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False vacuum decay

What is FVD?
Quantum Mechanics: Quantum Field Theory:
V(x) u(®)
exit point nucleated bubble
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Relevance to high-energy phenomenology: Electroweak Metastability,
Cosmological Phase Transitions (typically at finite temperature)
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What we did in our work?

What we know about FVD

O The decay rate from the Euclidean/imaginary-time method
O Bubble configuration at the time of nucleation

However

O Check for the Euclidean method in quantum field theory
U The real-time picture has never been understood

Our work

U Relate the real-time tunneling calculations to the optical theorem

O Directly compute the Feynman path integral for quantum tunneling/FVD
O Develop techniques for carrying out the calculation

O New insights



The imaginary-time formalism on FVD

Central idea: Callan & Coleman, 1977

False Vacuum ——> Unstable ——> Complex Energy

U(®)

Ey = ReEy + 1ImEy

| /\ . Decay rate: I' = —2ImE,

% <°+

Consider the Euclidean transition amplitude (prle T pL). Insert a
complete basis of energy eigenstates

{orle™ T lps) = Z e BT {4 In)?

Taking 7 — +o0,

_ T o400 _
(pile ™ T |pp) "= e BT (o |0)?
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The imaginary-time formalism on FVD

Central idea: Callan & Coleman, 1977

False Vacuum ——> Unstable ——> Complex Energy
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Compute the partition function

Method of steepest descent:
1. Find stationary points: Sg|,,, =
2. Expand about the stationary points: ® = ¢, + A®,
S°SE[®P]

, _—Acb( —B= )/_\@ﬁ...
/ D e~ 5ElP] ZG_qE / DAD, e va

In Euclidean space, the potential is upside-down. There are two types of
sationary points.

\ / X

Trivial false vacuum @F Bounce B

= det’'[-0% 4+ U"(pB)]
det[—0?% + U" (pp)]

Callan-Coleman: [F/V — ¢ 5&lysl (SE;PBU
v
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Optical theorem for FVD

The transition amplitude corresponding to false vacuum decay is
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Optical theorem for FVD

The transition amplitude corresponding to false vacuum decay is
/Dwout <900ut fe_iHT|FV>

Instead, we consider the false-vacuum-to-false-vacuum transition
amplitude

(FV]|e " HTIFV) =1 +iM
Then unitarity gives

I'T" = /D(Pout ’(@out‘e_iHT’FVHQ =2 ImM

We refer to this as the optical theorem for FVD.
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Complex analysis for path integral

Again, the false-vacuum-to-false-vacuum transition amplitude can be
calculated by the path integral

(FV|e T [FV) = N7 / DP ¢'ovl?)

u(®)

p
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Complex analysis for path integral

Again, the false-vacuum-to-false-vacuum transition amplitude can be
calculated by the path integral @

(FV|e T [FV) = N7 / DP ¢'ovl?)

Complex analysis to path integral! \/

Complexify field configurations, deform the contour

Complex Séddle points

The method of the steepest descent
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Complex bounce

We can immediately identify a complex stationary point
op(t:x) = (T — ie *t, x)

Can the complex bounce give the decay rate in the Minkowkian path
integral?
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Complex bounce

We can immediately identify a complex stationary point
op(t:x) = (T — ie *t, x)

Can the complex bounce give the decay rate in the Minkowkian path
integral? Cherman & Unsal, arXiv:1408.0012

Our work: fully recover the Callan-Coleman result!

With the complex bounce, one can decompose the path integral into
NQbe e Ml = N2 ZE + N2 ZY
Together with (FV|e " #1|FV) = 1 + iM and I'T = 2ImM , one obtains

2 it
I’ = —T Re (Zj\/lf)
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The Picard-Lefschetz theory

An example: Airy function witten, 2011
00 s § mo
Ai(N) :/ da eM(?_x)

C1,C5 are called Lefschetz thimbles, giving
steepest-descent paths from the stationary
points

In our case, we have

One can define the “height” function
h|®] = Re(Z|®])

C3=Ci1+C2

21



The flow equation

The Lefschetz thimble is given by the flow equations

00(z;u) _ _(5I[<I)(a:;u)])‘ 00(z;u) _ 6Z[P(z;u)]
ou 00(x;u) )7 Ou 00 (x; u)

with boundary condition ¢(z;u = —o0) = ¢, - It is easy to check that

<0

Oh _1 (0T 9% oI 0%\ _ |0%(zu)|*
ou 2 \0® Ou 5@ ou ou

To be more general, we consider arbitrarily rotated time

Imt

6 = e : Minkowskian 6 = 7/2 : Euclidean 22



The flow eigenequation

Solving the flow equations can be transferred to solving the flow
eigenequations Tanizaki & Koike, Annals Phys. 2014

