Edition) July 2nd, 2021

in collaboration with Jacopo Ghiglieri (arXiv 2012.09083, JCAP03(2021)075)

Department of Physics

MOTIVATION AND INTRODUCTION

FRAMING THE DARK MATTER MODEL

• Simplified DM models:

 \Rightarrow capture the d.o.f. and parameters needed to study DM phenomenology

- χ Majorana fermion singlet, $\chi \equiv$ DM particle
- η is charged under QCD and U(1)_Y, $\eta \equiv$ mediator with $M_{\eta} = M + \Delta M$

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \bar{\chi} \left(i \partial \!\!\!/ - M \right) \chi + (D_{\mu} \eta)^{\dagger} D^{\mu} \eta - M_{\eta}^{2} \eta^{\dagger} \eta - \lambda_{2} (\eta^{\dagger} \eta)^{2} - \lambda_{3} \eta^{\dagger} \eta \phi^{\dagger} \phi - y \eta^{\dagger} \bar{\chi} a_{R} q - y^{*} \bar{q} a_{L} \chi \eta$$

same model and freeze-in see M. Garny and J. Heisig (2018) and G. Bélanger et al (2018)

MOTIVATION AND INTRODUCTION

FRAMING THE DARK MATTER MODEL

• Simplified DM models:

 \Rightarrow capture the d.o.f. and parameters needed to study DM phenomenology

- χ Majorana fermion singlet, $\chi \equiv$ DM particle
- η is charged under QCD and U(1)_Y, $\eta \equiv$ mediator with $M_{\eta} = M + \Delta M$

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} \bar{\chi} \left(i \partial \!\!\!/ - M \right) \chi + (D_{\mu} \eta)^{\dagger} D^{\mu} \eta - M_{\eta}^{2} \eta^{\dagger} \eta - \lambda_{2} (\eta^{\dagger} \eta)^{2} - \lambda_{3} \eta^{\dagger} \eta \phi^{\dagger} \phi - y \eta^{\dagger} \bar{\chi} a_{R} q - y^{*} \bar{q} a_{L} \chi \eta$$

same model and freeze-in see e.g. M. Garny and J. Heisig (2018) and G. Bélanger et al (2018)

$y \lesssim \mathcal{O}(10^{-8}), \; T_{\scriptscriptstyle \mathrm{INI.}} \gg M_\eta$ and $T > 150 \; \mathrm{GeV}$

- DM χ never reaches thermal equilibrium $f_{\chi}(t, \mathbf{k}) \ll n_F(k^0)$
- η and q maintained in equilibrium by SM interactions
- χ accumulates over the thermal history through processes like $\eta \to \chi q$

MOTIVATION AND INTRODUCTION

FRAMING THE DARK MATTER MODEL

• Simplified DM models:

 \Rightarrow capture the d.o.f. and parameters needed to study DM phenomenology

- χ Majorana fermion singlet, $\chi \equiv$ DM particle
- η is charged under QCD and U(1)_Y, $\eta \equiv$ mediator with $M_{\eta} = M + \Delta M$

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} \bar{\chi} \left(i \partial \!\!\!/ - M \right) \chi + (D_{\mu} \eta)^{\dagger} D^{\mu} \eta - M_{\eta}^{2} \eta^{\dagger} \eta - \lambda_{2} (\eta^{\dagger} \eta)^{2} - \lambda_{3} \eta^{\dagger} \eta \phi^{\dagger} \phi - y \eta^{\dagger} \bar{\chi} a_{R} q - y^{*} \bar{q} a_{L} \chi \eta$$

same model and freeze-in see e.g. M. Garny and J. Heisig (2018) and G. Bélanger et al (2018)

$y \, \lesssim \, {\cal O}(10^{-8}), \ T_{\scriptscriptstyle m INL} \gg M_\eta$ and $T > 150 \ { m GeV}$

- we shall address the high-temperature dynamics
- $\bullet\,$ multiple soft scatterings and $2\to 2$ process

