

SWISS NATIONAL SCIENCE FOUNDATION

LOUIS LEGRAND

C. Hernandez-Monteagudo, M. Douspis, N. Aghanim, R.E. Angulo

FNSNF

Angular redshift fluctuations, A new statistic to probe the dark sector

Legrand et al. 2020 <u>A&A, 646 (2021) A109</u>

GALAXIES TRACE DARK MATTER

• Galaxies are biased tracers: $P_{g}(k,z) = b_{g}(z) P_{m}(k,z)$ Observed redshift of galaxies: $z_{\text{obs}}(z, \hat{n}) = z + (1 + z) \frac{\mathbf{v}(z, \hat{n}) \cdot \hat{n}}{\mathbf{v}(z, \hat{n}) \cdot \hat{n}}$ Cosmological redshift (Hubble expansion) Peculiar velocity (Doppler)

- Peculiar velocity:
 - Linked to the time derivative of the density field
 - Contains information about the growth of structures

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

ANGULAR REDSHIFT FLUCTUATIONS

- Angular galaxy clustering (AGC):
 - Project 3D galaxy density field on a 2D map
- Angular redshift fluctuations (ARF):
 - Project 3D galaxy redshift field on a 2D map

CROSS CORRELATION OF ARF WITH KINETIC SZ

- Cross-correlates ARF from SDSS galaxies with Planck CMB maps
- 10 σ detection

ANGULAR REDSHIFT FLUCTUATIONS

- Angular galaxy clustering (AGC):
 - Project 3D galaxy density field on a 2D map
- Angular redshift fluctuations (ARF):
 - Project 3D galaxy redshift field on a 2D map

ARF for cosmological analyses?

What are the advantages of combining AGC with

INTEREST OF PROBE COMBINATION

- Each probe has specific:
 - Cosmological degeneracies
 - Astrophysical degeneracies
 - Systematics uncertainties
- Combination
 - Breaks degeneracies
 - **Decreases systematic uncertainties**

Cross angular power spectrum is modelled by

MODELLING THE ARF POWER SPECTRUM

Angular power spectrum: $C_{\ell}^{\alpha,\beta} = \frac{2}{\pi} \int_{0}^{\infty} dk k^{2} P_{\rm m}(k) \Delta_{\ell}^{\alpha}(k) \Delta_{\ell}^{\beta}(k)$

Kernels, sum of density and peculiar velocity contributions :

No Limber ap

proximation
density:
$$\Delta_{\ell}^{z}|_{\delta}(k) = \frac{1}{N} \int dV \,\bar{n}_{g}(z) \,W(z) \,b_{g}(z) \,D(z) \,(z-\bar{z}) \,j_{\ell}(k \,r(z))$$
Terms specific to a
velocity:
$$\Delta_{\ell}^{z}|_{v}(k) = \frac{1}{N} \int dV \,\bar{n}_{g}(z) \,W(z) \,(1+z) \,H(z) \frac{dD}{dz} \left[1 + (z-\bar{z}) \frac{d \ln W}{dz}\right] \frac{j_{\ell}'(k \,r(z))}{k}$$

No galaxy bias

Hernandez-Monteagudo et al. 2019 arXiv:1911.12056

$$\Delta_{\mathscr{C}}^{\delta_{z}} = \Delta_{\mathscr{C}}^{\delta_{z}}|_{\delta_{m}} + \Delta_{\mathscr{C}}^{\delta_{z}}|_{\delta_{m}}$$

SENSITIVITY TO PECULIAR VELOCITIES

 $C_{\ell} = C_{\ell}^{\Delta_{\delta} + \Delta_{v}} = C_{\ell}^{\Delta_{\delta}, \Delta_{\delta}} + 2C_{\ell}^{\Delta_{\delta}, \Delta_{v}} + C_{\ell}^{\Delta_{v}, \Delta_{v}}$

ARF and AGC have a different sensitivity to peculiar velocities

COSMOLOGICAL FORECASTS

- Fisher forecast for two spectroscopic surveys: DESI and Euclid
- Tomographic analysis with 20 redshift bins with $\sigma_z = 0.01$
- Marginalise on 20 galaxy bias parameters (one for each bin)

