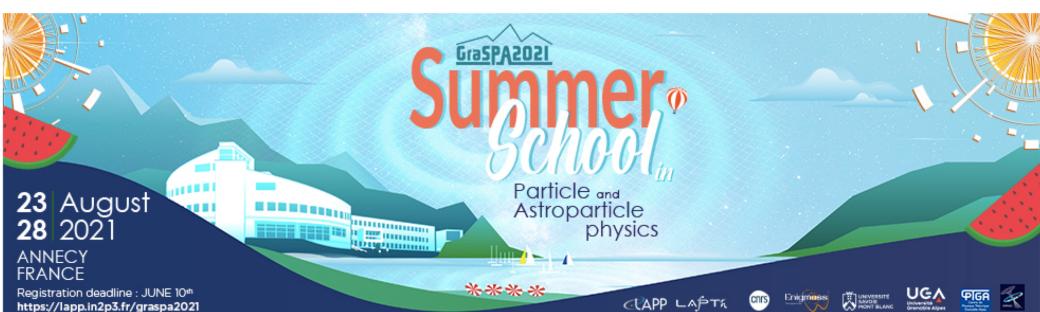
# Experimental LHC physics - I



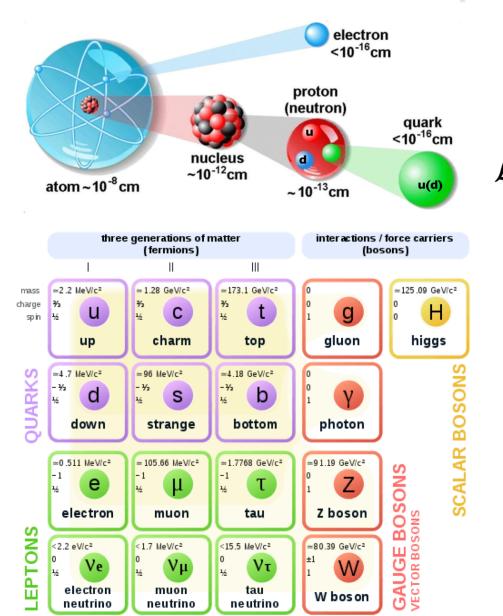
# Experiment = probing and building theories with data!

In our case:

Theory is the Standard Model of Particle Physics Data are obtained from collisions at LHC or previous colliders

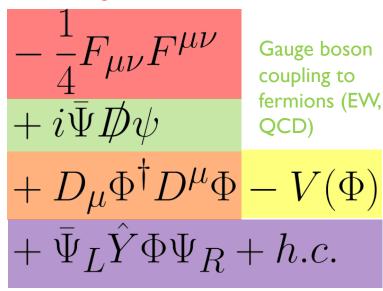
Let's see what all this means...

### The Standard Model of particle physics...



Built from 1954 to ~1970

#### Gauge bosons



Higgs coupling to fermions (fermion masses)

Higgs coupling to bosons (boson masses)

Higgs self-coupling (Higgs potential)

# A single simple equation to describe the wide world

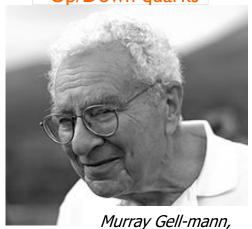
 $-{\textstyle\frac{1}{2}}\partial_{\nu}g^a_{\mu}\partial_{\nu}g^a_{\mu}-\underline{g}_sf^{abc}\partial_{\mu}g^a_{\nu}g^b_{\mu}g^c_{\nu}-{\textstyle\frac{1}{4}}g^z_sf^{abc}f^{aac}g^b_{\mu}g^c_{\nu}g^a_{\mu}g^e_{\nu}+$  ${\textstyle \frac{1}{2}ig_s^2(\bar{q}_i^\sigma\gamma^\mu q_j^\sigma)g_\mu^a + \bar{G}^a\partial^2G^a + g_sf^{abc}\partial_\mu\bar{G}^aG^bg_\mu^c - \partial_\nu W_\mu^+\partial_\nu W_\mu^- - g_s^a\partial_\mu\bar{G}^aG^bg_\mu^c - \partial_\nu W_\mu^+\partial_\nu W_\mu^- - g_s^a\partial_\mu\bar{G}^aG^bg_\mu^c - g_\mu^a\partial_\mu\bar{G}^aG^bg_\mu^c - g_\mu^a\partial_\mu\bar{G}^aG^bg_\mu^a - g_\mu^a\partial_\mu\bar{G}^aG^bg_\mu^c - g_\mu^a\partial_\mu\bar{G}^aG^bg_\mu^a - g_\mu^a\partial_\mu\bar{G}^aG^ag_\mu^a - g_\mu^a\partial_\mu\bar{G}^a$  $\frac{1}{2}m_{h}^{2}H^{2}-\partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-}-M^{2}\phi^{+}\phi^{-}-\frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0}-\frac{1}{2c_{w}^{2}}M\phi^{0}\phi^{0}-\beta_{h}[\frac{2M^{2}}{g^{2}}+$  $[2\frac{2M}{g}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_{\nu}Z^0_{\mu}(W^+_{\mu}W^-_{\nu} - \psi^0)]$  $\begin{array}{c} \frac{1}{g} + \frac{1}{2}(H^{-} + \psi^{-}\psi^{-} + 2\psi^{-}\psi^{-})] + \frac{1}{g^{2}} \alpha_{h} - igc_{w}[\partial_{\nu}Z_{\mu}](W_{\mu}^{\mu}W_{\nu}^{\nu}) \\ W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-}) \\ W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-})] \\ W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+}] + igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{-}W_{\mu}^{-})] \\ W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-}] + igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{-}W_{\mu}^{-})] \\ W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-}] + igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{-}W_{\nu}^{-} - W_{\nu}^{-}W_{\mu}^{-})] \\ W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-}] + igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{-}W_{\nu}^{-} - W_{\mu}^{-}W_{\mu}^{-})] \\ W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-}] + igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{-}W_{\nu}^{-} - W_{\mu}^{-}W_{\mu}^{-})] \\ W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-}] + igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{-}W_{\nu}^{-} - W_{\mu}^{-}W_{\mu}^{-})] \\ W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-}] + igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{-}W_{\nu}^{-} - W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-})] \\ W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-}] + igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{-}W_{\mu}^{-}$  $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})$  $\frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-}+g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-}-Z_{\mu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-})+$  $g^2 s_w^2 (A_\mu W_\mu^+ A_\nu W_\nu^- - A_\mu^- A_\mu^- W_\nu^+ W_\nu^-) + g^2 s_w c_w [A_\mu^- Z_\nu^0 (W_\mu^+ W_\nu^-) + g^2 s_w^- C_w^- A_\mu^- Z_\nu^0 (W_\mu^+ W_\mu^-) + g^2 S_w^- C_w^- A_\mu^- Z_\nu^0 (W_\mu^- W_\mu^- W_\mu^- Z_\mu^- W_\mu^- Z_\mu^- Z_\mu^- W_\mu^- Z_\mu^- Z_\mu^-$  $W_{\nu}^{+}W_{\mu}^{-}) = 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] {\textstyle \frac{1}{8}} g^2 \alpha_h [H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2 \phi^+ \phi^- + 4H^2 \phi^+\phi^- + 2(\phi^0)^2 H^2]$  $gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})]$  $W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})]+\frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]$  $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{w}}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s_{w}^{2}}{c_{w}}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) +$  $\tfrac{1}{4}g^2\tfrac{1}{c_w^2}Z_\mu^0Z_\mu^0[H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-]-\tfrac{1}{2}g^2\tfrac{2_w^2}{c_w}Z_\mu^0\phi^0(W_\mu^+\phi^-+\frac{1}{2}g^2)$  $W_{\mu}^{-}\phi^{+}) - \tfrac{1}{2}ig^{2}\tfrac{s_{\mu}^{2}}{c_{w}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \tfrac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} +$  $W_{\mu}^{\mu\nu} \phi^{+}) + \frac{1}{2} i g^{2} s_{w} A_{\mu} H (W_{\mu}^{+} \phi^{-} - W_{\mu}^{-} \phi^{+}) - g^{2} \frac{s_{w}}{e_{w}} (2c_{w}^{2} - 1) Z_{\mu}^{0} A_{\mu} \phi^{+} \phi^{-} - g^{1} s_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{e}^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - g^{1} s_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{e}^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - g^{1} s_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{e}^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - g^{2} u_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{e}^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - g^{2} u_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{e}^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - g^{2} u_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{e}^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - g^{2} u_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{e}^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} \partial \nu^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} \partial \nu^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} \partial \nu^{$  $\frac{1}{d_j^{\lambda}(\gamma\partial+m_d^{\lambda})}d_j^{\lambda}+igs_wA_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda})+\frac{2}{3}(\bar{u}_j^{\lambda}\gamma^{\mu}u_j^{\lambda})-\frac{1}{3}(\bar{d}_j^{\lambda}\gamma^{\mu}d_j^{\lambda})]+$  $\frac{1}{4c_w}Z_{\mu}^{0}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s_w^2-1-\gamma^{5})e^{\lambda})+(\bar{u}_{j}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{e}^{\lambda}\gamma^{\mu}(4s_w^2-1-\gamma^{5})e^{\lambda})]$  $\frac{1}{4c_w} u_{\mu} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \left( \bar{d}_j^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_w^2 - \gamma^5) d_j^{\lambda} \right) \right] + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} \left[ \left( \bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda} \right) \right] \right] \right]$  $(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})]+\frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})]$  $\gamma^5)u_j^\lambda)] + \tfrac{ig}{2\sqrt{2}} \tfrac{m_\lambda^\lambda}{M} [-\phi^+(\bar{\nu}^\lambda(1-\gamma^5)e^\lambda) + \phi^-(\bar{e}^\lambda(1+\gamma^5)\nu^\lambda)] \tfrac{q\,m^{\lambda}}{2\,M}[H(\bar{e}^{\lambda}e^{\lambda})+i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})]+\tfrac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa})+$  $m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^-[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-m_u^{\lambda}))]$  $\gamma^5)u_j^\kappa] - \tfrac{q}{2} \tfrac{m\lambda}{M} H(\bar{u}_j^\lambda u_j^\lambda) - \tfrac{q}{2} \tfrac{m\lambda}{M} H(\bar{d}_j^\lambda d_j^\lambda) + \tfrac{iq}{2} \tfrac{m\lambda}{M} \phi^0(\bar{u}_j^\lambda \gamma^5 u_j^\lambda) \frac{ig}{2}\frac{m_{\Lambda}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{X}^{+}(\partial^{2}-M^{2})X^{+} + \bar{X}^{-}(\partial^{2}-M^{2})X^{-} + \bar{X}^{0}(\partial^{2}-M^{2})X^{-})$  $\frac{\frac{2}{M^{2}}^{M}}{c_{w}^{2}}X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W_{\mu}^{+}(\partial_{\mu}\bar{X}^{0}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W_{\mu}^{+}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{X}^{-}X^{0}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W_{\mu}^{$  $\frac{c_w}{\partial_\mu \bar{X}^+ Y}) + igc_w W^-_\mu (\partial_\mu \bar{X}^- X^0 - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^-) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^-) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^-) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^-) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^-) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^-) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^-) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^-) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^-) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^-) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^-) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{$  $\partial_{\mu}\bar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+})+igs_{w}A_{\mu}(\partial_{\mu}\bar{$  $\partial_{\mu}\bar{X}^{-}X^{-}) - \tfrac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \tfrac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] +$  $\tfrac{1-2c_w^2}{2c_w}igM[\bar{X}^+X^0\phi^+ - \bar{X}^-X^0\phi^-] + \tfrac{1}{2c_w}igM[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \\$  $igMs_w[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \frac{1}{2}igM[\bar{X}^+X^+\phi^0 - \bar{X}^-X^-\phi^0]$ 

