

Collective flow in single hit QCD kinetic theory

Robin Törnkvist

Lund University Department of Astronomy and Theoretical Physics

16-04-2021

Grant:collectiveQCD

erc

arXiv:2104.08179 Aleksi Kurkela, Aleksas Mazeliauskas, RT

1/14

TWO PICTURES OF HADRON COLLISIONS COLLECTIVITY IN SMALL SYSTEMS EFFECTIVE KINETIC THEORY

TWO PICTURES OF HADRON COLLISIONS

UrQMD, Marcus Bleicher

TWO PICTURES OF HADRON COLLISIONS COLLECTIVITY IN SMALL SYSTEMS EFFECTIVE KINETIC THEORY

COLLECTIVITY IN SMALL SYSTEMS

TWO PICTURES OF HADRON COLLISIONS COLLECTIVITY IN SMALL SYSTEMS EFFECTIVE KINETIC THEORY

QCD EFFECTIVE KINETIC THEORY

Boltzmann equation

$$(\partial_t + \mathbf{v} \cdot \nabla_{\mathbf{x}}) f(\mathbf{x}, \mathbf{p}, t) = -C[f(\mathbf{x}, \mathbf{p}, t)].$$

Relevant LO scattering processes¹:

- \blacktriangleright 2 \leftrightarrow 2 elastic scattering.
- " $1 \leftrightarrow 2$ " collinear radiation.
- Out-of-equilibrium QGP description.
- Bottom-up thermalization in large systems².

We use EKT to study collective flow in small systems.

²R. Baier, A.H. Mueller, D. Schiff, D.T. Son, Phys. Lett. B 502 (2001)

SINGLE HIT APPROXIMATION

Expand in the number of scatterings: $f = f^{(0)} + f^{(1)} + \dots$

Free streaming
$$(\partial_t + \mathbf{v} \cdot \nabla_{\mathbf{x}}) f^{(0)} = 0.$$

1st scattering $(\partial_t + \mathbf{v} \cdot \nabla_{\mathbf{x}}) f^{(1)} = -C[f^{(0)}].$

$$f^{(1)}(\tau) = -\int_{\tau_0}^{\tau} d\tau' C[f^{(0)}](\tau').$$

 NTRODUCTION
 SINGLE HIT APPROXIMATION

 METHOD
 INITIAL CONDITIONS

 RESULTS
 ANISOTROPIC ENERGY FLOW

 CONCLUSIONS
 ESCAPE MECHANISM

INITIAL CONDITIONS

Linearized perturbation of symmetric background,

$$f^{(0)} = \bar{f} + \delta f = \bar{f}(\mathbf{p}, \mathbf{x}) \left(1 + \epsilon \frac{r^n}{R_0^n} \cos(n\phi_{\mathbf{x}}) \right).$$

CGC motivated momentum distribution,

$$\bar{f} = \frac{A}{p_{\xi}} e^{-\frac{2p_{\xi}^2}{3}}, \quad p_{\xi} \equiv \frac{\sqrt{p_{\perp}^2 + \xi^2 p_z^2}}{Q(\mathbf{x}_{\perp})}, \quad Q(\mathbf{x}_{\perp}) = Q_0 e^{-\frac{|\mathbf{x}_{\perp}|^2}{4R_0^2}}.$$

Initially \bar{f} isotropic in \mathbf{p}_{\perp} .

ANISOTROPIC ENERGY FLOW

We find Fourier harmonics of transverse energy flow

$$\frac{dE_{\perp}}{d\eta d\phi_p} = \tau \int d^2 \mathbf{x}_{\perp} \int \frac{p_{\perp} dp_{\perp} dp_z}{(2\pi)^3} p_{\perp} f(\tau, \mathbf{x}, \mathbf{p}) = \frac{dE_{\perp}}{2\pi d\eta} \bigg(1 + 2\sum_{n=1} v_n \cos[n(\phi_{\mathbf{p}})] \bigg).$$

