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Motivation

use heavy quarks and their bound states to probe the strongly
coupled medium formed in heavy ion collisions

I high mass M of bottom (and charm) quarks and the short
formation time of their bound states make them ideal probes
of the quark gluon plasma (QGP)

I ideally suited for treatment using the formalism of open
quantum systems (OQS) and effective field theory (EFT)
I OQS: allows for the rigorous treatment of a quantum system

of interest (heavy quark(onium)) coupled to an environment
(QGP)

I EFT: nonrelativistic QCD (NRQCD) and potential NRQCD
(pNRQCD) are EFTs of the strong interaction taking
advantage of the large mass of the heavy quark and the
resultant nonrelativistic nature of the system
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potential Non-Relativistic QCD (pNRQCD)

pNRQCD

NRQCD

QCD

Mv2

Mv

M

µ

I effective theory of the strong
interaction obtained from full QCD via
non-relativistic QCD (NRQCD) by
successive integrating out of the hard
(M) and soft (Mv) scales where
v � 1 is the relative velocity in a
heavy-heavy bound state

I degrees of freedom are singlet and
octet heavy-heavy bound states and
ultrasoft gluons

I small bound state radius and large
quark mass allow for double expansion
in r and M−1
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Langevin Dynamics

I Langevin equations

dpi
dt

= −ηDpi +ξi (t), 〈ξi (t)ξj(t
′)〉 = κδijδ(t−t ′), ηD =

κ

2MT
,

where pi is the momentum of the particle (heavy quark), ηD is
the drag coefficient, and ξi encodes the random, uncorrelated
interactions of the particle with the medium

I κ is the heavy quark momentum diffusion coefficient

I as shown by Casalderrey-Solana and Teaney, for an in medium
heavy quark, integration of force-force correlator along the
Schwinger-Keldysh contour gives κ in terms of a chromo
electric correlator1

1Phys. Rev. D 74, 085012 (2006).
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Evolution Equations of in Medium Coulombic Quarkonium2

dρs(t)

dt
=− i [hs , ρs(t)]− Σsρs(t)− ρs(t)Σ†s + Ξso(ρo(t)),

dρo(t)

dt
=− i [ho , ρo(t)]− Σoρo(t)− ρo(t)Σ†o + Ξos(ρs(t))

+ Ξoo(ρo(t))

I ρs,o(t): density matrix of color singlet, octet bound state

I hs,o = p2

M + Vs,o : singlet, octet Hamiltonian

I Vs = −Cf αs (1/a0)
r : singlet potential

I Vo = αs (1/a0)
2Nc r

: octet potential

I Σ, Ξ: encode medium interactions in correlators of the form

Σ, Ξ ∼ 〈Ẽ a,j(0, 0)Ẽ a,j(s, 0)〉, Ẽ a,i (s, 0) = Ω(s)E a,i (s, 0)Ω(s)†,

Ω(s) = exp

[
−ig

∫ s

−∞
ds ′A0(s ′, 0)

]
2Phys. Rev. D 97, 074009 (2018).
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Master Equation
evolution equations can be rewritten as master equation

dρ(t)

dt
= −i [H, ρ(t)] +

∑
n,m

hnm

(
Lni ρ(t)Lm†i −

1

2

{
Lm†i Lni , ρ(t)

})
,

where

ρ(t) =

(
ρs(t) 0

0 ρo(t)

)
, H =

(
hs + Im(Σs) 0

0 ho + Im(Σo)

)
,

L0i =

(
0 0
0 1

)
r i , L1i =

(
0 0

0 N2
c−4

2(N2
c−1)

Aoo†
i

)
, L2i =

(
0 1√

N2
c−1

1 0

)
r i ,

L3i =

(
0 1√

N2
c−1

Aos†
i

Aso†
i 0

)
, h =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,

Auv
i =

g2

6Nc

∫ ∞
0

ds e−ihusr ie ihv s〈Ẽ a,j(0, 0)Ẽ a,j(s, 0)〉
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Lindblad Form