Not so simple when developed!

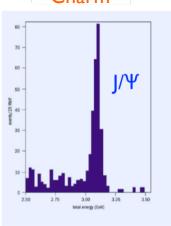
Spoiler: we will see in this lecture that it is in fact not describing everything ...

#### A theory built (and probed) over time...

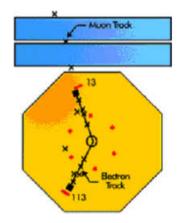
1967 - SLAC Up/Down quarks



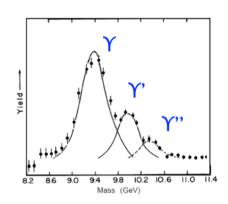
1974 — BNL, SLAC Charm



1976 — SLAC Tau lepton

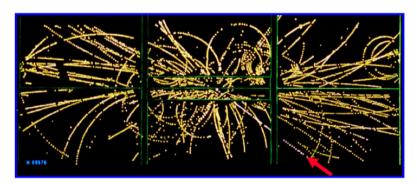


1979 — Fermilab Beauty



1983 — CERN/SppS W and Z bosons

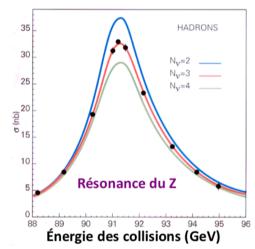
"inventor" of quarks



UA1, UA2

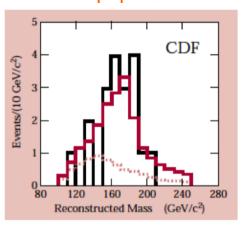
1990 — CERN/LEP

Three families of neutrinos



ALEPH, DEPHI, L3, OPAL (experimental) LHC physics

1994 — Fermilab/TeVatron Top quark



CDF, D0

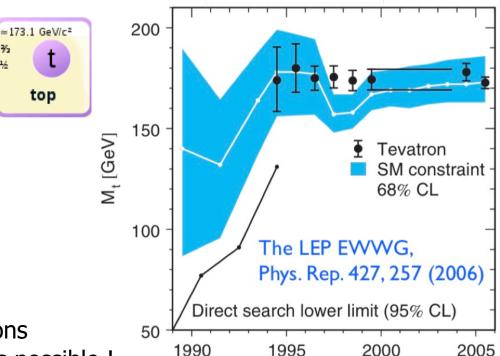
#### Before the LHC startup – indirect constraints

LEP1: 1989-1995 (91 GeV)

LEP2: 1995-2000 (130-206 GeV)

Tevatron 1: 1983-2000

Tevatron 2: 2001-2011 (1.96 TeV)



Per-mil precision on mW, and cross-sections Correction at per-cent level -> constraints possible!