 $T \gg M_{\eta}$ can be very important even for renormalizable interactions

PRODUCTION RATE AND RATE EQUATION

GENERAL APPROACH

- Given a field χ weakly coupled to a an equilibrated bath, with internal couplings g
 - [T. Asaka, M. Laine and M. Shaposhnikov (2006), M. Laine and A. Vuorinen (2017), D. Bödeker, M. Sangel and M. Wörmann (2016)]
- at leading order in y and all orders in g one can prove D. Bödeker, M. Sangel and M. Wörmann (2016)

$$\dot{f}_{\chi}(t,\boldsymbol{k}) = \Gamma(k)[n_{\mathrm{F}}(k^{0}) - f_{\chi}(t,\boldsymbol{k})], \quad \Gamma(k) = \frac{|y|^{2}}{2k^{0}} \int d^{4}X \, e^{iK \cdot X} \langle [J(X), J(0)] \rangle$$

• $f_{\chi}(t, \mathbf{k})$ is the single-particle phase-space distribution; J made of bath fields

$$\Gamma(k) = \frac{|y|^2}{k^0} \mathrm{Im} \Pi_R$$

PRODUCTION RATE AND RATE EQUATION

GENERAL APPROACH

- Given a field χ weakly coupled to a an equilibrated bath, with internal couplings g
 - [T. Asaka, M. Laine and M. Shaposhnikov (2006), M. Laine and A. Vuorinen (2017), D. Bödeker, M. Sangel and M. Wörmann (2016)]
- at leading order in y and all orders in g one can prove D. Bödeker, M. Sangel and M. Wörmann (2016)

$$\dot{f}_{\chi}(t,\boldsymbol{k}) = \Gamma(k)[n_{\mathrm{F}}(k^{0}) - f_{\chi}(t,\boldsymbol{k})], \quad \Gamma(k) = \frac{|y|^{2}}{2k^{0}} \int d^{4}X \, e^{iK \cdot X} \langle [J(X), J(0)] \rangle$$

• $f_{\chi}(t, \mathbf{k})$ is the single-particle phase-space distribution; J made of bath fields

- when doing perturbative expansions ⇒ Boltzmann equation is recovered
- general framework to include: resummation and NLO computations, non-perturbative and thermal effects

BORN RATE AND THERMAL MASSES

• Born rate $\eta \rightarrow \chi + q$ with and without thermal masses (recall m_q is purely thermal)

for thermal masses see also L. Darmé, A. Hryczuk, D. Karamitros and L. Roszkowski (2019)

$$\dot{n}_{\text{DM}} + 3Hn_{\text{DM}} = 2|y|^2 \int_k \frac{n_{\text{F}}(k^0)}{k^0} \text{Im}\Pi_R^{\text{Born}}$$

HIGH-TEMPERATURES $\pi T \gg M_{\eta}$

- all the particles are seen as massless,
- momenta of external particles $p \sim \pi T$,
- particles are ultra-relativistic, and gT is a soft scale
 - \Rightarrow collinear kinematics \approx high T

HIGH-TEMPERATURES $\pi T \gg M_{\eta}$

- all the particles are seen as massless,
- momenta of external particles $p \sim \pi T$,
- particles are ultra-relativistic, and gT is a soft scale
 - \Rightarrow collinear kinematics \approx high T

HIGH-TEMPERATURES $\pi T \gg M_{\eta}$

- all the particles are seen as massless,
- momenta of external particles $p \sim \pi T$,
- particles are ultra-relativistic, and gT is a soft scale
 - \Rightarrow collinear kinematics \approx high T

HIGH-TEMPERATURES $\pi T \gg M_{\eta}$

- all the particles are seen as massless,
- momenta of external particles $p \sim \pi T$,
- particles are ultra-relativistic, and gT is a soft scale
 - \Rightarrow collinear kinematics \approx high T

n soft scatterings: LPM resummation

L. Landau and I. Pomeranchuk (1953) and A. B. Migdal (1956) see e.g. J. Ghiglieri and G. D. Moore (2014) for a review

S. BIONDINI (BASEL UNIVERSITÄT)

HIGH-TEMPERATURES $\pi T \gg M_{\eta}$

- all the particles are seen as massless,
- momenta of external particles $p \sim \pi T$,
- particles are ultra-relativistic, and gT is a soft scale

 \Rightarrow collinear kinematics \approx high T

n soft scatterings: LPM resummation

L. Landau and I. Pomeranchuk (1953) and A. B. Migdal (1956) see e.g. J. Ghiglieri and G. D. Moore (2014) for a review

• at $T \gg M_\eta$ three effective processes contribute to the production of χ $[1 + n \leftrightarrow 2 + n]$

 $\eta \rightarrow \chi + q$, $q \rightarrow \chi + \eta$, $q + \eta \rightarrow \chi$

