

A VO service for the European VLBI Network

Mark Kettenis EDP Workshop, November 2021

ESCAPE - The European Science Cluster of Astronomy & Particle Physics ESFRI Research Infrastructures has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement n° 824064.

EVN & JIVE

• EVN: European VLBI Network

Collaboration between radio observatories in Europe and beyond (South-Africa,

Puerto-Rico, China, Korea)

Heterogeneous array

Pl driven

JIVE: Joint Instutute for VLBI ERIC

Support institute for the EVN

Operates the EVN correlator and hosts the EVN data archive

EVN Archive

Daily Image

Data products

- Visibility data ("UV data"; FITS-IDI)
 - No in-beam calibrators -> Multiple sources per observation
 - Continuum and spectral line data
 - Pulsar observations: multiple bins
 - MPC observations: multiple field centers
- Filterbank data (Pulsars, FRBs; PSR-FITS/filterbank, not yet archived)
 - Time-series
- Calibration data
 - Flagging, amplitude calibration, observation schedule, observation logs
- Diagnostic plots (from pipeline)

Multiple Phase Centers

Radcliffe et. al.

699 sources in GOODS-N

Two areas:

- 15' central area
- 20' outer annulus

Multi-source Self Calibration

arXiv:1601.04452

Pulsar Binning

Binning

Visibilities & Images

- UV plane is not completely filled
- Visibilities have to be (partly) self-calibrated
- Imaging algorithm choices depend on scientific goal

VO use case

- 1. Access historic data ("before picture") for high-resolution follow-up of:
 - Gravitational Wave events
 - Gamma Ray Bursts
 - Fast Radio Bursts

- 2. Standardized acces to archive data for science platform
 - JupiterLab environment

VO protocols that match: ObsTAP and Datalink

Implementation using DaCHS

- Why DaCHS?
 - Some in-house knowledge (at ASTRON)
 - Python
 - Visit by Markus (to ASTRON)
 - Implements TAP and Datalink service
- DaCHS runs alongside existing Archive interface
 - Linking to data products in Existing archive
- DaCHS ingests CSV data generated by separate Python "fitscrawler" Tool
 - FITS-IDI stores Important metadata in (large) binary tables

ObsCore representation of visibility data

- Spatial extent determined by several factors:
 - FoV of individual telescopes (in particular the largest telescope)
 - Time and frequency smearing
 - Projected longest baseline (distance between telescopes)
- Approximated assuming maximal amplitude loss of 50% and ignoring projection effects

ObsCore representation of visibility data

- s_resolution based on longest baseline
 - Approximation; should be based on synthesised beam (from UV coverage)
- t_exptime is calculated by summing integration time
 - Each source in the observation becomes separate ObsCore dataset
- em_min and em_max calculated based on minimum and maximum observed frequency
 - Dual S/X band observations should probably be split into separate ObsCore datasets

ObsCore representation of visibility data

- Multiple targets per observation
 - Multiple ObsCore "rows" with the same access_url (but different obs_publisher_did)
- Some observations are correlated multiple times with different parameters
 - "continuum" and "spectral line" get its own access_url and obs_publisher_did
- MPC correlations result in multiple sets of output files
 - Each phase centre gets its own access_url and obs_publisher_did
- Pulsar binning/gating
 - Each bin gets its own access_url and obs_publisher_did (including "off-pulse" bin)
- access_url is a Datalink

Datalink for FITS-IDI

- Single observation split into several FITS-IDI files of ~2GB
 - Return Datalink table with rows for each chunk
- Calibration data will be added in the future
- Considering adding pipeline images as previews
 - These are often very rough!
- Considering adding diagnostic plots as secondary datalink

Extending ObsCore

- Ongoing discussion within the IVOA radio IG of common extensions:
 - Characterization of UV coverage (eccentricity, filling factor)
 - Largest spatial scale
 - Frequency-based characterisation of observed spectrum

- Plan to add DataCite DOIs for each observation in the EVN archive
 - Which ObsCore field should be used?

UV space characterization

$$e = 0.74$$

 $f = 0.03$

calibrator source

$$e = 0.63$$

 $f = 0.25$

target source

Plots derived from software developed by Mattia Mancini (ASTRON)

All EVN observations in 2017

eccentricity (e)

filling factor (f)

Preliminary service

- TAP interface URL: https://evn-vo.jive.eu/tap
- Almost 23K ObsCore datasets (for 150 TB of data)
 - From ~2000 observations
- Global metadata for the service still needs to be

Some initial feedback

- em_min, em_max and em_res_power given in wavelengths
 - This is unatural for radio astronomy
 - Posible solution: add f_min, f_max and f_resolution?

Datalink acess_url initially surprises users

ESCAPE - The European Science Cluster of Astronomy & Particle Physics ESFRI Research Infrastructures has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement n° 824064.