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QCD at finite density



Phases of Quantum Chromodynamics (QCD)

• largely unknown, in particular

phase transitions

• heavy-ion collision experiments

(LHC, RHIC, FAIR)

• insight of large interest also

beyond particle physics
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Lattice QCD

• strong force non-perturbative

• compute quantities from first

principles ⇒ lattice QCD

• Challenge: sign problem
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Formulating QCD on the lattice

• IR cutoff: box of volume V

• UV cutoff: lattice spacing a

• quark fields ψ(x), ψ̄(x)

• gluon fields (links)

Uν(x) ∈ SU(3)

• time extent ↔ temperature T

τ
x
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Formulating QCD on the lattice

• IR cutoff: box of volume V

• UV cutoff: lattice spacing a

• quark fields ψ(x), ψ̄(x)

• gluon fields (links)

Uν(x) ∈ SU(3)

• time extent ↔ temperature T

τ
x

Dx,y = m1δx,y +
1

2

∑
ν

(1− γν) eµδ0,ν Ux,νδx+ν̂,y + (1 + γν) e−µδ0,ν U†x−ν̂,νδx−ν̂,y
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Simulating QCD on the lattice

• path-integral quantization

• compute observables using sampling methods

• large scale numerical simulations

Z =

∫
SU(3)4Ω

dU exp(−SG [U]) detD(U) ,

Ω = Nτ × N3
s
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Challenges



Challenge 1 - The Sign Problem

• µ > 0 makes the action

complex

• simulation costs grow

exponentially with

Ω = Nτ × N3
s

• this get’s worse with lowering T

and increasing µ
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Ways around the sign problem

• Reweighting, Taylor expansions, imaginary mu

• dual methods, strong coupling expansions

• complexification methods (complex Langevin, Lefschetz thimbles,

flowed manifolds, ...)

• Quantum Computing

For QCD at µ 6= 0 we work with the complex Langevin method →
stochastic quantization
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Stochastic quantization in a nutshell

• evolve fields def. on Ω in fictitious fifth time called θ using the

Langevin equation

• stationary distribution of the stochastic process is Boltzmann factor,

i.e. the path-integral weight

• requirement: S ∈ R,S ≥ c ∈ R

∂Ai

∂θ
= − δS

δAi
+ ηi , i = (x , ν, a) (1)

• equivalent to path-integral quantization
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From Stochastic quantization to complex Langevin

• extension to complex actions

• requirement: meromorphic drift X

• complexification SU(3)→ SL(3,C)

• replace U†x,ν → U−1
x,ν
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Complex Langevin simulations

Euler-Maruyama update scheme

Un+1
x,ν = exp[−ita(−Dx,ν,aSG [U] + ηx,ν,a)]Un

x,ν

〈ηx,ν,a〉 = 0 , 〈ηx,ν,aηy ,ρ,b〉 = 2δx,yδν,ρδa,b where a = 0, . . . ,N2
c − 1
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A technical note for lattice practitioners

• SL(3,C) is non-compact

• need for stabilizing the complex Langevin process to control run

away trajectories and to guarantee for correct results

• How?

• Adaptive step size

• Gauge Cooling

• Dynamic Stabilization
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A closer look at the drift force



Fermionic drift force

−DiSF [U] ∝ tr

(
D−1 ∂D

∂Ui

)
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Challenge 2 - Invert the Wilson-Dirac matrix

• size = (12Ω)2 =

2473901162496 for Nτ = 32

and Ns = 16

• condition number worsens with

increasing µ

• There is hope

• sparse matrix

• inversion is massively

parallelizable

• work with preconditioners
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Our plan



Our plan

(1) handle the fermionic force (99 % of the simulation time )

(2) map the phase structure (confinement and chiral transition) at high

and intermediate T
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Results



Setup

• Nf = 2 mass-degenerate quarks

• Ns = 16, a = 0.08fm

• Wilson plaquette action, Wilson-Dirac fermions (tree-level)

• β = 5.6 , κ = 0.1580, see JHEP 02 (2006) 011 by Lüscher et. al.

• mπ = 550 MeV, mN = 1.5 GeV
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Setup

• T ∈ {20, ..., 640}MeV

• µ ∈ {0, ..., 5}GeV

• fermionic force: even-odd preconditioned conjugate gradient

algorithm

Stable Langevin trajectories require Dynamic Stabilization.
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Observables

Physics

• Polyakov loop

P(~x) = tr

(
Nτ−1∏
x0=0

U0(~x , x0)

)

• 〈P〉 = 0 ↔ confinement

• 〈P〉 6= 0 ↔ deconfinement

• chiral condensate

〈ψ̄ψ〉 =
∂ log(Z )

∂m

• density

〈n〉 =
1

Ω

∂ log(Z )

∂µ

Numerics

• unitarity norm

• iteration number
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PRELIMINARY - deconfinement transition

Wilson: 163, β = 5.6, κ = 0.1580
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PRELIMINARY - deconfinement transition
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PRELIMINARY - deconfinement transition

Wilson: 163, β = 5.6, κ = 0.1580
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PRELIMINARY - chiral transition

Wilson: 163, β = 5.6, κ = 0.1580
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PRELIMINARY - density

Wilson: 163, β = 5.6, κ = 0.1580
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PRELIMINARY - density

Wilson: 163, β = 5.6, κ = 0.1580
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PRELIMINARY - density

Wilson: 163, β = 5.6, κ = 0.1580
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Matrix inversion - conjugate gradient iterations

Wilson: 163, β = 5.6, κ = 0.1580
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Unitarity norm - ”distance” to SU(3)

Wilson: 163, β = 5.6, κ = 0.1580
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Outlook and perspectives



Conclusions and outlook

• simulation software for Nf = 2 QCD at finite µ ready, approaching

physical pion masses X

• ToDo list

• CL extrapolations

• improve inversion of the Dirac matrix → lower T

• phase transitions and volume scaling

• improved actions

• anisotropy

• complexification as a blessing and curse

Thanks a lot!
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