LPM RESULTS

• prescription for any temperature (see I. Ghisoiu and M. Laine (2014))

$$\mathrm{Im}\Pi_{R}^{1\leftrightarrow2} = \mathrm{Im}\Pi_{R}^{\mathrm{LPM}} - \mathrm{Im}\Pi_{R}^{\mathrm{LPM Born}} + \mathrm{Im}\Pi_{R}^{\mathrm{Born}}$$

$2 \rightarrow \overline{2}$ scatterings

- Considered by M. Garny and J. Heisig (1809.10135) for T ≤ M (possibly some issues with IR of some processes)
- we look at $\pi T \gg M_{\eta}, m_{\eta}, m_{q}$: for s/t and u/t contributions from both hard and soft momentum regions D. Besak and D. Bodeker (2012), J. Ghiglieri and M. Laine (2016)

$2 \rightarrow 2 \ {\rm SCATTERINGS}$

- Considered by M. Garny and J. Heisig (1809.10135) for T ≤ M (possibly some issues with IR of some processes)
- we look at $\pi T \gg M_{\eta}, m_{\eta}, m_{q}$: for s/t and u/t contributions from both hard and soft momentum regions D. Besak and D. Bodeker (2012), J. Ghiglieri and M. Laine (2016)

$2 \rightarrow 2 \ {\rm SCATTERINGS}$

- Considered by M. Garny and J. Heisig (1809.10135) for T ≤ M (possibly some issues with IR of some processes)
- we look at $\pi T \gg M_{\eta}, m_{\eta}, m_{q}$: for s/t and u/t contributions from both hard and soft momentum regions D. Besak and D. Bodeker (2012), J. Ghiglieri and M. Laine (2016)

$2 \rightarrow 2$ scatterings

- Considered by M. Garny and J. Heisig (1809.10135) for T ≤ M (possibly some issues with IR of some processes)
- we look at $\pi T \gg M_{\eta}, m_{\eta}, m_{q}$: for s/t and u/t contributions from both hard and soft momentum regions D. Besak and D. Bodeker (2012), J. Ghiglieri and M. Laine (2016)

$$\begin{split} \mathrm{Im} \Pi_{R}^{2\leftrightarrow 2} &= \frac{2}{(4\pi)^{3}k} \int_{k}^{\infty} \mathrm{d}q_{+} \int_{0}^{k} \mathrm{d}q_{-} \Big\{ \big[n_{\mathrm{F}}(q_{0}) + n_{\mathrm{B}}(q_{0}-k) \big] N_{c} \big(Y_{q}^{2} g_{1}^{2} + C_{F} g_{3}^{2} + |h_{q}|^{2} \big) \Phi_{52} \Big\} \\ &+ \frac{2}{(4\pi)^{3}k} \int_{0}^{k} \mathrm{d}q_{+} \int_{-\infty}^{0} \mathrm{d}q_{-} \Big\{ \big[1 - n_{\mathrm{F}}(q_{0}) + n_{\mathrm{B}}(k - q_{0}) \big] N_{c} \big(Y_{q}^{2} g_{1}^{2} + C_{F} g_{3}^{2} + |h_{q}|^{2} \big) \Phi_{t2} \\ &- \Big[n_{\mathrm{B}}(k) + \frac{1}{2} \Big] N_{c} \big(Y_{q}^{2} g_{1}^{2} + C_{F} g_{3}^{2} + |h_{q}|^{2} \big) \frac{k\pi^{2} T^{2}}{q^{2}} \Big\} + N_{c} \frac{m_{q}^{2}}{16\pi} \Big[n_{\mathrm{B}}(k) + \frac{1}{2} \Big] \ln \left(1 + \frac{4k^{2}}{m_{q}^{2}} \right) \end{split}$$

Ultra-relativistic regime: LPM and 2 \rightarrow 2

SUMMARY OF THE RATES

• Phenomenological switch off the high-temperature processes J. Ghiglieri and M. Laine 1605.07720

$$\kappa(M_\eta) = rac{3}{\pi^2 \, T^3} \int_0^\infty dp \, p^2 \, n_{
m B}(E_\eta) [1 + n_{
m B}(E_\eta)] \, ,$$

$${}_{R}^{\rm tot} = {\rm Im}\Pi_{R}^{1\leftrightarrow 2} + {\rm Im}\Pi_{R}^{2\leftrightarrow 2}$$