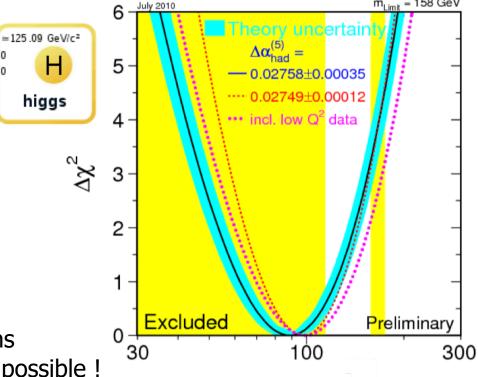
#### Before the LHC startup – indirect constraints

LEP1: 1989-1995 (91 GeV)

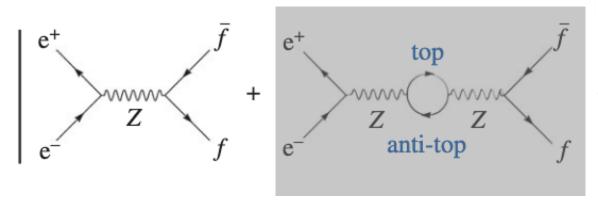
LEP2: 1995-2000 (130-206 GeV)

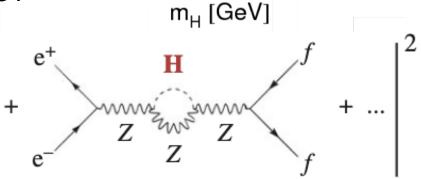
Tevatron 1: 1983-2000

Tevatron 2: 2001-2011 (1.96 TeV)

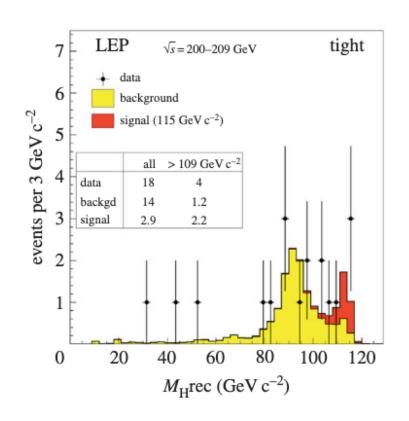


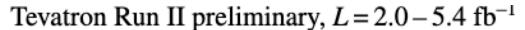
Per-mil precision on mW, and cross-sections Correction at per-cent level -> constraints possible!

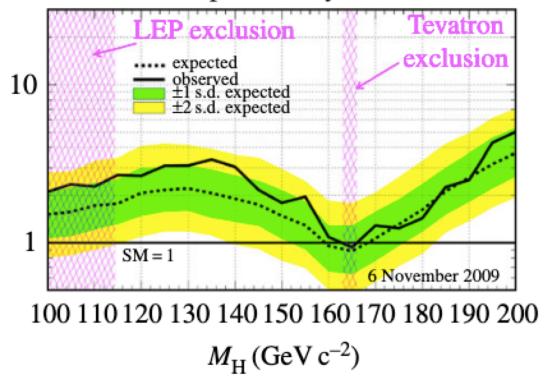




#### Before the LHC startup – direct searches







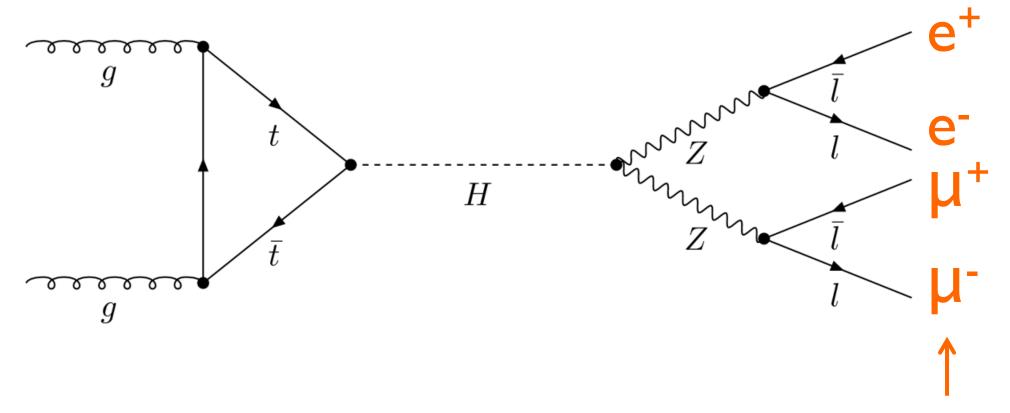
Direct limits on Higgs production from LEP-2 and Tevatron

#### LHC "no loose theorem"

Either the Higgs boson is discovered, or New Physics should manifest to avoid unitarity violation in WW scattering at TeV scale

#### What do we want to measure?

We look for "stable" particles from an unstable particle decays



this is what we are looking for...

#### What do we want to measure?

1974: Brookhaven & SLAC 1979: DESY hadron charm quark up quark top quark 968: SLAC 1947: Manchester University 1977: Fermilab 1923: washington university jets visible 1983: CERN invisible in particle detectors at accelerators decays W boson 2012: CERN 1983: CERN Stable and visible Z boson decays

decays

... "stable" particles from unstable particle decays!

Stable and

(experimental) LHC physics 10

# Identifying and measuring "stable" particles

- Particles are characterized by
  - ✓ Mass (m) [Unit: eV/c² or eV]
  - ✓ Charge (Q) [Unit: e]
  - ✓ Energy (E) [Unit: eV]
  - ✓ Momentum (p) [Unit: eV/c or eV]
  - ✓ (+ spin, lifetime, ...)

Particle identification via measurement of:

e.g. (E, p, Q) or (p,  $\beta$ , Q) (p, m, Q) ...

• ... and move at relativistic speed (here in "natural" unit:  $\hbar = c = 1$ )

$$\beta = \frac{v}{c} \quad \gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

$$\ell = rac{\ell_0}{\gamma}$$
 length contraption

$$t=t_0\gamma$$
 time dilatation

$$E^{2} = \vec{p}^{2} + m^{2}$$

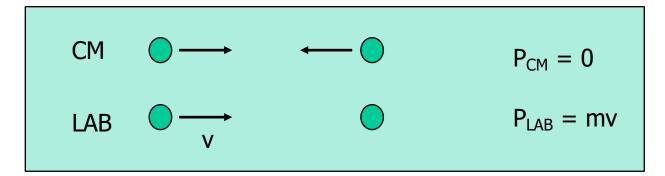
$$E = m\gamma \qquad \vec{p} = m\gamma \vec{\beta}$$

$$\vec{\beta} = \frac{\vec{p}}{E}$$

#### Center of mass energy

- In the center of mass frame the total momentum is 0
- In laboratory frame center of mass energy can be computed as:

$$E_{\rm cm} = \sqrt{s} = \sqrt{\left(\sum E_i\right)^2 - \left(\sum \vec{p_i}\right)^2}$$



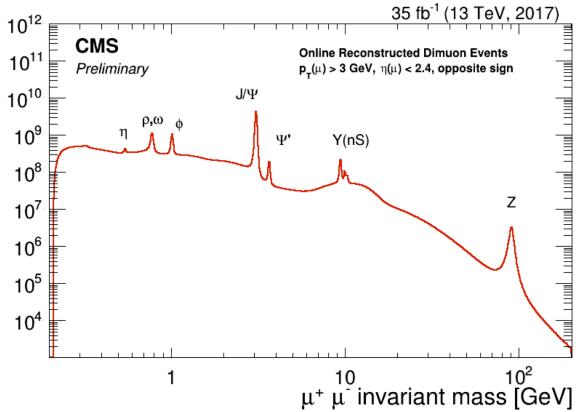
Hint: this corresponds to the "length" of the total four-momentum, that is a relativistic invariant:

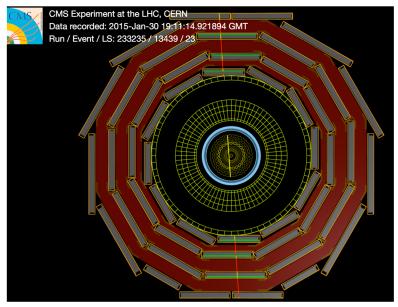
$$p = (E, \vec{p}) \qquad \sqrt{p \cdot p}$$