I for (π)T � E (where E is the binding energy), e−ihs,os ≈ 1,
and the medium interactions are encoded in the transport
coefficients

κ =
g2

6Nc

∫ ∞
0

dt
〈{

Ẽ a,i (t, 0), Ẽ a,i (0, 0)
}〉

,

γ = − ig2

6Nc

∫ ∞
0

dt
〈 [

Ẽ a,i (t, 0), Ẽ a,i (0, 0)
] 〉

I as shown by Casalderrey-Solana and Teaney, κ is the heavy
quark momentum diffusion coefficient occurring in a Langevin
equation3; γ is its dispersive counterpart

I evolution equation can be written as Lindblad equation

dρ(t)

dt
= −i [H(t), ρ] +

∑
n

(
Cn
i ρ(t)Cn†

i −
1

2

{
Cn†
i Cn

i , ρ(t)
})

3Phys. Rev. D 74, 085012 (2006).
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Langevin Form
I taking e−ihs,os ≈ 1− ihs,os, medium interactions take more

complicated form as Hamiltonian term gives rise to terms
suppressed by E/T , i.e.,

Auv
i =

ri
2

(κ− iγ) +

(
− ipi

2MT
+

∆Vuv ri
4T

)
κ

I evolution equation can no longer be written as a Lindblad
equation without introducing subleading corrections

I following the procedure of Blaizot and Escobedo4, we project
the evolution equations onto eigenstates of the bound state
radius 〈r | and |r ′〉 corresponding to the radius pre- and post-,
respectively, interaction with the medium; we work in the
system of coordinates

r+ =
r + r′

2
, r− = r − r′

4JHEP 06 (2018) 034.
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Scaling
the projected evolution parameters depend on the
operators/quantities r+, r−, ∇+, ∇−, Vs,o , κ, and γ; we assign a
scaling to extract leading order evolution

I bound state is Coulombic

r+ ∼ 1/
√
EM, ∇+ ∼

√
EM

I potential scales as the binding energy

Vs,o ∼ E

I κ, γ are thermal quantities of dimension 3

κ, γ ∼ (πT )3

I interaction with medium thermalizes bound state

r− ∼ 1/
√
πTM, ∇− ∼

√
πTM
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Leading Order Evolution

I as M � πT � E , there are two small parameters in which to
expand; for (πT )/M ∼ E/(πT ), the leading order evolution
operators are of order πT

d

dt

(
ρrr

′
s

ρrr
′

o

)
=

(
−r2+κ 1

N2
c−1

r2+κ

r2+κ − 1
N2

c−1
r2+κ

)(
ρrr

′
s

ρrr
′

o

)
+ · · · ,

where ρrr
′

s,o = 〈r|ρs,o(t)|r′〉 and the ellipsis indicates terms
suppressed by addition powers of (πT )/M ∼ E/(πT )

I evolution matrix has eigenvalues

{λ0, λ8} =

{
0,−r2+κ

N2
c

N2
c − 1

}
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Corrections to Leading Order Evolution I

I à la Blaizot and Escobedo, move to basis in which LO
evolution is diagonal

ρ0 =
ρs + ρo
N2
c

, ρ8 =
(N2

c − 1)ρs − ρo
N2
c

,

I include terms suppressed by powers of (πT )/M ∼ E/(πT )

d

dt

(
ρrr

′
0

ρrr
′

8

)
=

(
`
(1)
00 + `

(2)
00 `

(1)
08 + `

(2)
08

`
(1)
80 + `

(2)
80 `

(0)
88 + `

(1)
88 + `

(2)
88

)(
ρrr

′
0

ρrr
′

8

)
+ · · · ,

where superscripts in parenthesis indicate degree of
suppression in

√
(πT )/M ∼

√
E/(πT ) with respect to LO

evolution and the ellipsis indicates further suppressed terms
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Corrections to Leading Order Evolution II
I evolution matrix has eigenvalues {λ′0, λ′8} which reduce to
{λ0, λ8} in limit (πT )/M ∼ E/(πT )→ 0