П

• $\operatorname{Im}\Pi_{R}^{1\leftrightarrow 2} = (\operatorname{Im}\Pi_{R}^{\operatorname{LPM}} - \operatorname{Im}\Pi_{R}^{\operatorname{LPM}\operatorname{Born}})\kappa(M_{\eta}) + \operatorname{Im}\Pi_{R}^{\operatorname{Born}}$

S. BIONDINI (BASEL UNIVERSITÄT)

Ultra-relativistic regime: LPM and 2 \rightarrow 2

DM ENERGY DENSITY WITH HIGH-T EFFECTS

- Born rate with vacuum masses \Rightarrow 20% reduction of $\Omega_{\rm DM} h^2$ with respect to $\Pi_R^{\rm tot}$
- 30% when including thermal masses but excluding 2 \rightarrow 2 and effective 1 \leftrightarrow 2
- estimation of theoretical error: LPM with and without $\kappa(M_{\eta})$, here $\sim 10\%$ effect

Ultra-relativistic regime: LPM and 2 \rightarrow 2

LARGE AND SMALL MASS SPLITTINGS

• the smaller $\Delta M/M$ the larger the effect of thermal masses, LPM and 2 \rightarrow 2

Left plot: $\Delta M/M = 0.1$; Right plot: $\Delta M/M = 10$

• also other parameters of the model are relevant (h_q, λ_3)

S. BIONDINI (BASEL UNIVERSITÄT)

SUMMARY

- we studied the impact of the ultra-relativistic regime on the production of a feebly interacting DM particle
- Even in models with renormalizable interactions high-temperature 1 ↔ 2, 2 → 2 can give O(1) contribution

SUMMARY

- we studied the impact of the ultra-relativistic regime on the production of a feebly interacting DM particle
- Even in models with renormalizable interactions high-temperature 1 ↔ 2, 2 → 2 can give O(1) contribution
- simplified dark matter model: χ Majorana fermion DM and η mediator charged under SU(3) \otimes U(1)_Y
- large impact from 1 \leftrightarrow 2, 2 \rightarrow 2

$$egin{aligned} M &= 2 \; {
m TeV}, \Delta M = 0.2 \; {
m TeV} \Rightarrow rac{(\Omega h^2)_{
m full}}{(\Omega h^2)_{
m Born}} \simeq 10 \ M &= 0.2 \; {
m TeV}, \Delta M = 2 \; {
m TeV} \Rightarrow rac{(\Omega h^2)_{
m full}}{(\Omega h^2)_{
m Born}} \simeq 1.2 \end{aligned}$$

SUMMARY

- we studied the impact of the ultra-relativistic regime on the production of a feebly interacting DM particle
- Even in models with renormalizable interactions high-temperature 1 ↔ 2, 2 → 2 can give O(1) contribution
- simplified dark matter model: χ Majorana fermion DM and η mediator charged under SU(3) \otimes U(1)_Y
- large impact from 1 \leftrightarrow 2, 2 \rightarrow 2

$$egin{aligned} M &= 2 \; {
m TeV}, \Delta M = 0.2 \; {
m TeV} \Rightarrow rac{(\Omega h^2)_{
m full}}{(\Omega h^2)_{
m Born}} \simeq 10 \ M &= 0.2 \; {
m TeV}, \Delta M = 2 \; {
m TeV} \Rightarrow rac{(\Omega h^2)_{
m full}}{(\Omega h^2)_{
m Born}} \simeq 1.2 \end{aligned}$$

- similar effects can affect other models if DM comes from particles in equilibrium
- Our main uncertainty comes from the lack of NLO rates Extend existing results for one massive state

M.Laine (2013); I. Ghisoiu and M. Laine (2014); J. Ghiglieri and G. D. Moore (2014); G. Jackson (2019)

S. BIONDINI (BASEL UNIVERSITÄT)

SEWM 2021

FREEZE-IN PRODUCTION MECHANISM

- DM as a particle: many candidates see review G. Bertone 2016
- $\bullet\,$ non-interacting with photons, absolutely stable or long-lived $\sim \tau_{\rm Universe}$
- Any model has to comply with

 $\Omega_{\rm DM} h^2(M_{\rm DM}, M_{\rm DM'}, \alpha_{\rm DM}, \alpha_{\rm SM}) = 0.1200 \pm 0.0012$

