Physical characteristics of glasma at very early times

Alina Czajka

National Centre for Nuclear Research, Warsaw

in collaboration with M. E. Carrington and St. Mrówczyński

based on: arXiv:2012.03042 arXiv:2105:05327

Strong and Electroweak Matter July 1st, 2021

 $1 - 1 - 1 - 1 = 1 - 1 = 1$

 209

Outline of the talk

1 Introduction

THEORETICAL OVERVIEW:

- **2** Nuclei before the collision MV model
- **3** Glasma dynamics in the proper time expansion
- **4** Correlators

RESULTS:

- **6** Energy-momentum tensor
- **6** Pressure anisotropy
- **Azimuthal flow**
- 8 Angular momentum of glasma
- **9** Heavy quarks in glasma
- **10** Summary and conclusions

 \mathcal{A} and \mathcal{A} in the set of \mathcal{B} is a set of \mathcal{B} is a set of \mathcal{B} is a set of \mathcal{B}

One of the biggest challenges in the dynamics of heavy-ion collisions is to understand the transition between early-time dynamics and hydrodynamics

Two possible strategies:

- unreasonable effectiveness of hydrodynamics: push hydrodynamics to the limits where it is not expected to be efficient
- work out more constrained frameworks of the initial QGP evolution in quest of the onset of hydrodynamics

Try to answer: how many unique features of fluid dynamics can be found in the initial state made of QCD quanta and to what extent QCD mimics hydrodynamics?

In this talk:

- analytical purely classical approach to the initial state
	- \rightarrow to learn what it can offer in understanding of QGP dynamics
	- \rightarrow to improve the consistency and reliability of the approach

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 QQ

Before the collision: MV model

Color Glass Condensate (CGC) - the effective theory to describe each nucleus in terms of QCD quanta

- MV model a particular realization of CGC:
	- $*$ large x partons: valence quarks:

$$
J^{\mu}(x^{-}, \vec{x}_{\perp}) = \delta^{\mu +} \rho(x^{-}, \vec{x}_{\perp})
$$

 $*$ small x partons: soft gluon fields $\beta^{\mu}(x)$:

$$
F^{\mu\nu} = \frac{i}{g} [D^{\mu}, D^{\nu}], \qquad D^{\mu} = \partial^{\mu} - ig\beta^{\mu}
$$

∗ scales:

- separation scale between small-x and large-x partons fixed \rightarrow classical description

- saturation scale Q_s - UV regulator

- $m \sim \Lambda_{\rm QCD}$ - IR regulator - the effect of valence quarks dies off at the transverse scales larger than $1/\Lambda_{QCD}$

∗ classical Yang-Mills equations:

$$
[D_\mu,F^{\mu\nu}]=J^\nu
$$

solutions: $\beta^-(x^-,\vec{x}_\perp)=0$ and $\beta^i(x^-,\vec{x}_\perp)=\theta(x^-)\frac{i}{g}U(\vec{x}_\perp)\partial^i U^\dagger(\vec{x}_\perp)$ with $U(\vec{x}_{\perp})$ - Wilson line **KORK EXTERNS ORA**

After the collision: Glasma

Glasma:

- ∗ valence quarks fly away
- ∗ highly energetic and anisotropic medium made of mostly gluon fields (quarks appear at NLO)
- $*$ glasma characterised by the fields $\alpha(\tau,\vec{x}_\perp)$ and $\alpha^i_\perp(\tau,\vec{x}_\perp)$ through the ansatz:

$$
\alpha^+(x) = x^+ \alpha(\tau, \vec{x}_\perp) \qquad \alpha^-(x) = -x^- \alpha(\tau, \vec{x}_\perp) \qquad \alpha^i(x) = \alpha^i_\perp(\tau, \vec{x}_\perp)
$$

- $*$ glasma fields are boost independent, evolve in $\tau=\sqrt{t^2-z^2}$ according to sourceless classical Yang-Mills (CYM) equations
- $∗$ current dependence enters through boundary conditions at $τ = 0$:

$$
\alpha_\perp^i = \beta_1^i + \beta_2^i, \qquad \alpha = -\frac{ig}{2}[\beta_1^i, \beta_2^i]
$$

