Strong and Electro-Weak Matter 2021

N = 4 supersymmetric Yang-Mills
thermodynamics to order A“

Author : Qiangian Du2®, Michael Strickland®, Ubaid Tantary®

aCentral China Normal University, China
bKent State University, United States

Speaker : Qiangian Du



Outline:

+ Background and Motivation

o Free energy up to A% of the =4 supersymmetric
Yang-Mills in 4-dimensions(SYM, ,)

o Large-N. generalized Padé approximant
+ Comparison for scaled entropy density
¢ Summary and outlook



Background and Motivation

The perturbative expansion of the free energy of the SYM, , at high
temperature(T) can be written in the form

F(A - 0) ~T* [ag1® + aAt + a323/% + (a, + ajlog)A? + 0(2%/2)], (D)

where A = g2N,, is the 't Hooft coupling, N. and ¢ is the color and the
coupling constant in QCD, respectively.

Free energy of the
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Feynman diagrams tﬂ
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o1 — Reorganizing the perturbation theory: to account for the
( ) thermal mass of the gauge bosons and scalar fields

P.B. Arnold and C.-X. Zhai, hep-ph/9408276; hep-ph/9410360 ﬁ

Like QCDz?, there are uncanceled infrared divergences at the three-loop level



Background and Motivation

Full 0(1?)| — Require 3-loop | Generate 0(15/2)
calculation I

Consider the dressed propagators

In the weak-coupling limit the SYM, , free energy has been calculated

3/2 A~ , R. - M.A. Vazquez-Mozo, hep-th/9905030
through Ordel‘ A / g|V|ng3 A.Fotopoulos and T.R. Taylor, hep-th/9811224 AV q p
C.-j. Kim and S.-J. Rey, hep-th/9905205
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where: Fiea = —dam?T*/6 is the ideal or Stefan-Boltzmann limit of the free energy,

Sideal = 2dam*T?/3 is the entropy density,
d, = N2 — 1 is the dimension of the adjoint representation.

The aim of our work was to get the 4t term ~(a4 + ajlog1)A? in eq.(1)




Background and Motivation

» Under the scheme called
regularization by dimensional reduction (RDR)-

W.Siegel, Phys. Lett. B 84(1979) 193  D.Capper, D.Jones and P.Van Nieuwenhuizen, Nuclear Physics B 167(1980) 479
L.V. Avdeev and A.A. Vladimirov, Nucl. Phys. B 219 (1983) 262 P.Howe, A.Parkes and P.West, Physics Letters B 147 (1984) 409

A modified version of the dimensional regularization based
RDR| = | on dimensional reduction which manifestly preserves

ﬂ gauge invariance, unitarity, and supersymmetry

Applied to pure Yang-Mills theory; Yang-Mills theory coupled to scalars
and fermions; supersymmetric QED and N = 1SYM

SYM, , can be obtained by dimensional reduction from the N'=1 SYM
theory in 10-dimensions (SYM, ,4) without thermal mass contributions.



Background and Motivation

» Lagrangian density for SYM, ,, and SYM, ,

The Lagrangian density for the SYM, (4 Is

1 Y |
Lsyn,,, = Tr [—56?{_{,%? + 2iTM Dy | (3)

where M,N =0,:--,9, the field strength tensor is Gy = 0yAy — ONApy —
ig[Ay, Ax], and Dy, = 0y — ig[Ay,-] IS the covariant derivative in the adjoint
representation of SU(N,).

The Lagrangian density for the SYM,, can be obtained by the dimensional
reduction of eq.(3), which is

1 - | P
Lsym,, = Tr [—ﬁwa + (Du®a)* + ithi P — 592(3[‘1%49 O ])°

—igy; [og; Xp + 18575 e, V5] |, (4)

where u,v = 0,---,3. There are four Majorana fermions, y; withi =1, -, 4,
and six independent real scalar fields, ® = (X;,Y1,X,, Y5, X3,Y3) .



Background and Motivation

» The resummed Lagrangian density

The resummed Lagrangian density can be written as

E?LI?IHH = {‘CSYM:H + Tr['T?I'iJAgéﬁn - ﬂfz(l}iﬁrﬂﬂ]} (5)
— Tr[m$ Aoy, — M*®%6,,] l
Contribute to the gluon Contribute to the gluon
and scalar propagators and scalar counterterms

where

1) myp is the thermal gluon mass and M is the thermal scalar mass, only
contribute to the zero Matsubara modes of the two fields;

2) 6y, 1s shorthand for the Kronecker delta function 6, ,.