FREEZE-IN MECHANISM J. McDonald (2002)

- DM never reach thermal equilibrium
- DM from decay and/or annihilations of equilibrated species
- for a simple model $\mathcal{L}_{int} = -y\phi\bar{\chi}\chi$, $\phi \to \chi\chi$

$$rac{dn_{\chi}}{dt} + 3Hn_{\chi} = \langle \Gamma_{\phi
ightarrow \chi \chi}
angle n_{\phi}^{
m eq} \ , \ Y = n_{\chi}/s$$

• $\Omega_{\rm DM} h^2 = \frac{M}{{
m GeV}} \frac{Y_{\rm fin}}{3.645 \times 10^{-9}}$

THE BORN RATE WITH VANISHING THERMAL MASSES

• Let us look at the model at hand

$$\begin{pmatrix} \frac{\partial}{\partial t} - Hk_i \frac{\partial}{\partial k_i} \end{pmatrix} f_{\chi}(t, \mathbf{k}) = \Gamma(k) [n_{\rm F}(k^0) - f_{\chi}(t, \mathbf{k})],$$

$$\Gamma(k) = \frac{|y|^2}{k^0} {\rm Im} \Pi_R = \frac{|y|^2}{2k^0} {\rm Tr} \left\{ \not\!\!{k} a_R \left[\rho(\mathcal{K}) + \rho(-\mathcal{K}) \right] a_L \right\},$$

• Retarded correlator, Euclidean correlator and spectral function are connected

THE BORN RATE WITH VANISHING THERMAL MASSES

• Let us look at the model at hand

$$\begin{pmatrix} \frac{\partial}{\partial t} - Hk_i \frac{\partial}{\partial k_i} \end{pmatrix} f_{\chi}(t, \mathbf{k}) = \Gamma(k) [n_{\rm F}(k^0) - f_{\chi}(t, \mathbf{k})],$$
$$\Gamma(k) = \frac{|y|^2}{k^0} {\rm Im} \Pi_R = \frac{|y|^2}{2k^0} {\rm Tr} \left\{ \not\!\!{k} a_R \left[\rho(\mathcal{K}) + \rho(-\mathcal{K}) \right] a_L \right\},$$

• Retarded correlator, Euclidean correlator and spectral function are connected

$$\Pi^{E}(K) \equiv \operatorname{Tr}\left\{i \not k \left[\int_{X} e^{iK \cdot X} a_{R} \langle (\eta^{\dagger} q)(X)(\bar{q}\eta)(0) \rangle a_{L}\right]\right\}$$
$$= N_{c} \int_{p} T \sum_{n} \frac{-i \not P a_{L}}{p_{n}^{2} + E_{q}^{2}} \frac{1}{(p_{n} + k_{n})^{2} + E_{\eta}^{2}}$$

ullet with $E_q = |oldsymbol{p}| = p$ and $E_\eta = \sqrt{(oldsymbol{p}+oldsymbol{k})^2 + M_\eta^2}$

see M. Laine and A. Vuorinen (2017)

IN-VACUUM VERSUS FINITE THERMAL MASSES

• Scalar mass:
$$\mathcal{M}_\eta^2=\mathcal{M}_\eta^2+m_\eta^2$$
, for $\eta o\chi+q$ and $E_p=\sqrt{p^2+m_q^2}$

$$\mathrm{Im}\Pi^{\mathrm{Born}}_{\mathrm{R},\eta\to\chi q} = \frac{N_c}{16\pi k} \int_{\rho_{\mathrm{min}}}^{\rho_{\mathrm{max}}} dp [\mathcal{M}_{\eta}^2 - M^2 - m_q^2 - 2k^0 (E_p - p)] [n_{\mathrm{B}}(k^0 + E_p) + n_{\mathrm{F}}(E_p)]$$

S. BIONDINI (BASEL UNIVERSITÄT)

BORN TERM AND BOLTZMANN EQUATION

For US
$$M_{\eta} > M_{\chi} + M_{q}...$$
 (FIRST ROW: $M_{\chi} > M_{\eta} + M_{q}, M_{q} > M_{\eta} + M_{\chi}$)

$$\operatorname{Im}\Pi_{R}^{\operatorname{Born}} = \frac{N_{c}(M_{\eta}^{2} - M^{2})}{8n_{\mathrm{F}}(k^{0})} \int \frac{d^{3}\boldsymbol{p}_{\eta}}{(2\pi)^{3}} \int \frac{d^{3}\boldsymbol{p}_{q}}{(2\pi)^{3}} \frac{(2\pi)^{4}\delta^{4}(\mathcal{P}_{\eta} - \mathcal{P}_{q} - \mathcal{K})}{E_{\eta}E_{q}} n_{\mathrm{E}}(E_{\eta})(1 - n_{\mathrm{F}}(E_{q}))$$