In single hit approximation

$$v_n = -\int_{\tau_0}^{\tau} d\tau' \tau' \int \frac{d^2 \mathbf{x}_{\perp}}{2\pi} \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{p_{\perp} \cos[n(\phi_{\mathbf{p}})] \delta C_{2\leftrightarrow 2} \left[\bar{f}, \delta f\right]}{dE_{\perp}/(2\pi d\eta)|_{\bar{f}}}.$$

ESCAPE MECHANISM

ELLIPTIC FLOW

ESCAPE MECHANISM

TRIANGULAR FLOW

COLLECTIVE FLOW RESPONSE CONFORMAL SCALING ELLIPTIC FLOW IN SMALL SYSTEMS

COLLECTIVE FLOW RESPONSE

$$v_n = \int_{\tau_0/R_0}^{\infty} d\hat{\tau}' \int d\hat{r} \, dv_n(\hat{\tau}', \hat{r})$$

 TRODUCTION
 COLLECTIVE FLOW RESPONSE

 METHOD
 CONFORMAL SCALING

 RESULTS
 ELLIPTIC FLOW IN SMALL SYSTEM

CONFORMAL SCALING

Due to conformal scaling parameters appear only in certain combinations

$$\hat{R} = \lambda^2 R_0 Q_0 \hat{A}, \quad \hat{A} \equiv \frac{A\tau_0}{\xi R_0}, \quad \hat{m}_g^2 = \frac{m_g^2}{Q_0^2} \frac{\tau_0}{R_0}$$

EKT single hit flow response given by the scaling formula

$$\frac{v_n}{\varepsilon_n} = \hat{R} \left[\hat{v}_n^{\rm cl.}(\hat{m}_g^2) + \hat{A} \, \hat{v}_n^{\rm b.e.}(\hat{m}_g^2) \right]. \label{eq:cl_linear}$$

\$\hat{v}_n^{\text{cl.}}\$ - contribution from classical loss/gain term.
 \$\hat{v}_n^{\text{b.e.}}\$ - contribution from Bose-enhanced loss/gain term.

DUCTION COLLECTIVE FLOW RESPONSE METHOD CONFORMAL SCALING RESULTS ELLIPTIC FLOW IN SMALL SYSTE LUISIONS

CONFORMAL SCALING

Test scaling for many different configurations with numerical simulations.

COLLECTIVE FLOW RESPONSE CONFORMAL SCALING ELLIPTIC FLOW IN SMALL SYSTEMS

ELLIPTIC FLOW IN SMALL SYSTEMS

$$v_2 \approx \varepsilon_2 \hat{R} \left[1.3(\hat{m}_g^2)^{-0.44} + \hat{A} 4.2(\hat{m}_g^2)^{-0.59} \right] \cdot 10^{-3}$$

Pocket formula used with realistic input parameters for small systems.

CONCLUSIONS

- First study of QCD EKT in small systems.
- Non-trivial scaling properties of the collective flow.
- Identified both similarities and differences between toy models.
- \blacksquare Reasonable order of magnitude of $v_2,$ smaller than ideal hydrodynamics. Outlook:
 - p_{\perp} -dependence.
 - *v*₃, *v*₄,
 - Higher order in scatterings.

CONCLUSIONS

- First study of QCD EKT in small systems.
- Non-trivial scaling properties of the collective flow.
- Identified both similarities and differences between toy models.
- \blacksquare Reasonable order of magnitude of $v_2,$ smaller than ideal hydrodynamics. Outlook:
 - p_{\perp} -dependence.
 - *v*₃, *v*₄,
 - Higher order in scatterings.

Thank you for listening.