- ∗ general solutions to CYM equations not known
- ∗ here: temporal evolution of glasma fields studied in the proper time expansion:

$$
\alpha_\perp^i(\tau,\vec{x}_\perp)=\sum_{n=0}^\infty\tau^n\alpha_{\perp(n)}^i(\vec{x}_\perp),\qquad \alpha(\tau,\vec{x}_\perp)=\sum_{n=0}^\infty\tau^n\alpha_{(n)}(\vec{x}_\perp)
$$

- solutions of CYM equations found recursively with 0th order coefficients identified with the boundary conditions Fries, Kapusta, Li, arXiv:0604054 Chen, Fries, Kapusta, Li, Phys. Rev. C 92, 064912 [\(2](#page-3-0)0[15](#page-5-0)[\)](#page-3-0) **START START**

A. Czajka (NCBJ, Warsaw) [Physical characteristics of glasma at very early times](#page-0-0)

 ORO

Correlators of gauge potentials

- colour charge distributions within a nucleus not known
- key assumption of MV model Gaussian averaging

$$
\langle \rho_a(x^-,\vec{x}_\perp) \rho_b(y^-,\vec{y}_\perp) \rangle = g^2 \delta_{ab} \lambda(x^-,\vec{x}_\perp) \delta(x^- - y^-) \delta^2(\vec{x}_\perp - \vec{y}_\perp)
$$

 $\lambda(x^-,\vec{x}_{\perp})$ - volume density of sources normalized as $\int dx^{-}\lambda(x^-,\vec{x}_{\perp}) = \mu(\vec{x}_{\perp})$

 \bullet potentials of different nuclei are uncorrelated: $\langle \beta_{1a}^i \beta_{2b}^j \rangle = 0$

Basic building block: 2-point correlator (with Wick's theorem)

$$
\delta_{ab} B_n^{ij}(\vec x_\perp,\vec y_\perp) \equiv \lim_{\mathrm{w}\to 0} \langle \beta^i_{n\; a}(x^\mp,\vec x_\perp) \beta^j_{n\; b}(y^\mp,\vec y_\perp) \rangle
$$

$$
B_n^{ij}(\vec{x}_\perp, \vec{y}_\perp) = \frac{2}{g^2 N_c \tilde{\Gamma}_n(\vec{x}_\perp, \vec{y}_\perp)} \left(\exp[\frac{g^4 N_c}{2} \tilde{\Gamma}_n(\vec{x}_\perp, \vec{y}_\perp)] - 1 \right) \partial_x^i \partial_y^j \tilde{\gamma}_n(\vec{x}_\perp, \vec{y}_\perp)
$$

$$
\begin{aligned} &\tilde{\Gamma}_n(\vec{x}_\perp,\vec{y}_\perp)=2\tilde{\gamma}_n(\vec{x}_\perp,\vec{y}_\perp)-\tilde{\gamma}_n(\vec{x}_\perp,\vec{x}_\perp)-\tilde{\gamma}_n(\vec{y}_\perp,\vec{y}_\perp)\\ &\tilde{\gamma}_n(\vec{x}_\perp,\vec{y}_\perp)=\int d^2z_\perp\ \mu_n(\vec{z}_\perp)\ G(\vec{x}_\perp-\vec{z}_\perp)\ G(\vec{y}_\perp-\vec{z}_\perp),\qquad&G(\vec{x}_\perp)=\frac{1}{2\pi}K_0(m|\vec{x}_\perp|) \end{aligned}
$$

- $*$ charge density per unit transverse area: $\bar{\mu}=g^{-4}Q_{s}^{2}$ (uniform) or Woods-Saxon distribution $\mu(\vec{x}_{\perp})$
- ∗ IR and UV regulators: $m \sim \Lambda_{\rm QCD} = 200$ MeV and $Q_s = 2$ GeV

$$
\lim_{r \to 0} B^{ij}(\vec{x}_{\perp}, \vec{y}_{\perp}) = \delta^{ij} g^2 \frac{\bar{\mu}}{8\pi} \left(\ln \left(\frac{Q_s^2}{m^2} + 1 \right) - \frac{Q_s^2}{Q_s^2 + m^2} \right) \quad [+ \text{ gradients of } \mu]
$$