BORN TERM AND BOLTZMANN EQUATION

For us $M_{\eta} > M_{\chi} + M_q$... (first row: $M_{\chi} > M_{\eta} + M_q$, $M_q > M_{\eta} + M_{\chi}$)

$$\mathrm{Im}\Pi_{R}^{\mathrm{Born}} = \frac{N_{c}(M_{\eta}^{2} - M^{2})}{8n_{\mathrm{F}}(k^{0})} \int \frac{d^{3}\boldsymbol{p}_{\eta}}{(2\pi)^{3}} \int \frac{d^{3}\boldsymbol{p}_{q}}{(2\pi)^{3}} \frac{(2\pi)^{4}\delta^{4}(\mathcal{P}_{\eta} - \mathcal{P}_{q} - \mathcal{K})}{E_{\eta}E_{q}} n_{\mathrm{B}}(E_{\eta})(1 - n_{\mathrm{F}}(E_{q}))$$

• $\textit{n}_{\mathrm{DM}} = 2 \int_{\textit{k}} \textit{f}_{\chi}(\textit{t},\textit{k}), \, \text{for} \, \eta
ightarrow \chi + q$

$$\begin{split} \dot{n}_{\rm DM} + 3H n_{\rm DM} &= 2|y|^2 \int_k \frac{n_{\rm F}(k^0)}{k^0} {\rm Im} \Pi_R \\ &= 2|y|^2 N_c (M_\eta^2 - M^2) \int_{\pmb{p}_\eta, \pmb{p}_q, \pmb{k}} \frac{(2\pi)^4 \delta^4 (\mathcal{P}_\eta - \mathcal{P}_q - \mathcal{K})}{8E_\eta E_q \, k^0} n_{\rm B}(E_\eta) \left[1 - n_{\rm F}(E_q)\right] \end{split}$$

S. BIONDINI (BASEL UNIVERSITÄT)

FIRST IMPROVEMENT: THERMAL MASSES

 at high temperatures, πT ≫ M_η, repeated interactions within the bath change the dispersion relations ⇒ asymptotic masses

see also L. Darmé, A. Hryczuk, D. Karamitros and L. Roszkowski (2019)

• for $T > T_c \simeq 150$ GeV the quarks only have

$$m_q^2 = \frac{T^2}{4} (g_3^2 C_F + Y_q^2 g_1^2 + |h_q|^2)$$

• for the colored scalar

$$m_{\eta}^{2} = \left(\frac{g_{3}^{2}C_{F} + Y_{q}^{2}g_{1}^{2}}{4} + \frac{\lambda_{3}}{6}\right)T^{2}$$

• no thermal mass correction for χ since $y \ll g$

FIRST IMPROVEMENT: THERMAL MASSES

• at high temperatures, $\pi T \gg M_{\eta}$, repeated interactions within the bath change the dispersion relations \Rightarrow asymptotic masses

see also L. Darmé, A. Hryczuk, D. Karamitros and L. Roszkowski (2019)

 ${old o}$ for ${\it T}>{\it T}_c\simeq 150$ GeV the quarks only have

$$m_q^2 = \frac{T^2}{4} (g_3^2 C_F + Y_q^2 g_1^2 + |h_q|^2)$$

for the colored scalar

$$m_{\eta}^{2} = \left(\frac{g_{3}^{2}C_{F} + Y_{q}^{2}g_{1}^{2}}{4} + \frac{\lambda_{3}}{6}\right)T^{2}$$

• no thermal mass correction for χ since $y \ll g$

$$m_{\rm B}^2 = \left(\frac{n_{\rm S}}{6} + \frac{5n_{\rm G}}{9} + \frac{Y_q^2 N_c}{3}\right) g_1^2 T^2 , \quad m_g^2 = \left(\frac{N_c}{3} + \frac{n_{\rm G}}{3} + \frac{1}{6}\right) g_3^2 T^2$$