#### Invariant mass

Events/GeV

$$M = \sqrt{\left(\sum E_i\right)^2 - \left(\sum \vec{p_i}\right)^2}$$

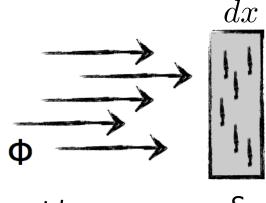




#### Interaction cross section

Flux 
$$\Phi = rac{1}{S} rac{dN_i}{dt}$$

[L<sup>-2</sup> t<sup>-1</sup>]



area occupied by target particles

$$rac{dN_{
m reac}}{dt}$$

$$=\Phi \sigma N_{\mathrm{target}} dx$$
[L-2 t-1] [?] [L-1]

Reaction rate per target particle

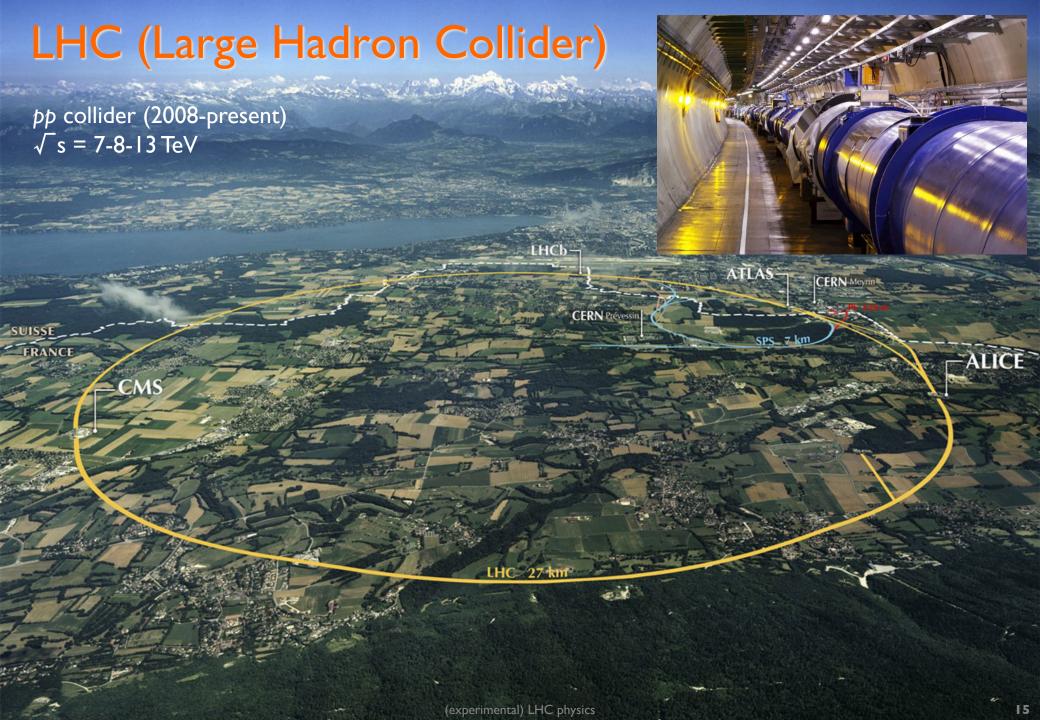
$$W_{if}=\Phi \sigma$$
 [t-1]

Cross section per target particle

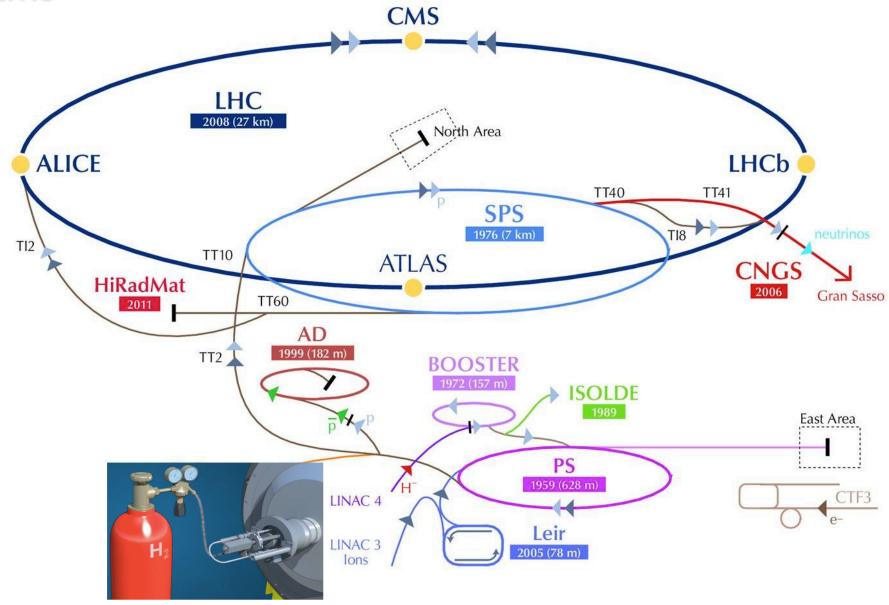
$$\sigma = \frac{V}{-}$$

$$[L^2]$$
 = reaction rate per unit of flux

Unit: I barn =  $10^{-28}$  m<sup>2</sup> (roughly the area of a nucleus with A = 100)



# CERN accelerator complex or how to build high energy beams



#### Luminosity

Number of events in unit of time

$$\int \int = \int [t^{-1}] \cdot \int = I \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} \text{ (LHC)}$$
[t<sup>-1</sup>] [L<sup>2</sup>]

In a collider ring...

$$\mathcal{L} = \frac{1}{4\pi} \frac{fkN_1N_2}{\sigma_x \sigma_y}$$

Proton revolution frequency (40e9/s)

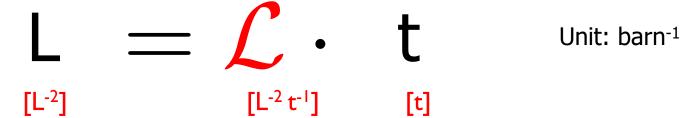
Number of bunches (~3000)

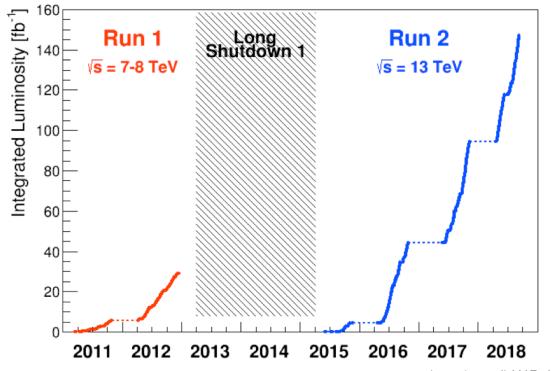
Number of protons in bunches (~1e11)

Beam sizes (RMS)

#### Integrated luminosity

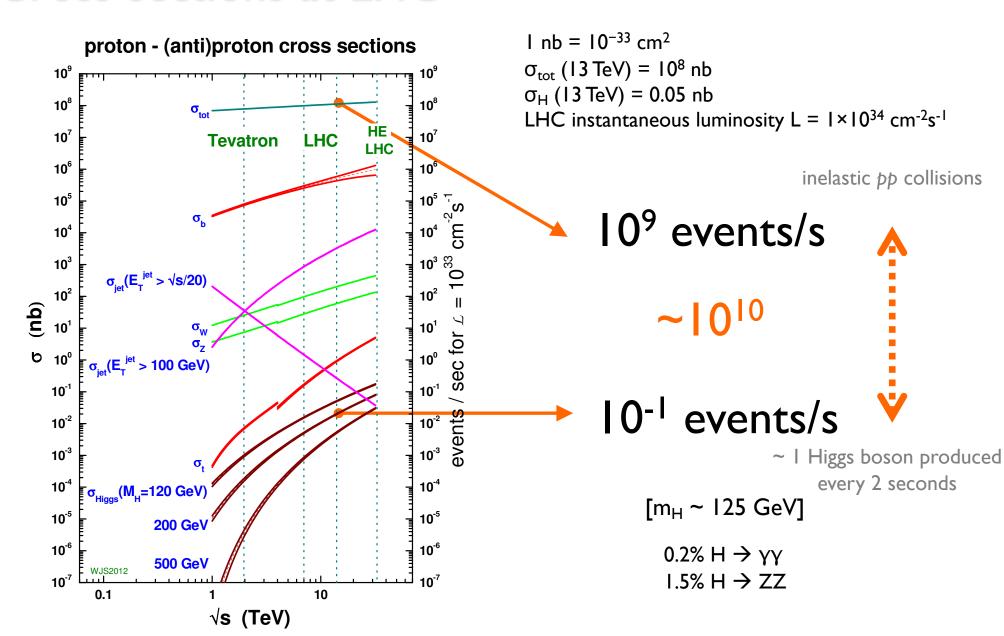
Luminosity integrated over a given period