(Ma)*X5 (@) = Kxp(2)

where the fluctuation operator is
2
Mg _ 6219% o VQ + U”(¢g)

The path integral is given as

1
Z, = / DAD, ! ~ J,el19el T
o Vhn
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The flow eigenequation

Solving the flow equations can be transferred to solving the flow
eigenequations Tanizaki & Koike, Annals Phys. 2014

(Ma)*X5 (@) = Kxp(2)

where the fluctuation operator is

2
Mg _ 6219% o VQ + U”(¢g)

The path integral is given as

Zo= [ DAG, e e8I ]

1
vV En
In our work WA, B.Garbrecht, C. Tamarit, 2019

O Transform the flow eigenequations to the proper eigenequations

Mafi(z) = 23 fr(@)
U Prove that the above proper eigenequations can be solved by analytic

continuation of the Euclidean eigenfunctions
O Carefully work out the Jacobian 24



New insights from the real-time picture?

Implications of the optical-theorem: a wave function after quantum
tunneling/FVD?

Questions remain to be addressed:

d 1. What is the wave function?

O 2. Will the wave function collapse immediately? Any effects on the
gravitational-wave signals?
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Summary

O Areal-time picture based on the optical theorem has been built.

d Have confirmed the Callan-Coleman result in real-time calculations

O Theoretical techniques related to the Picard-Lefschetz theory are
developed



Backup: Compute the partition function

Method of steepest descent:
1. Find stationary points: Sg|,,, =
2. Expand about the stationary points: & = ¢, + Ad,

B /_\CI) (523132[(1,] )/_\Q) n
a 5(1)‘ a
/ D ¢ 55l?] E e~ JElPal / DA, e ?a
. 52SE[(I)] 2 "
The fluctuation operators: —= =—0"+ U"(pa())
Pa

The Gaussian integral can be calculated by studying the eigenequations
for the fluctuation operators

[0+ U"(pa)] 66, = N30,

Decomposing the fluctuatlon fields A%, = anqﬁa The path integral measure
becomespag, —H T giving

_E

—iA(j) (
2 a 2
/ DA, ¢ e

Ad, l ‘ L
) = / H (( e~ 2 (eR)’ H — = det [-8% + U" ()] "/
E n



Stationary points

In Euclidean space, the potential is upside-down. There are three types
of sationary points.

Al s AN
N A \ N4

Trivial false vacuum @ F Bounce ¥ B Shot @S

irrelevant for tunneling gg?;easse” etl.

_1/2 }

Finally, the decay rate can be written as calian & coleman, 1977

[ IV = e=Seles) <5E2[53})2

det’[—0? + U" (¢p)]
det[—0? + U" (pp)]
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The flow eigenequation

Substituting the expansion ® = ¢, + A®,, into the flow equation, we

obtain
IR0l e D) B ()
where
MO = 2 95_2 I v U//(¢9)
¢ ot? ¢
Making the Ansatz Tanizaki & Koike, Annals Phys. 2014

AD Z:\/_%e“g/2 n (U)X (2)

where ¢%(u) = a%e"" one obtains the flow eigenequation
(Me)*Xa(x) = roxp (@)

The path integral can be computed as

dg? 0 , 1
a, — DA@ 16 (I) ~ , (Pl / L Zn n(gn) — P]aelr{@a.]
/ 1_‘[ \/271- H <O

n
n 30



The block form of the flow eigenequations

It is difficult to solve the flow eigenequations (M%) x2(x) = k% x%(z) directly!

We write
0 (M) (xa@)) _ o (xa@)
MG 0 X% () " A\XE(2)
One can check that there is an associated equation
0 (M)"\ [ ixa(®) \ _ _ o ixale)
MG 0 —ix% () "\ —ixg(z)

The above equations can be viewed as normal eigenequations! Then we
have

g R e 0 (Mg)* 1 _ 1
L1 “‘n”“(wzz 0 )éﬂr\/w

Further, we also carefully calculated the JacobianJ, = e 2

finally obtain WA, B.Garbrecht, C. Tamarit, 2019
1

det MY

Argdet M9 “We

Za ~ €I[¢a]



Analytic continuaion

Equivalently, we need to solve the normal eigenequation
Mafn(@) = X, fr (@)

This can be solved by analytic continuation from the Euclidean
eigenequations and we prove that wa, B.Garbrecht, C. Tamarit, 2019

det M = det (—0% + U"(¢a)) | 1_0 o7

Nontrivial! Need to examine orthonormality
and completeness of the analytically continued
eigenfunctions.

Substituting the above equation into
1

v/ det MY

2 Zj\f
F = —T Re (ZA[>

we can finally recover the Callan-Coleman resuilt!

ZCL % 61[¢a]

and