A. Czajka (NCBJ, Warsaw) [Physical characteristics of glasma at very early times](#page-0-0)

Energy density and pressure

Energy-momentum tensor:

$$
T^{\mu\nu} = 2 \text{Tr} \big[F^{\mu\lambda} F_{\lambda}{}^{\nu} + \frac{1}{4} g^{\mu\nu} F^{\alpha\beta} F_{\alpha\beta} \big], \qquad \qquad F_{\mu\nu} = \frac{i}{g} [D_{\mu}, D_{\nu}]
$$

- \bullet $T^{\mu\nu}$ was found in powers of τ up to τ^6 order
- various profiles of \mathcal{E} , p_T , and p_L for different geometries of the collision and different charge densities were studied
- $\bullet\;$ left: energy density as a function of τ at $\eta=0$ for uniform $\bar\mu$ (blue= $\tau^2,$ green $=\! \tau^4$, red $=\! \tau^6)$
- right: transverse pressure as a function of $\tilde{\tau} = \tau Q_s$ for Woods-Saxon distribution

- → proper time expansion works reasonably well for times $\tilde{\tau} \sim 0.5$ (or $\tau \sim 0.05$ fm)
- $\rightarrow \mathcal{E}$, p_T , and p_L are smooth functions in time and space
- \rightarrow sensitivity to the geometry of the collision
- \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow dependence on azimuthal angle and rapidity emerge[s](#page-13-0) \rightarrow a[ni](#page-5-0)[sot](#page-6-0)ro[pie](#page-0-0)s

A. Czajka (NCBJ, Warsaw) [Physical characteristics of glasma at very early times](#page-0-0)

つへへ

Anisotropy of p_L and p_T

longitudinal and transverse pressure components

$$
\frac{p_L}{\mathcal{E}} = \frac{T^{11}}{T^{00}} \qquad \qquad \frac{p_T}{\mathcal{E}} = \frac{1}{2} \frac{(T^{22} + T^{33})}{T^{00}}
$$

anisotropy of the pressure components

$$
A_{TL} \equiv \frac{3(p_T - p_L)}{2p_T + p_L}
$$

• $A_{TL} = 6$ at $\tau = 0$ and $A_{TL} = 0$ in isotropic plasma

- \rightarrow approach to isotropy faster for central collisions
- \rightarrow approach to isotropy faster at space points in the reaction plane than perpendicular to it
- \rightarrow approach to isotropy faster for larger rapidities

イロト イタト イミト イミト

Azimuthal flow

• Fourier coefficients of the momentum azimuthal flow

$$
v_n = \int_0^{2\pi} d\phi \, \cos(n\phi) \, P(\phi)
$$

$$
\begin{array}{l} \mbox{distribution } P(\phi) \mbox{ defined as: } P(\phi) \equiv \frac{1}{\Omega} \int d^2 \vec{x}_\perp \; \delta\big(\phi - \varphi(\vec{x}_\perp)\big) \, W(\vec{x}_\perp) \mbox{ with } \\ W(\vec{x}_\perp) \equiv \sqrt{\big(T^{0x}(\vec{x}_\perp)\big)^2 + \big(T^{0y}(\vec{x}_\perp)\big)^2} \mbox{ and } \varphi(\vec{x}_\perp) = \cos^{-1}\bigg(\frac{T^{0x}(\vec{x}_\perp)}{W(\vec{x}_\perp)}\bigg) \end{array}
$$

• Fourier coefficients v_1 , v_2 and v_3 calculated as a function of rapidity (at fixed $b = 2$ fm) and as a function of impact parameter (at fixed $\eta = 0.1$)

 \rightarrow symmetries: *n*-odd coefficients are rapidity odd and *n*-even coefficients are rapidity even (we know the reaction plane and we do not include fluctuations in the positions of participants)

- $\rightarrow v_2$ and v_3 are of the same order as experimental values
- $\rightarrow |v_1|$ is bigger than expected

A. Czajka (NCBJ, Warsaw) [Physical characteristics of glasma at very early times](#page-0-0)

∢ロ→ ∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Eccentricity and elliptic flow coefficient

eccentricity - spatial deviations from azimuthal symmetry

$$
\varepsilon_n = -\frac{\int d^2 \vec{R} | \vec{R} | \cos(n\phi) \mathcal{E}(\vec{R})}{\int d^2 \vec{R} | \vec{R} | \mathcal{E}(\vec{R})} \qquad \phi = \tan^{-1}(R_y/R_x)
$$

calculated as a function of the impact parameter at $\tau = 0.04$ fm and $\eta = 0$