- $\sim$  150 fb<sup>-1</sup> in Run2 for ATLAS and CMS
- ~ 2.5 fb<sup>-1</sup> for LHCb (levelled luminosity)
- $\sim 20 \text{ pb}^{-1}$  for ALICE (only  $\sim 1$  month per year)

#### Cross-sections at LHC



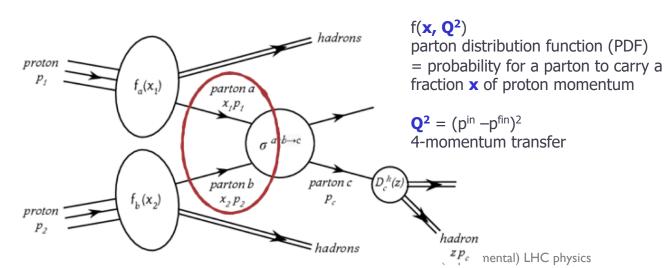
#### About the inner life of a proton

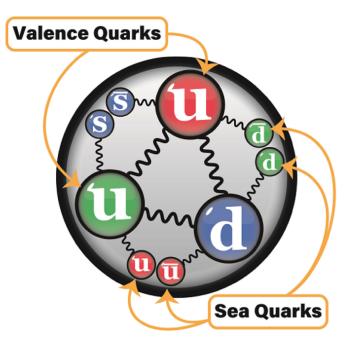
#### protons have substructures

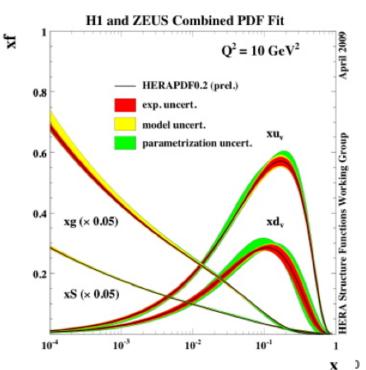
- ✓ partons = quarks & gluons
- ✓ 3 valence (coloured) quarks bound by gluons
- ✓ Gluons (coloured) have self-interactions
- ✓ Virtual quark pairs can pop-up (sea-quark)
- ✓ p momentum shared among constituents
  - described by p structure functions

#### Initial state of LHC collisions unknown

✓ Any of the parton can interact with an unknown fraction of total momentum

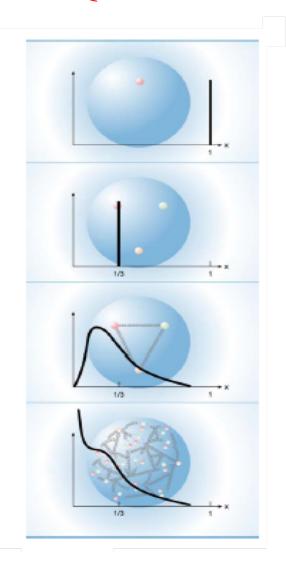


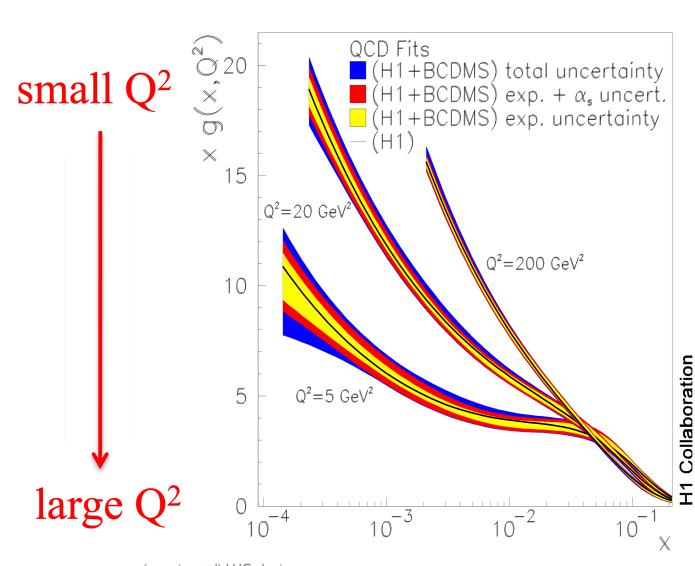




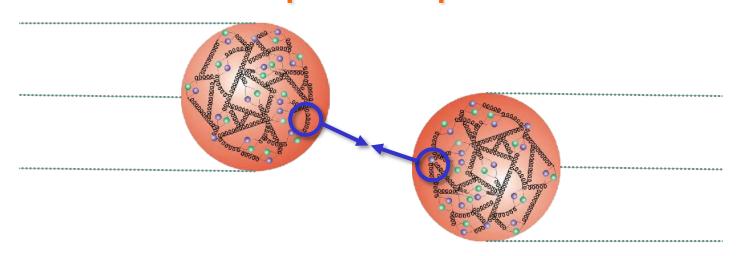
## Q<sup>2</sup> evolution

#### Q<sup>2</sup> evolution

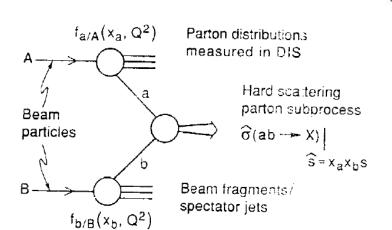




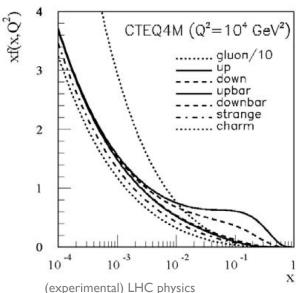
#### Cross sections at a proton-proton collider



$$\sqrt{\hat{s}} = \sqrt{x_a x_b s}$$



$$\sigma = \sum_{a,b} \int dx_a dx_b f_a(x,Q^2) f_b(x,Q^2) \frac{\hat{\sigma}_{ab}(x_a,x_b)}{\hat{\sigma}_{ab}(x_a,x_b)}$$

