

Configuration-space RSD measurements in Flagship

Michel-Andrès Breton

20/04/2021

Galaxy Clustering Redshift-Space Distortions

- Observed galaxy distribution modified by peculiar velocities
- $\,\circ\,$ Peculiar velocities depend on the growth rate of structures f
- The growth rate is heavily sensitive to the theory of gravity

Galaxy clustering RSD allow us to test General Relativity through the even multipoles of the 2PCF (and power spectrum)

RSD modelling

We use the *Convolution Lagrangian Perturbation Theory* (CLPT, Carlson+12, Wang+14) and *Gaussian Streaming Model* (Reid & White 2011)

6 parameters
• f (growth rate)
 b^L₁ (1st-order Lagrangian bias)
• b_2^L (2nd-order Lagrangian bias)
• σ_v^2 (Additionnal velocity dispersion)
• α_{\parallel} (AP test)
• α_{\perp} (AP test)

code available at https://github.com/mianbreton/CLPT_GS

Flagship cosmology						
Ω_m	Ω_b	ΩΛ	σ_8	n _s	h	
0.319	0.049	0.681	0.83	0.96	0.67	

• HOD with two models (optimistic and pessimistic)

Snapshot redshifts	0.9	1.19	1.53	1.79
$N_{ m gal}$ (Model 1) $ imes 10^6$	200	110	70	25
$N_{ m gal}$ (Model 3) $ imes 10^6$	110	55	30	17

FLAGSHIP simulation snapshots (z = 0.9)

Michel-Andrès Breton (LAM)

Euclid GC France

20/04/2021 5 / 20

$\ensuremath{\operatorname{FLAGSHIP}}$ simulation snapshots

FLAGSHIP simulation snapshots

FLAGSHIP simulation snapshots

Very idealised case, what about the real light-cone?

Michel-Andrès Breton (LAM)

Michel-Andrès Breton (LAM)

Michel-Andrès Breton (LAM)

Euclid GC France

20/04/2021 10 / 20

Michel-Andrès Breton (LAM)

Euclid GC France

Multipoles of the 2PCF in the RayGal simulation

redshift bins : $[f 0.8-1.0]$ and $[f 1.6-1.9]$							
ξ_ℓ	Doppler	Vo	Grav. redshift	Lensing*	T. Doppler	ISW	
ξ0	> 20%	3%	< 1%	1 - 10%	< 1%	< 1%	
ξ_2	> 20%	2%	< 1%	2%	< 1%	< 1%	
ξ_4	> 20%	-	< 1%	1-10%	< 1%	< 1%	

*Angular displacement only

Multipoles of the 2PCF in the RayGal simulation

redshift bins : $[f 0.8-1.0]$ and $[f 1.6-1.9]$							
ξ_ℓ	Doppler	Vo	Grav. redshift	$Lensing^*$	T. Doppler	ISW	
ξ0	> 20%	3%	< 1%	1 - 10%	< 1%	< 1%	
ξ_2	> 20%	2%	< 1%	2%	< 1%	< 1%	
ξ_4	> 20%	-	< 1%	1-10%	< 1%	< 1%	

*Angular displacement only

Number counts heavily impacted by RSD and Magnification Bias (MB)

$$\Delta = b\delta - \frac{1}{\mathcal{H}} \nabla_r (\mathbf{v} \cdot \mathbf{n}) + (5s - 2)\kappa$$
(1)

 $s = \mathrm{d}\log_{10} \textit{N}(<\textit{m})/\mathrm{d}\textit{m}$

- v1.8.4, full octant (available on cosmohub)
- Spectroscopic sample : z = [0.9 - 1.1], [1.1 - 1.3], [1.3 - 1.5], [1.5 - 1.8] $s \sim 0.7 - 1$
- Centrals only (kind = 0)
- -2.5log10(euclid_nisp_h) 48.6 < 24</p>
- o logf_halpha_model3_ext > -15.7

