Gibbs entropy from entanglement in electric quenches

Adrien Florio

with:

Dmitri Kharzeev

Stony Brook University

arXiv: 2106.00838

Center for Nuclear Theory

SEWM21, 28th of June 2021

Goal

Goal

"Statisticallity" \downarrow HEP/Heavy-ions Entanglement

Background

Information scrambling, chaos

Quantum computing

Background

EPR pairs (00) + (11)

Information scrambling, chaos

Quantum computing

. . .

Model

 $1+1~{\rm QED}$, $e^2 \rightarrow 0$:

$$S = \int \mathrm{d}^2 x \; \hat{\psi} \left(i \gamma^\mu \partial_\mu + A_1(t) \gamma^1 - m \right) \hat{\psi}$$

A(t) homogeneous background

 $\hat{\psi} = \begin{pmatrix} \hat{\psi}_1 \\ \hat{\psi}_2 \end{pmatrix}$ dynamical fermion

 \rightarrow "Schwinger" pair creation

Results

1 + 1 QED,
$$e^2 \rightarrow 0$$
:
 $S = \int d^2 x \, \hat{\psi} \left(i \gamma^\mu \partial_\mu + A_1(t) \gamma^1 - m \right) \hat{\psi}$

A(t) homogeneous background

.

$$\hat{\psi} = \begin{pmatrix} \hat{\psi}_1 \\ \hat{\psi}_2 \end{pmatrix}$$
 dynamical fermion

 \rightarrow "Schwinger" pair creation

•
$$S_{L/R}^{Entanglement} = S^{Gibbs}$$

1 + 1 QED,
$$e^2 \rightarrow 0$$
:
 $S = \int d^2 x \,\hat{\psi} \left(i \gamma^\mu \partial_\mu + A_1(t) \gamma^1 - m \right) \hat{\psi}$

A(t) homogeneous background

.

$$\hat{\psi} = \begin{pmatrix} \hat{\psi}_1 \\ \hat{\psi}_2 \end{pmatrix}$$
 dynamical fermion

 \rightarrow "Schwinger" pair creation

Results

•
$$S_{L/R}^{Entanglement} = S^{Gibbs}$$

• $S_{L/R}^{Entanglement} = 2 \sum_{l=1}^{\infty} \zeta(2l) C_{2l}$
Riemann ζ

C_{2n}: moments of multiplicity distribution Like [Klich, Levitov, 2008] in quantum shot noise!

1 + 1 QED,
$$e^2 \rightarrow 0$$
:
 $S = \int d^2 x \,\hat{\psi} \left(i \gamma^\mu \partial_\mu + A_1(t) \gamma^1 - m \right) \hat{\psi}$

A(t) homogeneous background

.

$$\hat{\psi} = \begin{pmatrix} \hat{\psi}_1 \\ \hat{\psi}_2 \end{pmatrix}$$
 dynamical fermion

 \rightarrow "Schwinger" pair creation

Results

•
$$S_{L/R}^{Entanglement} = S^{Gibbs}$$

• $S_{L/R}^{Entanglement} = 2 \sum_{l=1}^{\infty} \zeta(2l) C_{2l}$
Riemann ζ

C_{2n}: moments of multiplicity distribution Like [Klich, Levitov, 2008] in quantum shot noise!

• Efficient finite order resummation

1 + 1 QED,
$$e^2 \rightarrow 0$$
:
 $S = \int d^2 x \,\hat{\psi} \left(i \gamma^\mu \partial_\mu + A_1(t) \gamma^1 - m \right) \hat{\psi}$

A(t) homogeneous background

.

$$\hat{\psi} = \begin{pmatrix} \hat{\psi}_1 \\ \hat{\psi}_2 \end{pmatrix}$$
 dynamical fermion

 \rightarrow "Schwinger" pair creation

$$\stackrel{\bullet}{\longleftarrow} R$$

Results

•
$$S_{L/R}^{Entanglement} = S^{Gibbs}$$

• $S_{L/R}^{Entanglement} = 2 \sum_{l=1}^{\infty} \zeta(2l) C_{2l}$

C_{2n}: moments of multiplicity distribution Like [Klich, Levitov, 2008] in quantum shot noise!