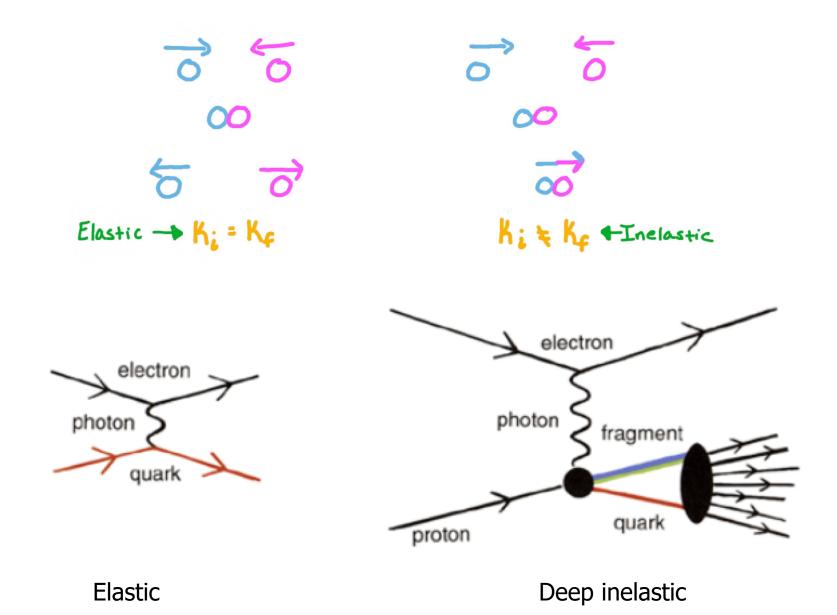


Example: to produce a particle with mass m = 100 GeV

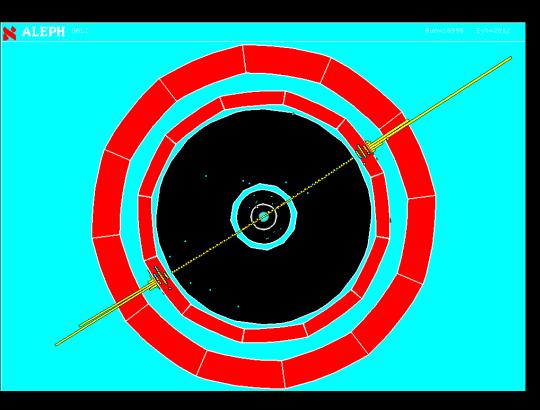
$$\sqrt{\hat{s}}$$
 = 100 GeV

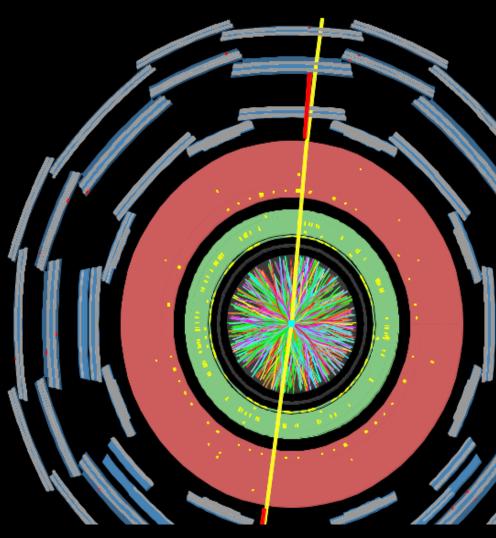
$$\sqrt{s}$$
 = 14 TeV  $\rightarrow \sqrt{x_a x_b}$  = 0.007

#### Elastic vs (deep) inelastic collisions



## A $Z \rightarrow e^+e^-$ event at LEP and ad LHC





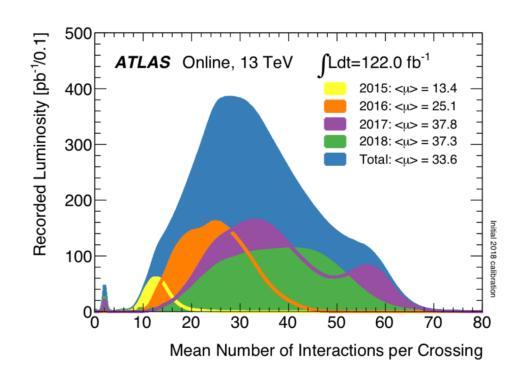
ALEPH @ LEP

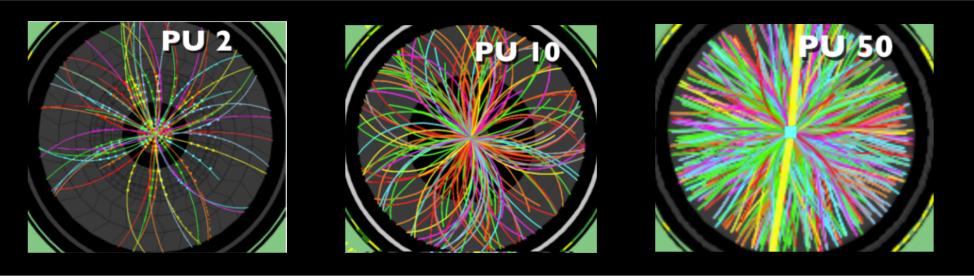
ATLAS @ LHC

#### Pile-Up

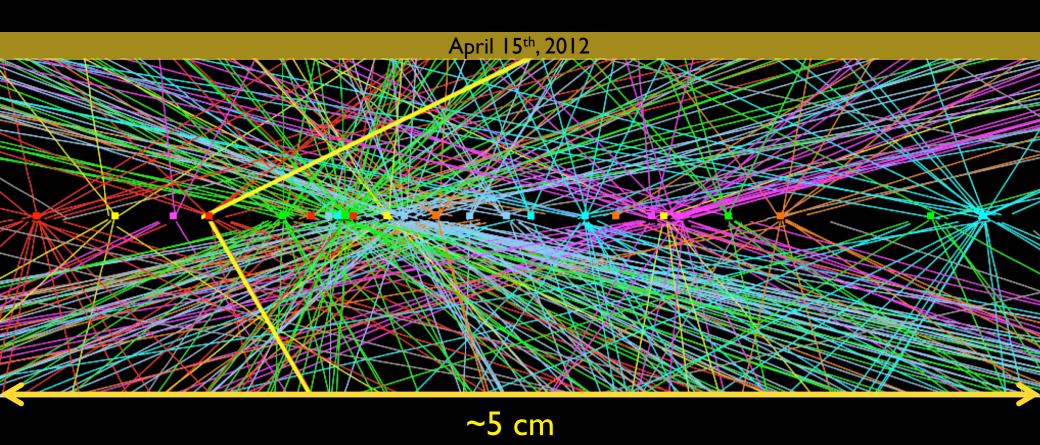
$$\mathcal{L} = \frac{1}{4\pi} \frac{fk N_1 N_2}{\sigma_x \sigma_y}$$

PU = number of inelastic interactions per beam bunch crossing

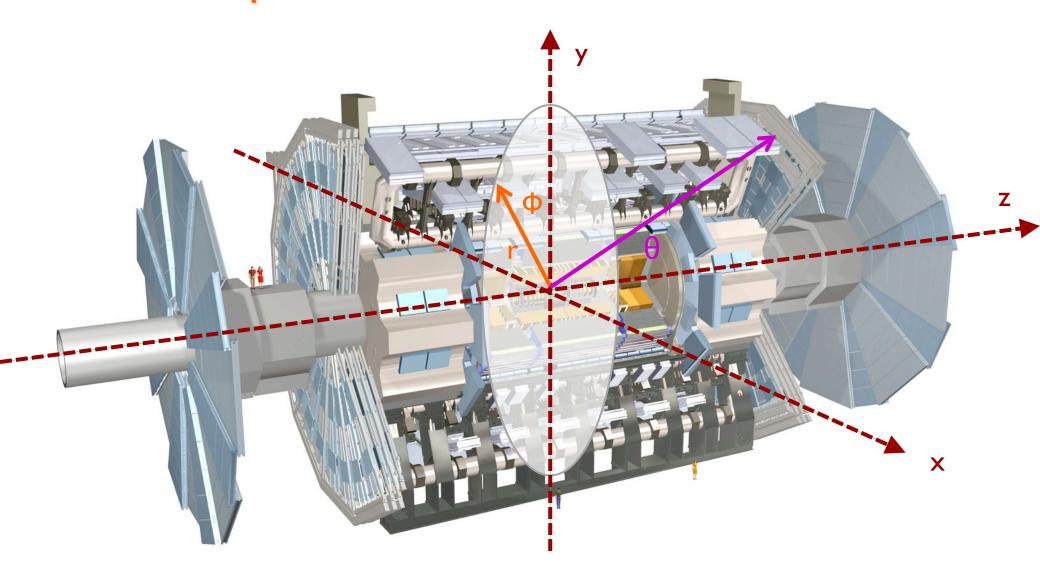




# Z-) μμ event with 25 reconstructed vertices



# Collider experiment coordinates



#### Tracking system

- A fast, radiation hard, and high resolution system to measure charged particle momentum
- Tracking device + magnetic field