Legrand et al. 2020 <u>A&A, 646 (2021) A109</u>

surveys: DESI and Euclid ft bins with $\sigma_z = 0.01$ eters (one for each bin)

FISHER FORMALISM

- Fisher formalism
 - Likelihood of parameters is a multivariate Gaussian
 - Survey properties (sky fraction, noise resolution, redshift distribution)
- Assume gaussian covariance between the probes:

$$\operatorname{Cov}_{\mathscr{C}}\left(C_{\mathscr{C}}^{\alpha,\beta},C_{\mathscr{C}}^{\gamma,\delta}\right) = \frac{1}{(2\mathscr{C}+1)f_{\mathrm{sky}}} \times \left[\left(C_{\mathscr{C}}^{\alpha,\gamma}+\right)\right]$$

Assume each multipole is independent

$$F_{i,j} = \sum_{\ell} \frac{\partial C_{\ell}}{\partial \lambda_i} \operatorname{Cov}_{\ell}^{-1}$$

 $-\delta^{\alpha}_{\gamma}N^{\alpha}_{\ell}\right)\left(C^{\beta,\delta}_{\ell}+\delta^{\beta}_{\delta}N^{\beta}_{\ell}\right)\left(C^{\alpha,\delta}_{\ell}+\delta^{\alpha}_{\delta}N^{\alpha}_{\ell}\right)\left(C^{\beta,\gamma}_{\ell}+\delta^{\beta}_{\gamma}N^{\beta}_{\ell}\right)\right)$

CORRELATION BETWEEN ARF AND AGC

Correlation matrix in a Euclid-like survey at ell=10

 $SNR(\ell) = \sqrt{C_{\ell} Cov_{\ell}^{-1} C_{\ell}}$

Legrand et al. 2020 <u>A&A, 646 (2021) A109</u>

1 sigma marginalised constraints for a Euclid like survey

1 sigma marginalised constraints for a Euclid like survey

Galaxy bias exhibits different degeneracy with cosmological parameters

1 sigma marginalised constraints for a Euclid like survey

Galaxy bias exhibits different degeneracy with cosmological parameters

Different bias / amplitude degeneracy

IMPROVEMENT OF CONSTRAINTS

Factor 2.5 AGC improvement

ARF

AGC x ARF

Legrand et al. 2020 <u>arXiv:2007.14412</u>

DARK ENERGY EQUATION OF STATE EVOLVE WITH TIME

Assuming CPL parametrisation: w(z)

$$z) = w_0 + \frac{z}{1+z}w_a$$

Legrand et al. 2020 <u>arXiv:2007.14412</u>

COMPARING TO GC SPECTROSCOPIC

Euclid collaboration et al 2020, arXiv:1910.09273

- Euclid IST: Forecast Fisher matrix
- GC spectroscopic
- Rough comparison (not same scale cuts, non-linear modelling, not same marginalised parameters...)
- P(k) much better to measure H0
- ARFxAGC better at constraining w0-wa
- Similar constraints on other parameters
- Starting point to combine galaxy spectroscopic and photometric sample

COMPARING TO WL

- Euclid forecast analysis, WL + GCph + XC
- Neglecting correlations between spectroscopic and photometric samples
- ARFx AGC only on spectroscopic sample
- Seems we can break degeneracies for w0-wa by combining with WL and GCphot

SUMMARY

- Angular redshift fluctuations:
 - Different sensitivity to peculiar velocities than AGC
 - Different degeneracies with galaxy bias parameters
 - Degeneracies broken when combined with AGC
 - Improve constraints by a factor 2.5, and up to 5 on DE EoS parameters
- Next steps:
 - Extended models: Massive neutrinos, modified gravity models
 - Fair comparison with Euclid forecasts, including cross correlation with WL and GC phot to Could help to solve issue of combining spectro and photo samples

 - More realistic framework:
 - non linearities
 - higher order covariances
 - more systematics parameters