• Efficient finite order resummation

• Worked out
$$E(t) = \frac{\mathcal{E}}{\cosh^2(t/\tau)}$$

1 + 1 QED,
$$e^2 \rightarrow 0$$
:
 $S = \int d^2 x \,\hat{\psi} \left(i \gamma^\mu \partial_\mu + A_1(t) \gamma^1 - m \right) \hat{\psi}$

A(t) homogeneous background

.

$$\hat{\psi} = \begin{pmatrix} \hat{\psi}_1 \\ \hat{\psi}_2 \end{pmatrix}$$
 dynamical fermion

 \rightarrow "Schwinger" pair creation

$$\stackrel{\bullet}{\longleftarrow} R$$

Results

•
$$S_{L/R}^{Entanglement} = S^{Gibbs}$$

• $S_{L/R}^{Entanglement} = 2 \sum_{l=1}^{\infty} \zeta(2l) C_{2l}$

C_{2n}: moments of multiplicity distribution Like [Klich, Levitov, 2008] in quantum shot noise!

• Efficient finite order resummation

• Worked out
$$E(t) = \frac{\mathcal{E}}{\cosh^2(t/\tau)}$$

Results

•
$$S_{L/R}^{Entanglement} = S^{Gibbs}$$

•
$$S_{L/R}^{Entanglement} = 2 \sum_{l=1}^{\infty} \zeta(2l) C_{2l}$$

 C_{2n} : moments of multiplicity distribution Like [Klich, Levitov, 2008] in quantum shot noise!

• Efficient finite order resummation

• Worked out
$$E(t) = \frac{\mathcal{E}}{\cosh^2(t/\tau)}$$

 $S_{L/R}^{Entanglement}$

$$H_{t^*} = \int \mathrm{d}x_1 \hat{\psi} \left(-\gamma^1 \left(i\partial_1 + A_1(t^*) \right) + m \right) \hat{\psi}$$

 a_{k_1,t^*} b_{-k_1,t^*}

Results

•
$$S_{L/R}^{Entanglement} = S^{Gibbs}$$

•
$$S_{L/R}^{Entanglement} = 2 \sum_{l=1}^{\infty} \zeta(2l) C_{2l}$$

C_{2n}: moments of multiplicity distribution Like [Klich, Levitov, 2008] in quantum shot noise!

• Efficient finite order resummation

• Worked out
$$E(t) = \frac{\mathcal{E}}{\cosh^2(t/\tau)}$$

 $S_{L/R}^{Entanglement}$

$$H_{t^*} = \int \mathrm{d} x_1 \hat{\psi} \left(-\gamma^1 \left(i \partial_1 + A_1(t^*) \right) + m \right) \hat{\psi}$$

$$a_{k_1,t^*}$$
 $a_{k_1,-\infty}$
 b_{-k_1,t^*} $b_{-k_1,-\infty}$

Adrien Florio, SEWM21, 28.06.21

Results

•
$$S_{L/R}^{Entanglement} = S^{Gibbs}$$

•
$$S_{L/R}^{Entanglement} = 2 \sum_{l=1}^{\infty} \zeta(2l) C_{2l}$$

C_{2n}: moments of multiplicity distribution Like [Klich, Levitov, 2008] in quantum shot noise!

• Efficient finite order resummation

• Worked out
$$E(t) = \frac{\mathcal{E}}{\cosh^2(t/\tau)}$$

 $S_{L/R}^{Entanglement}$

$$H_{t^*} = \int \mathrm{d}x_1 \hat{\psi} \left(-\gamma^1 \left(i\partial_1 + A_1(t^*) \right) + m \right) \hat{\psi}$$

Bogoliubov coefficients:

$$\begin{aligned} a_{k_1,t^*} &= \alpha_{k_1,t^*} a_{k_1,-\infty} + \beta_{k_1,t^*}^* b_{-k_1,-\infty}^{\dagger} \\ b_{-k_1,t^*} &= \alpha_{k_1,t^*} b_{-k_1,-\infty} - \beta_{k_1,t^*}^* a_{k_1,-\infty}^{\dagger} \\ &|\alpha_{k_1,t^*}|^2 + |\beta_{k_1,t^*}|^2 = 1 \end{aligned}$$