FIRST IMPROVEMENT: THERMAL MASSES

• at high temperatures, $\pi T \gg M_{\eta}$, repeated interactions within the bath change the dispersion relations \Rightarrow asymptotic masses

see also L. Darmé, A. Hryczuk, D. Karamitros and L. Roszkowski (2019)

 ${\, \bullet \,}$ for ${\, T > T_c \simeq 150}$ GeV the quarks only have

$$m_q^2 = \frac{T^2}{4} (g_3^2 C_F + Y_q^2 g_1^2 + |h_q|^2)$$

• for the colored scalar

$$m_{\eta}^{2} = \left(\frac{g_{3}^{2}C_{F} + Y_{q}^{2}g_{1}^{2}}{4} + \frac{\lambda_{3}}{6}\right)T^{2}$$

• no thermal mass correction for χ since $y \ll g$

$$m_{\eta}^{2}(M_{\eta}, p) = \frac{Y_{q}^{2}g_{1}^{2} + C_{F}g_{3}^{2}}{2\pi^{2}} \int_{0}^{\infty} dq \left\{ \frac{n_{\rm B}(E_{\eta}(q))}{E_{\eta}(q)} \left[q^{2} + \frac{M_{\eta}^{2}q}{2p} \ln\left(\frac{(p+q)^{2}}{(p-q)^{2}}\right) \right] + 2 q n_{\rm B}(q) \right\}$$
$$+ \frac{\lambda_{3}}{\pi^{2}} \int_{0}^{\infty} dq q n_{\rm B}(q)$$

- all the particles are seen as massless,
- all the momenta of extarnal particles are $p \sim \pi T$,
- particles are ultra-relativistic, and gT is a soft scale
 ⇒ collinear kinematics ≈ high T

- all the particles are seen as massless,
- all the momenta of extarnal particles are $p \sim \pi T$,
- particles are ultra-relativistic, and gT is a soft scale
 ⇒ collinear kinematics ≈ high T

- all the particles are seen as massless,
- all the momenta of extarnal particles are $p \sim \pi T$,
- particles are ultra-relativistic, and gT is a soft scale
 ⇒ collinear kinematics ≈ high T

- all the particles are seen as massless,
- all the momenta of extarnal particles are $p \sim \pi T$,
- particles are ultra-relativistic, and gT is a soft scale
 ⇒ collinear kinematics ≈ high T

$$m_g^2 = \left(\frac{N_c}{3} + \frac{n_G}{3} + \frac{1}{6}\right)g_3^2T^2$$

Long formation time $\sim \frac{1}{g^2 T}$ see e.g. J. Ghiglieri and G. D. Moore (2014)

- all the particles are seen as massless,
- all the momenta of extarnal particles are $p \sim \pi T$,
- particles are ultra-relativistic, and gT is a soft scale
 ⇒ collinear kinematics ≈ high T

- all the particles are seen as massless,
- all the momenta of extarnal particles are $p \sim \pi T$,
- particles are ultra-relativistic, and gT is a soft scale
 ⇒ collinear kinematics ≈ high T

- connection between LPM resummation and $\text{Im}\Pi_R^{\text{LPM}} \Rightarrow \chi$ self-energy
- notation and computational setting from

$$\hat{H}\equiv-rac{M^2}{2k_0}+rac{m_q^2-
abla_{\perp}^2}{2E_q}+rac{\mathcal{M}_{\eta}^2-
abla_{\perp}^2}{2E_{\eta}}+i\Gamma(y)\,,\quad y\equiv|m{y}_{\perp}|$$

$$\Gamma(y) = \frac{T}{2\pi} g_1^2 Y_q^2 \left[\ln\left(\frac{m_{\rm B}y}{2}\right) + \gamma_E + K_0(m_{\rm B}y) \right] + \frac{T}{2\pi} g_3^2 C_F \left[\ln\left(\frac{m_g y}{2}\right) + \gamma_E + K_0(m_g y) \right]$$