To account for MB, magnify angular positions and halpha flux

FLAGSHIP simulation light-cone

Michel-Andrès Breton (LAM)

Euclid GC France

FLAGSHIP simulation light-cone

16 / 20

Final result

Michel-Andrès Breton (LAM)

• Flagship snapshots : everything is fine

- Flagship snapshots : everything is fine
- Light-cone : need to account for magnification bias

- Flagship snapshots : everything is fine
- Light-cone : need to account for magnification bias
- Number count $\Delta_{
 m MB} = (5s-2)\kappa$

- Flagship snapshots : everything is fine
- Light-cone : need to account for magnification bias
- Number count $\Delta_{\mathrm{MB}} = (5s \aleph)\kappa$ (Need to wait for Flagship 2)

- Flagship snapshots : everything is fine
- Light-cone : need to account for magnification bias
- Number count $\Delta_{\rm MB} = (5s 2)\kappa$ (Need to wait for Flagship 2)
- Large impact on $f\sigma_8$ estimation for high-z redshift bins

- Flagship snapshots : everything is fine
- Light-cone : need to account for magnification bias
- Number count $\Delta_{\mathrm{MB}} = (5s \aleph)\kappa$ (Need to wait for Flagship 2)
- Large impact on $f\sigma_8$ estimation for high-z redshift bins
- Need to implement this correction for likelihood analysis (ongoing)

Appendix

Flagship simulation light-cone (z = 1.5 - 1.8)

20/04/2021 19 / 20

Michel-Andrès Breton (LAM)

Euclid GC France

Appendix

Redshift-space number count (linear) decomposition

$$\Delta^{\text{std}} = b\delta - \frac{1}{\mathcal{H}} \nabla_r (\mathbf{v} \cdot \mathbf{n}), \qquad (2)$$

$$\Delta^{\mathrm{acc}} = \frac{1}{\mathcal{H}c} \dot{\mathbf{v}} \cdot \mathbf{n}, \tag{3}$$

$$\Delta^{q} = -\frac{\dot{\mathcal{H}}}{c\mathcal{H}^{2}}\boldsymbol{v}\cdot\boldsymbol{n}, \qquad (4)$$

$$\Delta^{\text{div}} = -\frac{2}{\mathcal{H}\chi} \boldsymbol{v} \cdot \boldsymbol{n}, \qquad (5)$$

$$\Delta^{\text{pot},(1)} = \frac{1}{\mathcal{H}c} \nabla_r \psi \cdot \boldsymbol{n}, \qquad (6)$$

$$\Delta^{\text{pot},(2)} = \left(\frac{\dot{\mathcal{H}}}{\mathcal{H}^2} + \frac{2c}{\mathcal{H}\chi}\right)\psi/c^2 - \frac{1}{\mathcal{H}c^2}\dot{\psi},\tag{7}$$

$$\Delta^{\text{shapiro}} = (\phi + \psi)/c^2, \tag{8}$$

$$\Delta^{\text{lens}} = -\frac{1}{c^2} \int_0^{\chi} \frac{(\chi - \chi')\chi'}{\chi} \nabla_{\perp}^2 (\phi + \psi) d\chi', \qquad (9)$$

$$\Delta^{\text{isw}} = \frac{1}{\mathcal{H}c^2}(\dot{\phi} + \dot{\psi}), \qquad (10)$$

$$\Delta^{\rm LC} = \mathbf{v} \cdot \mathbf{n}/c, \tag{11}$$

$$\Delta_{\text{neglect}} = \left(\frac{\dot{\mathcal{H}}}{\mathcal{H}^2} + \frac{2c}{\mathcal{H}\chi}\right) \frac{1}{c^2} \int_{\eta}^{\eta_0} \frac{\partial(\phi + \psi)}{\partial\eta} d\eta' + \frac{2}{\chi c^2} \int_{0}^{\chi} (\phi + \psi) d\chi'.$$
(12)

Michel-Andrès Breton (LAM)

Euclid GC France

20/04/2021 20 / 20