I λ′0 given by

λ′0 = `
(1)
00 + `

(2)
00 −

`
(1)
08 `

(1)
80

`
(0)
88

+ · · ·

I Wigner transforming the evolution equation of the state
evolved by λ′0 gives the Fokker Planck equation(

∂

∂t
+ v · ∇+

)
ρ̃0(t) =

[
κ

4
∇2

p +
M

2
η∇p · v +

γ

2
r+ · ∇p

+

(
γ√
κ

r+ · ∇p

2Nc |r+|

)2
]
ρ̃0(t),

where ρ̃0(t) is the Wigner transform of the state evolved by
λ′0, v is the relative velocity of the quark and antiquark and
p = Mv/2
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Langevin Equation

the corresponding Langevin equations are

dr+i
dt

=
2pi

M
,

M

2

d2r+i
dt2

= −Fi (r+)− ηijpj + ξi (t, r
+) + θi (t, r

+).

where

I 〈ξi (t, r+)ξj(t
′, r+)〉 = δ(t − t ′)δij κ: ξi encodes random,

uncorrelated interactions with medium; κ is heavy quark
momentum diffusion coefficient

I ηij(r+) = κ
2MT δij : Einstein relation between κ and drag

coefficient η

I 〈θi (t, r+)θj(t
′, r+)〉 = δ(t − t ′)

r+i r+j γ
2

4N2
c κ r

2
+

: θi is second random

force due to fluctuations in force between quark and antiquark
which are, on average, 0

I Fi (r+) = −γ r+i
2 : correction to quark-antiquark potential
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EFT for an in Medium Heavy Quark
I consider a single heavy quark of mass M described by

nonrelativistic QCD (NRQCD)

LNRQCD = ψ†
(
i∂0 − gA0 +

∇2

2M

)
ψ

I consider interaction with medium gluons of temperature T
such that M �

√
MT � T

I isolate gauge structure via field redefinitions

ψ(t, x)→ exp

[
ig

∫ x

0
dx′ · A(t, x′)

]
ψ(t, x),

ψ(t, x)→ exp

[
−ig

∫ t

−∞
dt ′A0(t ′, 0)

]
ψ(t, x)

I multipole expand to isolate contributions from gluons with
momentum transfer T

L′NRQCD = ψ†
{
i∂0 + xi gẼ

i ,a(t, 0) +
∇2

2M

}
ψ
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Single Quark Langevin
I analogously to heavy quarkonium case, evolution equations

depend on

Ai =
g2

6Nc

∫ ∞
0

dt e−ihtx ie iht〈Ẽ a,j(0, 0)Ẽ a,j(t, 0)〉

I analogous analysis, i.e., expansion of exponentials to NLO,
projection onto 〈x| and |x′〉, and Wigner transform leads to
Fokker-Planck equation(

∂

∂t
+ v · ∇+

)
ρ̃(t) =

[κ
2
∇2

p + Mη∇pv + γ x+ · ∇p

]
ρ̃(t)

with corresponding Langevin equations

dp

dt
= −F− η p + ξ(t),

where

F = −γ x+, 〈ξi (t)ξj(t
′)〉 = κ δijδ(t − t ′), η =

κ

2MT
,
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Conclusions and Future Work

I heavy quarks and their bound states are excellent probes of
QGP formed in HICs

I two main theoretical tools are EFTs and OQS

I scale hierarchy M � πT makes Langevin equation natural
candidate for description of dynamics

I evolution equations depend on chromo electric-electric
correlators which reduce at lowest order to a linear
combination of κ and γ 5

I inclusion of higher order corrections à la Blaizot and
Escobedo6 allows for derivation of Langevin equation
containing κ from first principles

I future work: rigorous integrating out of the scale
√
MT from

NRQCD and investigation of its affects

5Phys. Rev. D 97, 074009 (2018).
6JHEP 06 (2018) 034.
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