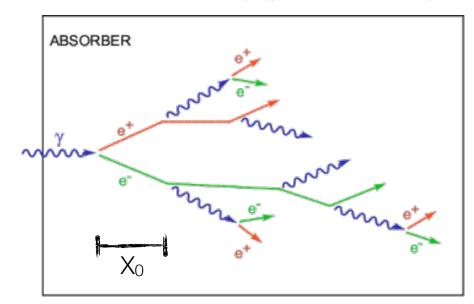


#### Calorimeters for showering particles

#### Electromagnetic shower

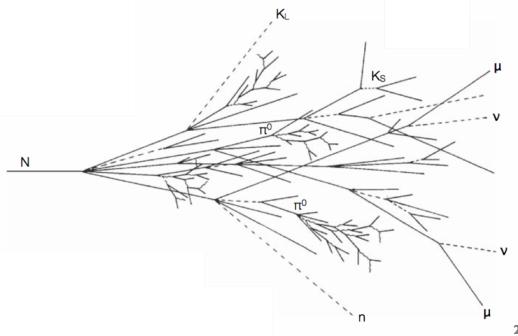
- ✓ Photons: pair production
  - Until below e<sup>+</sup>e<sup>-</sup> threshold
- ✓ Electrons: bremsstrahlung
  - Until brem cross-section smaller than ionization

$$\frac{dE}{dx}(E_c)\Big|_{\text{Brems}} = \frac{dE}{dx}(E_c)\Big|_{\text{Ion}}$$

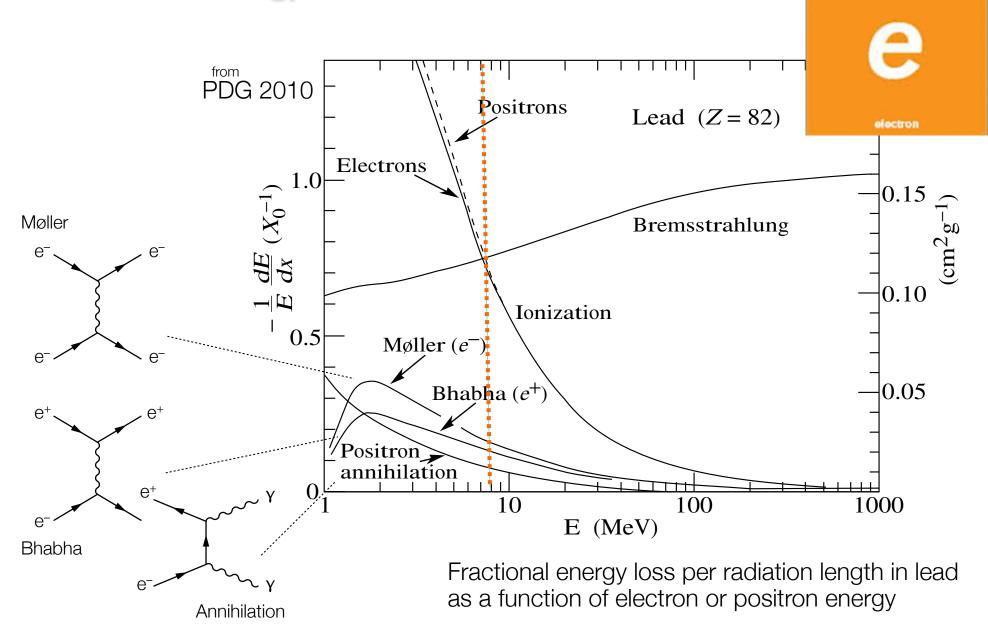


#### Hadronic showers

- ✓ Inelastic scattering w/ nuclei
  - Further inelastic scattering until below pion production threshold
- Sequential decays
  - $\pi^0 \rightarrow \gamma \gamma$
  - Fission fragment: β-decay, γ-decay
  - Neutron capture, spallation, ...