 \rightarrow correlation of eccentricity ϵ_2 and v_2 is treated as a indication of onset of hydrodynamic behaviour

イロト イ母ト イヨト イヨト

The expected role of angular momentum in HIC

large angular momentum is expected to be generated in non-central collisions

STAR Collaboration, Becattini and Lisa,
Nature 548, 62 (2017) Barn. Rev. Nucl. Part

Ann.Rev.Nucl.Part.Sci. 70 (2020) 395-423

イロト イタト イミト イミト

 Ω

- consequences:
	- ∗ spin-orbit coupling leads to alignment of spins to the direction of the angular momentum \rightarrow polarization of hyperons and vector mesons
	- ∗ QGP is rapidly-rotating (vortical) system
- many attempts to formulate hydrodynamics with spin

Experimental observations:

* at RHIC energies polarization of a few percent is seen in non-central AA collisions

* at LHC energies polarization is not observed at all

Angular momentum of glasma

angular momentum at RHIC energies Gao et al, Phys. Rev C 77, 044902 (2008)

our result: angular momentum as a function of the impact parameter

- the shape and the position of the peak similar
- the result at RHIC energies $\sim 10^5$ bigger than our results
- most of the momentum of the incoming nuclei is NOT transmitted to the glasma
- small angular momentum of the glasma \rightarrow no polarization effect at highest collision energies イ押 トイヨ トイヨト

A. Czajka (NCBJ, Warsaw) [Physical characteristics of glasma at very early times](#page-0-0)

 2990

 \equiv

Heavy quarks in glasma

Evolution equation on the distribution function $n(t,x,p)$ of heavy quarks interacting with chromodynamic fields:

$$
\left(D - \nabla_p^i X^{ij}(\mathbf{v}) \nabla_p^j - \nabla_p^i Y^i(\mathbf{v})\right) n(t, \mathbf{x}, \mathbf{p}) = 0
$$

Collision terms:

$$
X^{ij}(\mathbf{v}) = \frac{1}{2N_c} \int_0^t dt' \langle F_a^i(t, \mathbf{x}) F_a^j(t', \mathbf{x} - \mathbf{v}(t - t')) \rangle, \qquad Y^i(\mathbf{v}) = X^{ij} \frac{v^j}{T}
$$

Energy loss and momentum broadening:

$$
-\frac{dE}{dx} = \frac{v}{T} \frac{v^i v^j}{v^2} X^{ij}(\mathbf{v}) \qquad \hat{q} = \frac{2}{v} \left(\delta^{ij} - \frac{v^i v^j}{v^2} \right) X^{ij}(\mathbf{v})
$$

 \rightarrow value of \hat{q} comparable to that of equilibrated plasma of the same energy density Mrówczyński, Eur. Phys. J, A54 no 3, 43 (2018) Carrington, Czajka, Mrówczyński, Nucl. Phys. A, 1001 ([202](#page-11-0)0[\) 1](#page-13-0)[2](#page-11-0)[19](#page-12-0)[14](#page-13-0) \equiv 2990

A. Czajka (NCBJ, Warsaw) [Physical characteristics of glasma at very early times](#page-0-0)

Summary and conclusions

- Glasma dynamics studied in the proper time expansion
- Convergence of the proper time expansion tested
- Many physical characteristics of glasma dynamics calculated
- Proper time expansion can be trusted to about $\tau = 0.05$ fm; glasma moves towards equilibrium within this time
- Onset of hydrodynamic-like behaviour in the glasma phase
	- Fourier coefficients of the azimuthal flow relatively large
	- Sizeable correlation of the eccentricity and elliptic flow coefficient
- Angular momentum of glasma is found to be small
	- Need to study the transmission of the momentum from incoming nuclei to the interaction region
	- Glasma is not a rapidly rotating system
	- No polarization effect in agreement with experimental observations for LHC energies
- Large value of the momentum broadening of heavy quarks glasma \rightarrow significant impact of glasma on jet quenching

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$