Background and Motivation

The calculation of the thermodynamics up to 0 (1?)

A
[ |

Feynman diagrams Feynman diagrams
up to 2-loop order for the 3-loop order
l r : \
Compute directly in SYM, ,| | 3-loop gluonic and Massless 3-loop
under the RDR scheme , scalar counterterm vacuum diagrams
since we must dress the with bare propagators I
gluon and scallar Il Compute in
propagators differently Compute directly SYM, 1, under
ﬂ in SYMy 4 the RDR scheme
I I

g = 4, Trl, = 4, the dimension g =10, Trl;, = 8, the dimension
for the gluon field D = 4 and for for the gluon field D = 10 and for
all momentum d = 4 — 2¢ all momentumd = 4 — 2¢



Background and Motivation

Feynman diagrams up to the three-loop level,
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Fig.1 The 1-loop diagrams for SYM, 4 Fiy Fig Fin Fui Fiy

Fig.2 The 2-loop diagrams for SYM, 4

Ty Ty b g e

I a Ia i .
£ 4 .3 SR m AL e‘er:r%
H‘é qg, \-: o Lo q, tf, [ é{( y}gﬁf ol
S ‘QUUJ}’ \.Qw}}:,f)y 'l £y90% réé-ﬁ%?;} //*%.\\
Fau Fae Fad Fae £ ‘%\ fli |
c o} \ !
ho) ;,.j \ ¢

m’ﬁ@aﬁr + e

Fap Far Fo, ~~A--= Py + -
Fig.3 The 3-loop diagrams with Fig.4 The 3-loop gluonic and scalar counterterm
bare propagators for SYM, 4, diagrams with bare propagators for SYM, 4

Dashed lines indicate a scalar field and dotted lines indicate a ghost field. The crosses are the thermal counterterms.



Free energy up to A° of SYM, ,

» The resummed one-loop free energy
F{-e].?_llfljl}gl - dﬂ-?:-ﬂa + dF‘-fTUb + dSJT{-}; + d{:‘l.,rud . (6)

with dp = 4d, and ds = 6d, . By using the resummed gluon

and scalar propagators, one obtains

. D+4 T , .
resum 3 7o
Ay = da |2t~ 4o -y 6] |
‘ 2 T2
where by = i log P2=_"_71%and fo = # log P? = —T%
Tp 45 (P} 360

By imposing D =4, m} = 2AT?, M?= AT? and truncating at 0(e®),

we obtain
, w274 3+vV2 .,
Fresum —dﬂ( ) [1 + S+ V2 ..f)ﬁf’ﬁ] _ (8)

0op 6 ﬂ-dr




Free energy up to A° of SYM, ,

» The resummed two-loop free energy

IL]?;S; dA{}\[F]_(}. +F]b+F1C—|_F1d+F1E +F]f +‘?:-19 —I_”F]h']
‘I—Fli—F-;Elj} , ©)

by using the resummed gluon and scalar propagators, one obtains

resuin D +4 9 j'L_[QTz 5 U"
2503)1; = )\H'-A{ 1 [(D+ ) — 1661 f1 +8f1] +6 (in )2 - o
m DT2 3 D “mp mpM FQ
— —log — + 2log 2 33— 10

1 1 It ]— _
where b, = i) P2’ In= i{p}m - (an—l_l d_ 1)5111 n=1,

By imposing D = 4, m%4= 2AT?, M?= AT? and truncating at 0(e°), we
obtain

resum
Iy -loop d“’l(

= —1 2l
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Free energy up to A° of SYM, ,

» The resummed three-loop free energy
resum __ acim sct bet
I H—IL:U;JI — .';—l;u;l + ‘ngluop + FS—]UU{J ’ (12)

where

F;"_?;g};m = d_:l)\g (Foa + Fop + Foe + Foq+ Foe + For+ Faq 13
_ 1
+ Fon + Fai+ Foj) | oo .

Infrared divergences will be generated from eq.(13) due to three-momentum
integrations. These divergences will be canceled by the thermal mass
counterterm diagrams in Fig.4.

