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Jets in the medium

14

How can jet modification be quantified?

modified jetjetIdeally…

How do jets from an identical hard process differ in vacuum and in 
medium?

A-Ap-p

Jasmine Brewer (MIT)

J. Brewer, HP’20

Quark-gluon plasma (QGP) created in heavy ion collision:
deconfined phase, hot dense medium

Jets, collimated sprays of energetic particles, serving as
hard probe to medium properties

Jets are quenched and modified in the medium via
parton energy loss

Jasmine Brewer (MIT) 8

Key question: compare A-A jets to which p-p jets?

• Standard answer: 
match final 
(reconstructed) !"

RAA =
Spectrum in AA
Spectrum in pp

� E. Epple 7

What we currently know about jet modification

ATLAS collaboration  
Phys. Lett. B 790 (2019)

ATLAS collaboration  
Phys. Rev. C 98 (2018)

Jets are: 
• quenched in central AA collisions
• not quenched in MB pp collisions

Jets in the medium appear softer
ATLAS collaboration PLB 790 (2019) 108
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Jet substructures

       

Yaxian MAO 
Central China Normal University

ALICE Overview (HP2020)

Jet substructure in mid-central Pb-Pb collisions

12

• Results are fully corrected for background and detector effects

- Modification of θg, more pronounced for larger SD zcut = 0.4 → narrowing jets

- Larger effect for symmetric splittings (SD zcut = 0.4)

SD zcut = 0.2 SD zcut = 0.4

Reconstructed 
jet by C/A 
algorithm, i.e,
angular 
ordering tree

Soft Drop condition: zg > zcut(
Rg
R )β

J. Mulligan, HP’20

Detector as camera: positions, energies of
particles

All jet constituents are reclustered in angular
ordering.

SoftDrop: find the first hard splitting between two
subjets satisfying zg > zcutθβ with momentum
sharing zg and angle of branching Rg .
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Jet modifications: ambiguous interpretations
       

Yaxian MAO 
Central China Normal University

ALICE Overview (HP2020)

Jet substructure in central Pb-Pb collisions
• Soft drop grooming allows to study medium modified parton shower by removing large angle soft radiation

11

• Results are fully corrected for background and detector effects

- No significant modification in zg distribution

- Modification of θg → narrowing jets

Ratio of jet observables distr.
between medium and vacuum,
BOTH with pjet

T > pcut
T

Interplay: jet substructures, e.g., Rg , could
– be modified during the passage through the

medium and/or
– affect the amount of jet energy loss and then this

jet doesn’t pass the pT cut in the selection, i.e.,
selection bias.

Jets produce emissions with smaller Rg in
medium than in vacuum: presumes medium scale
dominates
Jets with larger Rg in vacuum are more
suppressed in medium: presumes vacuum scale
dominates
Can we disentangle these two effects with
knowledge of the degree of quenching for each
individual measured jets?
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Energy loss ratio & Jet selections
Defining the energy loss ratio

9Daniel Pablos University of Bergen

Vac

Med

Vacuum-like 
emission

Hypothetical
vacuum-like 

emission

Medium induced
emission
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The amount of energy and momentum lost by the energetic parton, as described by

Eq. (2.1), exactly corresponds to the amount of energy and momentum flowing into the

QGP hydrodynamic modes [70]. This will generate a wake that is correlated with the direc-

tion of the jet [78], whose contribution to the experimentally observable jet properties has

to be taken into account. The hybrid model provides an estimate of the wake contribution

to the final hadron spectrum by performing an expansion of the Cooper-Frye formula at

the perturbed freeze-out hypersurface, which yields [79]

E
d�N

d3p
=

1

32⇡

mT

T 5
cosh(y � yj) exp

h
�mT

T
cosh(y � yj)

i

⇥
(

pT�PT cos(�� �j) +
1

3
mT �MT cosh(y � yj)

)
,

(2.5)

where pT , mT , � and y are the transverse momentum, transverse mass, azimuthal angle

and rapidity of the emitted thermal particles and where �PT and �MT = �E/ cosh yj are

the transverse momentum and transverse mass transferred from the jet, with azimuthal

angle and rapidity �j and yj , respectively. The distribution in Eq. (2.5) has been obtained

by considering that the background behaves as a Bjorken flow, which only has longitudinal

expansion. Generalizing it to the case in which there is transverse expansion can modify

such distribution, depending on the orientation of the jet with respect to the background

radial flow components [80–82]. The consequences of these observations will be explored

in the near future.

The partons that do not completely hydrodynamize are hadronized using the Lund

string model included in PYTHIA8. The contributions from the hadrons of the wake,

together with the fragmented hadrons, ensure event-by-event energy-momentum conserva-

tion.3

2.2 Jet energy loss ratio �jh and traversed path-length L

The main goal of this work is to determine, on a jet-by-jet basis, the amount of energy

loss, quantified through the variable

�jh ⌘
Eh

f

Eh
i

, (2.6)

su↵ered by jets due to the propagation through a hot and dense QCD medium. Here,

the subscript “jh” refers to the energy of the jet measured at hadronic level. These jets

3The distribution in Eq. (2.5) can become negative, most notably in the direction opposite to the jet in

the transverse plane. This reflects the absence of soft particles in such region of phase space compared to

an unperturbed QGP background as a result to the boost experienced by the fluid cell due to the injection

of momentum from the jet. In the present work we will ignore such negative contributions, since they

would show up as negative energy pixels in the jet images used in Section 3.1 (one would need to devise a

procedure to cancel out such negative contributions using particles from a real background which are close

in momentum and configuration space, such as in [79], which we leave for future work). It has been shown

that their contribution to jet observables with relatively small jet radius, such as the one used in the present

work, R = 0.4, is almost negligible [83], which guarantees that none of our conclusions will be a↵ected by

the omission of such contribution. A study of jets with a larger radius will be done in future publications.