Different vacuum at every t*

Particle creation:

$$\langle \Omega_{-\infty} | a_{k_1,t^*}^{\dagger} a_{k_1,t^*} | \Omega_{-\infty} \rangle = |\beta_{k_1,t^*} |^2$$

$$S_{L/R}^{Entanglement}$$

$$H_{t^*} = \int \mathrm{d} x_1 \hat{\psi} \left(-\gamma^1 \left(i \partial_1 + A_1(t^*) \right) + m \right) \hat{\psi}$$

Bogoliubov coefficients:

$$\begin{aligned} a_{k_1,t^*} &= \alpha_{k_1,t^*} a_{k_1,-\infty} + \beta_{k_1,t^*}^* b_{-k_1,-\infty}^{\dagger} \\ b_{-k_1,t^*} &= \alpha_{k_1,t^*} b_{-k_1,-\infty} - \beta_{k_1,t^*}^* a_{k_1,-\infty}^{\dagger} \\ &|\alpha_{k_1,t^*}|^2 + |\beta_{k_1,t^*}|^2 = 1 \end{aligned}$$

Different vacuum at every t*

Particle creation:

$$\langle \Omega_{-\infty} | a_{k_1,t^*}^{\dagger} a_{k_1,t^*} | \Omega_{-\infty} \rangle = |\beta_{k_1,t^*} |^2$$

$$\rho|_{t^*} = |\Omega_{-\infty}\rangle \langle \Omega_{-\infty}|$$
$$\rho^+|_{t^*} = \operatorname{Tr}_{-k_1}(\rho|_{t^*})$$

$$S_{L/R}^{Entanglement} = -\mathrm{Tr}\left(\rho^+|_{t^*}\log\left(\rho^+|_{t^*}\right)\right)$$

Adrien Florio, SEWM21, 28.06.21

$$S_{L/R}^{Entanglement}$$

$$H_{t^*} = \int \mathrm{d}x_1 \hat{\psi} \left(-\gamma^1 \left(i\partial_1 + A_1(t^*) \right) + m \right) \hat{\psi}$$

Bogoliubov coefficients:

$$\begin{aligned} a_{k_1,t^*} &= \alpha_{k_1,t^*} a_{k_1,-\infty} + \beta_{k_1,t^*}^* b_{-k_1,-\infty}^{\dagger} \\ b_{-k_1,t^*} &= \alpha_{k_1,t^*} b_{-k_1,-\infty} - \beta_{k_1,t^*}^* a_{k_1,-\infty}^{\dagger} \\ &|\alpha_{k_1,t^*}|^2 + |\beta_{k_1,t^*}|^2 = 1 \end{aligned}$$

Different vacuum at every t*

Particle creation:

$$\langle \Omega_{-\infty} | a_{k_1,t^*}^{\dagger} a_{k_1,t^*} | \Omega_{-\infty} \rangle = |\beta_{k_1,t^*} |^2$$

$$\rho|_{t^*} = |\Omega_{-\infty}\rangle \langle \Omega_{-\infty}|$$
$$\rho^+|_{t^*} = \operatorname{Tr}_{-k_1}(\rho|_{t^*})$$

$$S_{L/R}^{Entanglement} = -\text{Tr} \left(\rho^{+} |_{t^{*}} \log \left(\rho^{+} |_{t^{*}} \right) \right) \\ = \\ -\int dk_{1} \left[|\alpha_{k_{1},t^{*}}|^{2} \log \left(|\alpha_{k_{1},t^{*}}|^{2} \right) + |\beta_{k_{1},t^{*}}|^{2} \log \left(|\beta_{k_{1},t^{*}}|^{2} \right) \right]$$

See also [Z. Ebadi and B. Mirza, 2014]

Adrien Florio, SEWM21, 28.06.21

$$S_{L/R}^{Entanglement}$$

$$H_{t^*} = \int \mathrm{d}x_1 \hat{\psi} \left(-\gamma^1 \left(i\partial_1 + A_1(t^*) \right) + m \right) \hat{\psi}$$