The shaded blob can be expressed as "’ X
Al (P) = Uy (P) — 11PP(0)6,00000 R, g’

and )
&p(P) = p(P) - P(D)fﬁfh y w‘w = -Ta’rr“:if}"a:’ar + oo

where I1,,.(P) and P(P) are the self energy — = AP W

of bosons and scalars. Fig.4
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Free energy up to A° of SYM, ,

We obtain
Fihop = daN?6[(D + 4)by — 8f1] !ip“jf ) _ Zi;ﬂjf)] o
Flfsop = 40D~ 2)(D + 01 - sl T -2 T
- %(D +4) (5:)2} | (15)
wnere ip ng) (41;2)2 !41; g 1o 27+ ﬂ +0,
ﬁ n;f ) _ (j:)? log2 + O(e) .

By imposing D = 4,Trl;, = 8, m§ = 2AT?, M?= AT?*, truncating
at 0(e) , and adding eq.(13), we obtain

QTd AQ C!(_l)
FTC“":LH“ d -
3-loop = ‘1( 6 )%4 ¢(—1)

[3 +3y+3 +5log2 — 6logm| (16)
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Free energy up to A° of SYM, ,

> Final result of the free energy up to 12 of =4 SYM

By combining eqgs.(8) (11) and (16), the final result for the resummed free
energy up to 3-loop level for SYM, , in the RDR scheme is

2m4
SR PR SR Y I

6 2712 16

E(( 1) 25 . 3 2
2 70D 81g2 310gn+210g/1]/1}. (17)

1) This result holds for all N, , and is independent of the momentum scaley ;
2) Infrared divergences generated at three-loop level are canceled by
considering the thermal mass contribution of gauge bosons and scalars;

3) No coupling constant renormalization counterterm is required, since the
coupling does not run in SYM, ,
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Large-N,. generalized Padé approximant

With new perturbative coefficients in eq.(17), one can produce an updated

J.P. Blaizot, E.lancu, U.Kraemmer and A.Rebhan, hep-ph/0611393

Pade approximant is constructed by interpolating between the weak- and strong-coupling limits

Based on the large-N,. structure of the strong-coupling expansion, we find
the following form can reconstruct all known coefficients in both the weak-
and strong-coupling limits

S 1+aA"24+bA+ 232 +dA% + er5/? 18
Sideal 1 4 gA1/2 + b2 + EIcAW 2 + d A2 +e/15/ 2
l ] |

To ensure that in the strong-coupling limit

(a) one obtains the correct asymptotic limit of 3/4

(b) terms of the form A=1/2, 1=1/2]og A, 2=1, and A1~ 'log A do not appear in
the strong-coupling expansion.

13



Large-N,. generalized Padé approximant

- | In the weak-coupling limit, eq.(18) reproduces the

To fix the perturbative result in eq.(17) through 0 (1%, A2log 1)
remaining | _

poefﬂments In the strong-coupling limit, eq.(18) reproduces the
ineq. (18) | [ eq.(19) through 0(1-3/2)

The strong coupling behavior of the free energy has been computed using
the anti-de Sitter space/CFT (AdS/CFT) correspondencesé s Gubser, LR Kiebanov and

A.A. Tseytlin, hep-th/9805156
F S 3

15 o /e )
_ — 21+ 223y 3/2 -3 19
Fideal  Sideal 4[ + 8 C3)A + O )]’ (19)

then we obtain
4 2(3+2)

=5t 3 -

o Lo (2 167[45(3 +v2)¢(3) + 3] 72 (VE + (_1)> +138v2 + 109 — 1501log(2)
BT (F> ¥ 18225¢2(3) ¥ 732 ,

- 3 2 180(3 ++/2)¢(3) + 8n® _ 2 3

b=btor, “Ti¢3) . 4T s0mmezm 0 - 15¢(3) 5nK(3) -
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Comparison for scaled entropy density
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Adding each perturbative order extends the estimated range of validity in 4
by an order of magnitude.
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Summary and outlook

> Calculate the resummed free energy up to order 42 for SYM, , under the
RDR scheme.

» Construct a new large-N,. Padeé approximant based on our result.

» Compare our final result for the scaled entropy density to the updated
Pade approximants.

> In the near future we plan to compute the coefficient of A>2 in the
SYM, , free energy.

> We also plan to extend our prior two-loop HTLpt calculation of SYM, ,
thermodynamics to three-loop order.
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