Lattice QCD at finite density with the complex Langevin method

A status report

Felix Ziegler

University of Southern Denmark (SDU)

in collaboration with B. Jäger (SDU) and F. Attanasio (U. Heidelberg)

- 1. QCD at finite density
- 2. Challenges
- 3. Our plan
- 4. Results
- 5. Outlook and perspectives

QCD at finite density

Phases of Quantum Chromodynamics (QCD)

- largely unknown, in particular phase transitions
- heavy-ion collision experiments (LHC, RHIC, FAIR)
- insight of large interest also beyond particle physics

Lattice QCD

- strong force non-perturbative
- compute quantities from first principles \Rightarrow lattice QCD
- Challenge: sign problem

- IR cutoff: box of volume V
- UV cutoff: lattice spacing a
- quark fields $\psi(x), \bar{\psi}(x)$
- gluon fields (links) $U_{\nu}(x) \in SU(3)$
- time extent \leftrightarrow temperature T

Formulating QCD on the lattice

- IR cutoff: box of volume V
- UV cutoff: lattice spacing a
- quark fields $\psi(x), \bar{\psi}(x)$
- gluon fields (links) $U_{\nu}(x) \in SU(3)$
- time extent \leftrightarrow temperature T

$$D_{x,y} = m \mathbb{1}\delta_{x,y} + \frac{1}{2} \sum_{\nu} (\mathbb{1} - \gamma_{\nu}) \ e^{\mu \delta_{0,\nu}} \ U_{x,\nu} \delta_{x+\hat{\nu},y} + (\mathbb{1} + \gamma_{\nu}) \ e^{-\mu \delta_{0,\nu}} \ U_{x-\hat{\nu},\nu}^{\dagger} \delta_{x-\hat{\nu},y}$$

- path-integral quantization
- compute observables using sampling methods
- large scale numerical simulations

$$Z = \int_{\mathrm{SU}(3)^{4\Omega}} \mathrm{d}U \exp(-S_G[U]) \det D(U) \,,$$
 $\Omega = N_ au imes N_s^3$

Challenges

- $\mu > 0$ makes the action complex
- simulation costs grow **exponentially** with $\Omega = N_{\tau} \times N_s^3$
- this get's worse with lowering ${\cal T}$ and increasing μ

- Reweighting, Taylor expansions, imaginary mu
- dual methods, strong coupling expansions
- **complexification** methods (complex Langevin, Lefschetz thimbles, flowed manifolds, ...)
- Quantum Computing

For QCD at $\mu \neq \mathbf{0}$ we work with the complex Langevin method \rightarrow stochastic quantization

- evolve fields def. on Ω in fictitious fifth time called θ using the Langevin equation
- stationary distribution of the stochastic process is Boltzmann factor, i.e. the path-integral weight
- requirement: $S \in \mathbb{R}, S \ge c \in \mathbb{R}$

$$\frac{\partial A_i}{\partial \theta} = -\frac{\delta S}{\delta A_i} + \eta_i , \quad i = (x, \nu, a)$$
(1)

• equivalent to path-integral quantization

- extension to complex actions
- requirement: meromorphic drift \checkmark
- complexification $\mathrm{SU}(3)\to \mathrm{SL}(3,\mathbb{C})$
- replace $U^{\dagger}_{x,\nu}
 ightarrow U^{-1}_{x,\nu}$

Euler-Maruyama update scheme

$$U_{x,\nu}^{n+1} = \exp[-it^{a}(-D_{x,\nu,a}S_{G}[U] + \eta_{x,\nu,a})]U_{x,\nu}^{n}$$
$$\langle \eta_{x,\nu,a} \rangle = 0, \quad \langle \eta_{x,\nu,a}\eta_{y,\rho,b} \rangle = 2\delta_{x,y}\delta_{\nu,\rho}\delta_{a,b} \text{ where } a = 0, \dots, N_{c}^{2} - 1$$

- $SL(3, \mathbb{C})$ is non-compact
- need for stabilizing the complex Langevin process to control run away trajectories and to guarantee for correct results
- How?
 - Adaptive step size
 - Gauge Cooling
 - Dynamic Stabilization

A closer look at the drift force

Fermionic drift force

$$D_{x,y} = m \mathbb{1}\delta_{x,y} + \frac{1}{2} \sum_{\nu} (\mathbb{1} - \gamma_{\nu}) e^{\mu \delta_{0,\nu}} U_{x,\nu} \delta_{x+\hat{\nu},y} + (\mathbb{1} + \gamma_{\nu}) e^{-\mu \delta_{0,\nu}} U_{x-\hat{\nu},\nu}^{-1} \delta_{x-\hat{\nu},y}$$

Challenge 2 - Invert the Wilson-Dirac matrix

- size = $(12\Omega)^2$ = 2473901162496 for N_{τ} = 32 and N_s = 16
- condition number worsens with increasing μ
- There is hope
 - sparse matrix
 - inversion is massively parallelizable
 - work with preconditioners

Our plan

- (1) handle the fermionic force (99 % of the simulation time)
- (2) map the phase structure (confinement and chiral transition) at high and intermediate T

Results

- N_f = 2 mass-degenerate quarks
- N_s = 16, a = 0.08fm
- Wilson plaquette action, Wilson-Dirac fermions (tree-level)
- $\beta=5.6$, $\kappa=0.1580,$ see JHEP 02 (2006) 011 by Lüscher et. al.
- $m_{\pi}=550$ MeV, $m_N=1.5$ GeV

- $T \in \{20, ..., 640\}$ MeV
- $\mu \in \{0,...,5\}$ GeV
- fermionic force: even-odd preconditioned conjugate gradient algorithm

Stable Langevin trajectories require Dynamic Stabilization.

Observables

Physics

Polyakov loop

$$P(\vec{x}) = \operatorname{tr}\left(\prod_{x_0=0}^{N_{\tau}-1} U_0(\vec{x}, x_0)\right)$$

- $\langle P \rangle = 0 \leftrightarrow \text{confinement}$
- $\langle P \rangle \neq 0 \leftrightarrow \text{deconfinement}$

Numerics

- unitarity norm
- iteration number

• chiral condensate

$$\langle \bar{\psi}\psi
angle = rac{\partial \log(Z)}{\partial m}$$

• density

$$\langle n \rangle = rac{1}{\Omega} rac{\partial \log(Z)}{\partial \mu}$$

PRELIMINARY - deconfinement transition

PRELIMINARY - deconfinement transition

PRELIMINARY - deconfinement transition

PRELIMINARY - chiral transition

PRELIMINARY - density

PRELIMINARY - density

PRELIMINARY - density

Matrix inversion - conjugate gradient iterations

Unitarity norm - "distance" to SU(3)

Outlook and perspectives

Conclusions and outlook

- simulation software for $N_f = 2$ QCD at finite μ ready, approaching physical pion masses \checkmark
- ToDo list
 - CL extrapolations
 - improve inversion of the Dirac matrix \rightarrow lower T
 - phase transitions and volume scaling
 - improved actions
 - anisotropy
- complexification as a blessing and curse

Thanks a lot!