– 6 –

FES
IES

Study jet observables for jets that belong to 2 different
quenching classes:

– Unquenched class: χjh > 0.9.
– Quenched class: χjh < 0.9.

pp jets: pT > 200 GeV
PbPb jets:

– Final Energy Selection (FES): impose pT cut on
final energy pT > 200 GeV→ Steeply falling energy
loss dist. Biased by little quenched samples!

– Initial Energy Selection (IES): impose pT cut on
initial energy via χjh, pT/χjh > 200 GeV & pT > 100
GeV→ More support of fairly quenched jets in the
quenched class. More distinguishable!
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Hybrid model

Hybrid Model

11Daniel Pablos University of Bergen

free parameterO(1)

Strongly coupled 
energy loss
(hydrodynamization rate)

Hadrons from the hydro.
wake (medium response)

PYTHIA8 down to hadro. scale
(formation time argument
for spacetime picture)

Can also study
finite resolution effects
(not done in present work)

Casalderrey-Solana, Gulhan, 
Milhano, DP, Rajagopal JHEP ‘15,‘16,‘17

Hulcher, DP, Rajagopal JHEP ‘18

PYTHIA8 down to hadronization scale

Strongly coupled energy loss at every stage

Hadrons from the hydro. wake (medium response)
Casalderrey-Solana, Gulhan, Milhano, Daniel Pablos, Rajagopal JHEP ’15,’16,’17

Vacuum jets using p̂T ,min = 50
GeV, with oversampling power
p4

T .

PbPb collisions in 0-5%
centrality at

√
s = 5.02 ATeV.

Reconstructed jets with anti-kT ,
R = 0.4, required to be |η| < 2
and pjet

T > 100 GeV.

∼ 250,000 jets. 80% for training
and 20% for validation.
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CNN Prediction & Interpretability

χjh

Jet image
33x33

16
features
17x17

16
features
17x17

32
features

9x9
flattened

2592
fc

128
output
layer

8x8 conv, 16
bn, PReLu

dropout(0.2)
avgpool(2x2)

7x7x16 conv, 16
bn, PReLu

dropout(0.2)

6x6x16 conv, 32
bn, PReLu

dropout(0.2)
avgpool(2x2)

bn, PReLu
dropout(0.5)
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 per-pixel of jet image
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Jet quenching increases the number
of soft particles at large angles
Jet shape can capture the main feature
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Jet radius, Rg
Rg ratio between PbPb and pp jets

FES: Selection bias towards jets with
smaller Rg , originated by pT cut.

IES:

– Unquenched class: still biased due to
χjh cut: to belong to this class, a jet had
better to be with smaller Rg , compared
with all pp jets.

– Quenched class presents features
related to energy loss, compared with
unquenched class: jet quenching leads
to enhancement of large Rg .

FES IES
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Groomed momentum sharing fraction, zg
zg ratio between PbPb and pp jets

FES: No selection bias observed. Scale
of emission isn’t strongly dependent on
splitting fraction zg .

IES:

– Quenched class presents features
related to energy loss, compared with
unquenched class: jet quenching leads
to enhancement of smaller zg subjets.

FES IES

Y.-L. Du, D. Pablos, K. Tywoniuk, JHEP03(2021)206
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Applications: Jet tomography, length VS χjh
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Due to the strong correlation
between L and χjh, selecting

jets with different χjh will
naturally select jets that

traversed different L.
→ Great potential to make
tomographic application!
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Applications: creation points & orientation
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IES “removes” final state interactions (selection
bias), since we record “all” jets.
IES provides access to the genuine jet creation
point distribution and jet orientation.

Y.-L. Du, D. Pablos, K. Tywoniuk, arXiv: 2106.11271
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Conclusion and outlook
CNN can extract energy loss jet-by-jet from jet image with good performance
Procedure generalisable to many jet quenching models
Jet shape contains significant predictive power: angular distribution of soft particles
Mitigate selection bias and reveal medium effects on various jet observables
Open opportunity to make tomographic study

– Generalizability to other MC quenching models?
– Applicability to more realistic environment: fluctuating background?
– Better performance from other state-of-the-art neural networks?
– Extract traversed length with better precision?
– Unfold jet initial properties apart from jet energy?
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Backup: Prediction performance with FCNN
Input (size) Output Network Loss

FF (10) χjh FCNN 0.0058
Jet shape (8) χjh FCNN 0.0033

FF, jet shape (18) χjh FCNN 0.0032
FF, jet shape, features (25) χjh FCNN 0.0028

Jet image & FF, jet shape, features (25) χjh API: CNN&FCNN 0.0028

Jet shape outperforms jet FF.

Motivates construction from jet
shape by 17-parameter fitting:

– Still a bit worse than CNN

Jet observables recover the
performance by jet image with
equivalent predictive power:
interpretability!
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Backup: Jet tomography with χjh & v2

v2 =
p2

x−p2
y

p2
x+p2

y

Top row: In-plane jets
(v2 > 0) going left (px < 0)
and right (px > 0)
Bottom row: Out-of-plane
jets (v2 < 0) going up
(py > 0) and down (py < 0)
To get very quenched, jets
have to travel longer in
medium. So v2 & px ,y are
helpful for jet tomography.
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