Bogoliubov coefficients:

$$\begin{aligned} a_{k_1,t^*} &= \alpha_{k_1,t^*} a_{k_1,-\infty} + \beta_{k_1,t^*}^* b_{-k_1,-\infty}^{\dagger} \\ b_{-k_1,t^*} &= \alpha_{k_1,t^*} b_{-k_1,-\infty} - \beta_{k_1,t^*}^* a_{k_1,-\infty}^{\dagger} \\ &|\alpha_{k_1,t^*}|^2 + |\beta_{k_1,t^*}|^2 = 1 \end{aligned}$$

Different vacuum at every t*

Particle creation:

$$\langle \Omega_{-\infty} | a_{k_1,t^*}^{\dagger} a_{k_1,t^*} | \Omega_{-\infty} \rangle = |\beta_{k_1,t^*} |^2$$

$$\rho|_{t^*} = |\Omega_{-\infty}\rangle \langle \Omega_{-\infty}|$$
$$\rho^+|_{t^*} = \operatorname{Tr}_{-k_1}(\rho|_{t^*})$$

$$S_{L/R}^{Entanglement} = -\text{Tr} \left(\rho^{+}|_{t^{*}} \log \left(\rho^{+}|_{t^{*}}\right)\right) \\ = \\ -\int dk_{1} \left[\left|\alpha_{k_{1},t^{*}}\right|^{2} \log \left(\left|\alpha_{k_{1},t^{*}}\right|^{2}\right) \\ + \left|\beta_{k_{1},t^{*}}\right|^{2} \log \left(\left|\beta_{k_{1},t^{*}}\right|^{2}\right) \right]$$

See also [Z. Ebadi and B. Mirza, 2014]

$$= S^{Gibbs}$$
 !

Microscopic origin

Sauter pulse

$$\rho|_{t^*} = |\Omega_{-\infty}\rangle \langle \Omega_{-\infty}|$$
$$\rho^+|_{t^*} = \operatorname{Tr}_{-k_1}(\rho|_{t^*})$$

 $S_{L/R}^{Entanglement} = -\text{Tr} \left(\rho^{+}|_{t^{*}} \log \left(\rho^{+}|_{t^{*}}\right)\right) \\ = \\ -\int dk_{1} \left[\left|\alpha_{k_{1},t^{*}}\right|^{2} \log \left(\left|\alpha_{k_{1},t^{*}}\right|^{2}\right) + \left|\beta_{k_{1},t^{*}}\right|^{2} \log \left(\left|\beta_{k_{1},t^{*}}\right|^{2}\right) \right]$

See also [Z. Ebadi and B. Mirza, 2014]

$$= S^{Gibbs}$$

Microscopic origin

$$\dot{A}(t) = E(t) = \frac{\varepsilon}{\cosh^2(t/\tau)}$$

- Asymptot. α, β well-known
- Can also compute time-dep.

•
$$\gamma = \frac{\mathcal{E}\tau}{m}$$
, $m\tau$

Sauter pulse

$$\dot{A}(t) = E(t) = \frac{\mathcal{E}}{\cosh^2(t/\tau)}$$

- Asymptot. α, β well-known
- Can also compute time-dep.

•
$$\gamma = \frac{\varepsilon_{\tau}}{m}$$
, $m\tau$

Bonus/Outlook

Understand better link to thermalization

Take home

• In this model
$$S_{L/R}^{Entanglement} = S^{Gibbs}$$

• Efficient way to compute from multiplicity distrribution

Many outlooks

$$\begin{split} S_{L/R}^{Entanglement} &= \\ &- \int \mathrm{d}k_1 \Big[\left| \alpha_{k_1,t^*} \right|^2 \log \left(\left| \alpha_{k_1,t^*} \right|^2 \right) \\ &+ \left| \beta_{k_1,t^*} \right|^2 \log \left(\left| \beta_{k_1,t^*} \right|^2 \right) \Big] \\ &= S^{Gibbs} \end{split}$$

Take home

• In this model
$$S_{L/R}^{Entanglement} = S^{Gibbs}$$

- Efficient way to compute from multiplicity distrribution
- Many outlooks

Take home

- In this model $S_{L/R}^{Entanglement} = S^{Gibbs}$
- Efficient way to compute from multiplicity distrribution
- Many outlooks

Extension to 3 + 1D

Physical set-up

Thermalization

Holography

Thank you!

Comparison to thermal