NUMERICAL STRATEGY AND LPM BORN

• \hat{H} enters the inhomogeneous equations for the functions g(y) and f(y) $(\hat{H} + i0^+)g(y) = \delta^{(2)}(y)$, $(\hat{H} + i0^+)f(y) = -\nabla_{\perp}\delta^{(2)}(y)$

$$\begin{split} \mathrm{Im} \Pi_{\mathrm{R}}^{\mathrm{LPM}} &= -\frac{N_c}{8\pi} \int_{-\infty}^{+\infty} dE_q \int_{-\infty}^{+\infty} dE_\eta \, \delta(k_0 - E_q - E_\eta) [1 - n_{\mathrm{F}}(E_q) + n_{\mathrm{B}}(E_\eta)] \\ & \frac{k_0}{E_\eta} \lim_{\mathbf{y} \to 0} \left\{ \frac{M^2}{k_0^2} \mathrm{Im}[g(\mathbf{y})] + \frac{1}{E_q^2} \mathrm{Im}[\nabla_\perp \cdot f(\mathbf{y})] \right\} \end{split}$$

NUMERICAL STRATEGY AND LPM BORN

• \hat{H} enters the inhomogeneous equations for the functions g(y) and f(y) $(\hat{H} + i0^+)g(y) = \delta^{(2)}(y)$, $(\hat{H} + i0^+)f(y) = -\nabla_{\perp}\delta^{(2)}(y)$

$$\begin{split} \mathrm{Im}\Pi_{\mathrm{R}}^{\mathrm{LPM}} &= -\frac{N_c}{8\pi} \int_{-\infty}^{+\infty} dE_q \int_{-\infty}^{+\infty} dE_\eta \, \delta(k_0 - E_q - E_\eta) [1 - n_{\mathrm{F}}(E_q) + n_{\mathrm{B}}(E_\eta)] \\ &\qquad \qquad \frac{k_0}{E_\eta} \lim_{\mathbf{y} \to 0} \left\{ \frac{M^2}{k_0^2} \mathrm{Im}[g(\mathbf{y})] + \frac{1}{E_q^2} \mathrm{Im}[\nabla_\perp \cdot \mathbf{f}(\mathbf{y})] \right\} \end{split}$$

Once $E_{\eta} = k^0 - E_q$ by the δ

- $\bigcirc \ k^0 > E_q > 0 : \ \text{this corresponds to the effective } 2 \to 1 \ \text{process} \ \eta, q \to \chi$
- 2 $E_q < 0$: this corresponds to the effective $1 \rightarrow 2$ process $\eta \rightarrow q\chi$
 - \Rightarrow LPM-Born with thermal masses is the n = 0 limit (no scatterings)
- **(**) $E_q > k^0$: this corresponds to the effective $1 \rightarrow 2$ process $q \rightarrow \eta \chi$.

DM ENERGY DENSITY AND SUPER-WIMP CONTRIBUTION

$$(\Omega_{\rm DM} h^2)_{
m obs.} = (\Omega_{\rm DM} h^2)_{
m freeze-in} + (\Omega_{\rm DM} h^2)_{
m super-WIMP}$$

- η particles stays in chemical equilibrium till late times $T \sim M_\eta/25$
- there is a populations of $\eta,$ as governed by freeze-out, which decays into χ $_{\rm M.~Garny,~J.~Heisig~(2018)}$

$$(\Omega_{ ext{DM}} h^2)_{ ext{super-WIMP}} = rac{M}{M_\eta} (\Omega h^2)_\eta \,.$$

. .

$$rac{dn_\eta}{dt} + 3Hn_\eta = -\langle \sigma_{
m eff} v
angle ig(n_\eta^2 - n_{\eta,
m eq}^2 ig) \,, \quad \langle \sigma_{
m eff} v
angle = rac{c_3 ar{S}_3 + c_4 C_{
m F} ar{S}_4}{N_c}$$

A. Mitridate et al (2017), S. B. and M. Laine (2018), S. B. and S. Vogl (2019), J. Hartz and K. Petraki (2018)

• P0 (M = 2.0 Tev, $M_{\eta} = 5.0$ TeV); P1 (M = 0.2 Tev, $M_{\eta} = 2.2$ TeV); P2 (M = 2.0 Tev, $M_{\eta} = 2.5$ TeV); P3 (M = 2.0 Tev, $M_{\eta} = 2.2$ TeV);

LARGE AND SMALL MASS SPLITTINGS II

- for $M_{\eta} = 2.2$ TeV the freeze-in production stops fairly close to $T_c \simeq 150$ GeV \Rightarrow follow DM production in the SM broken phase
- ullet CMS analysis provides us with $M_\eta > 1250$ GeV cms-pas-exo-16-036