BACKUP: KINETIC THEORY

Defines collision term,

$$\left(\partial_t + \overline{v} \cdot \nabla_{\overline{x}}\right) f = -C^{2 \leftrightarrow 2}[f] - C^{'' 1 \leftrightarrow 2''}[f]$$

where e.g.

$$C_{2\leftrightarrow2}^{s}[f](\bar{\mathbf{p}}) = \frac{1}{2} \frac{1}{\nu_{s}} \frac{1}{4} \sum_{abcd} (2\pi)^{3} \int_{\mathbf{pkp'k'}} |\mathcal{M}_{cd}^{ab}|^{2} (2\pi)^{4} \times \delta^{(4)}(P + K - P' - K')$$
$$\times \{ (f_{\mathbf{p}}^{a} f_{\mathbf{k}}^{b}(1 \pm f_{\mathbf{p'}}^{c})(1 \pm f_{\mathbf{k'}}^{d})) - (f_{\mathbf{p'}}^{c} f_{\mathbf{k'}}^{d}(1 \pm f_{\mathbf{p}}^{a})(1 \pm f_{\mathbf{k}}^{b})) \}$$
$$\times \left[\delta(\bar{\mathbf{p}} - \mathbf{p})\delta^{as} + \delta(\bar{\mathbf{p}} - \mathbf{k})\delta^{bs} - \delta(\bar{\mathbf{p}} - \mathbf{p'})\delta^{cs} - \delta(\bar{\mathbf{p}} - \mathbf{k'})\delta^{ds} \right]$$

BACKUP: LINEAR

$$v_{n} = -\int_{\tau_{0}}^{\tau} d\tau' \tau' \int r dr D_{n}(\tau', r)$$

$$D_{n}(\tau, r) = \epsilon \frac{1}{16\nu_{g}} \left(\frac{dE_{\perp}}{2\pi d\eta} \Big|_{\bar{f}} \right)^{-1} \int_{\mathbf{pkp'k'}} |\mathcal{M}(\bar{m}_{g}^{2})|^{2} (2\pi)^{4} \delta^{(4)}(P + K - P' - K')$$

$$\times \left[\frac{\delta |\mathcal{M}(\bar{m}_{g}^{2}, \delta m_{g}'^{2})|^{2}}{|\mathcal{M}(\bar{m}_{g}^{2})|^{2}} \left\{ \bar{f}_{\mathbf{p}} \bar{f}_{\mathbf{k}} [1 + \bar{f}_{\mathbf{p}'}] [1 + \bar{f}_{\mathbf{k}'}] - \bar{f}_{\mathbf{p}'} \bar{f}_{\mathbf{k}'} [1 + \bar{f}_{\mathbf{p}}] [1 + \bar{f}_{\mathbf{k}}] \right\}$$

$$\times (p_{\perp} \cos(n\phi_{\mathbf{p}}) + k_{\perp} \cos(n\phi_{\mathbf{k}}) - k'_{\perp} \cos(n\phi_{\mathbf{k}'}) - p'_{\perp} \cos(n\phi_{\mathbf{p}'}))$$

$$+ \left\{ \bar{f}_{\mathbf{p}} \bar{f}_{\mathbf{k}} [1 + \bar{f}_{\mathbf{p}'}] [1 + \bar{f}_{\mathbf{k}'}] \left(\frac{\bar{f}_{\mathbf{p}'}}{1 + \bar{f}_{\mathbf{p}'}} C_{\mathbf{p}'} + \frac{\bar{f}_{\mathbf{k}'}}{1 + \bar{f}_{\mathbf{k}'}} C_{\mathbf{k}'} + C_{\mathbf{p}} + C_{\mathbf{k}} \right)$$

$$- \bar{f}_{\mathbf{p}'} \bar{f}_{\mathbf{k}'} [1 + \bar{f}_{\mathbf{p}}] [1 + \bar{f}_{\mathbf{k}}] \left(C_{\mathbf{p}'} + C_{\mathbf{k}'} \frac{\bar{f}_{\mathbf{p}}}{1 + \bar{f}_{\mathbf{p}}} C_{\mathbf{p}} + \frac{\bar{f}_{\mathbf{k}}}{1 + \bar{f}_{\mathbf{k}}} C_{\mathbf{k}} \right) \right\} \right].$$

14 / 14

BACKUP: EKT VS ITA

BACKUP: EKT VS ITA

BACKUP: EKT VS ITA