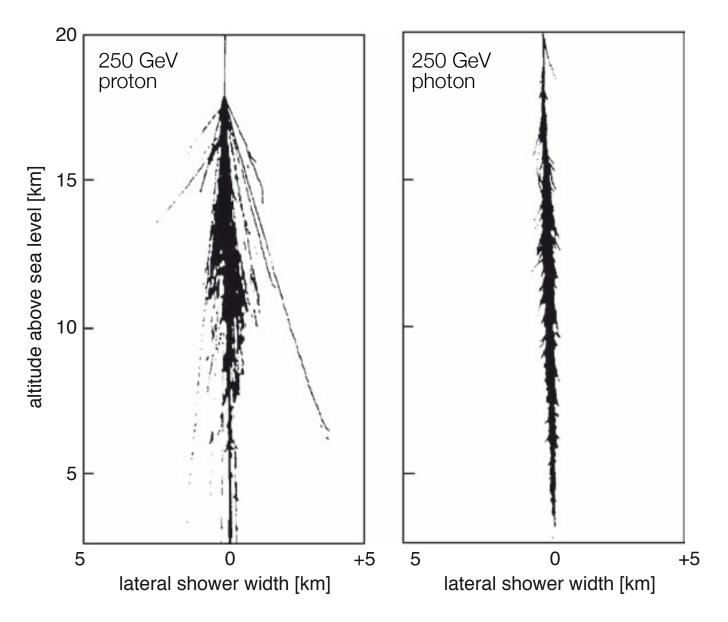


## Electron energy loss



1897: Cavendish Laboratory

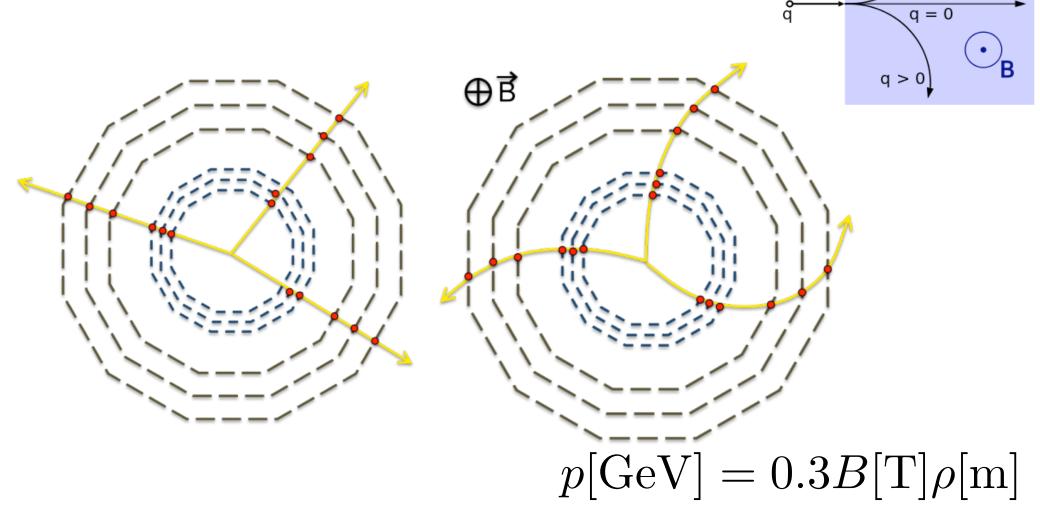
#### Hadronic vs. EM showers



#### Magnetic spectrometer for ionizing particles

A system to measure (charged) particle momentum

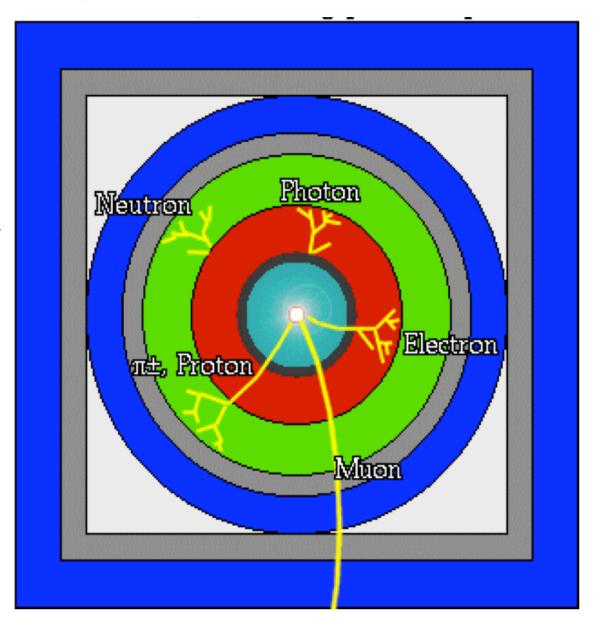
Tracking device + magnetic field



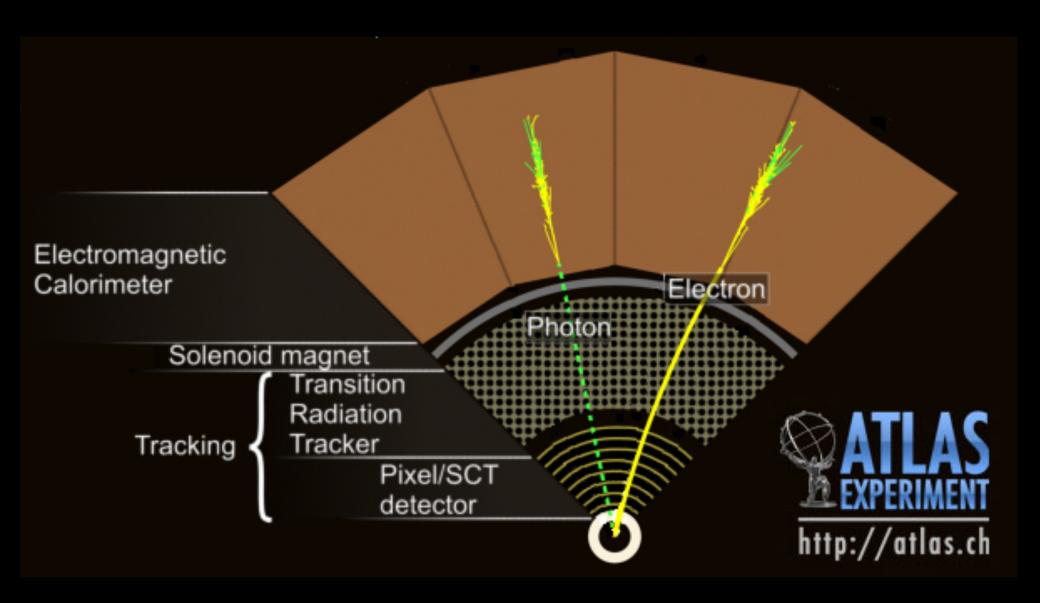
q < 0

# How do we "see" particles?

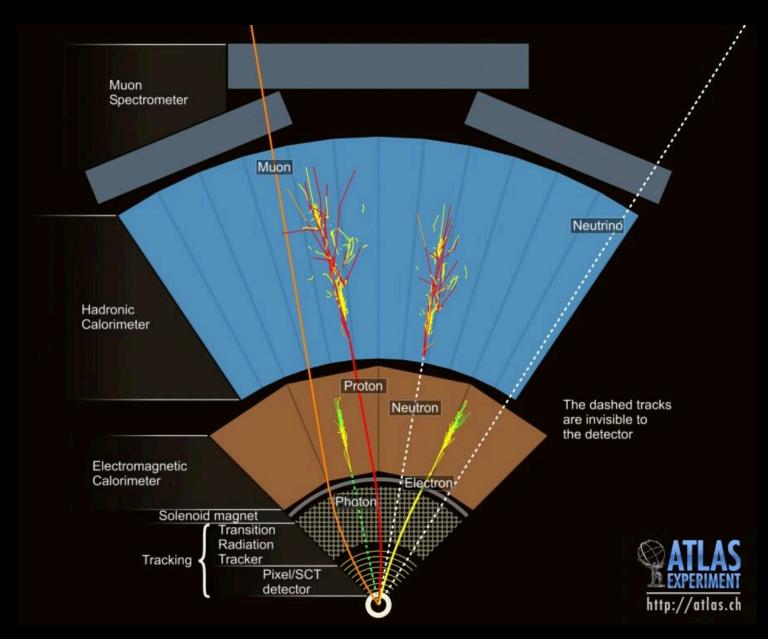
- Beam Pipe (center)
- Tracking Chamber
- Magnet Coil
- E-M Calorimeter
- Hadron Calorimeter
- Magnetized
  Iron
- Muon Chambers



#### Particle identification with tracker and EM calo



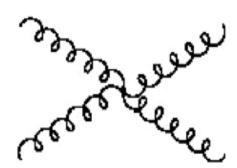
# Particle identification with EM and HAD calos



#### A few words about hadronic particules

#### QCD (strong) interactions are carried out by gluons

- ✓ Gluons are massless
- ✓ Gluons couple to color charges
- ✓ Gluons have color themselves
  - They can couple to other gluons



#### Principle of asymptotic freedom

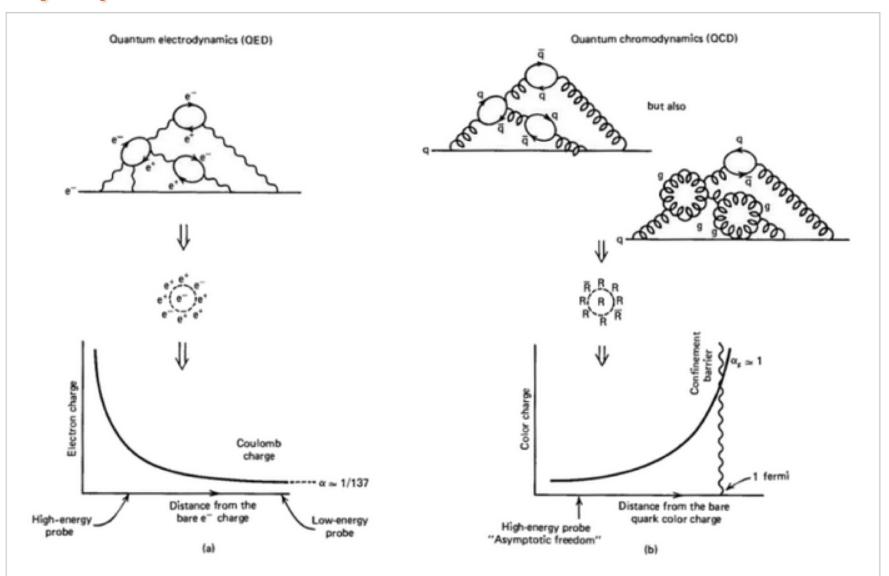
- ✓ At short distances strong interactions are weak
  - Quarks and gluons are essentially free particles
  - Perturbative regime (can calculate!)
- ✓ At large distances, higher-order diagrams dominate
  - Interaction is very strong
  - Perturbative regime fails, have to resort to effective models

quark-quark effective potential

$$V_s = -\frac{4}{3} \frac{\alpha_s}{r} + kr$$

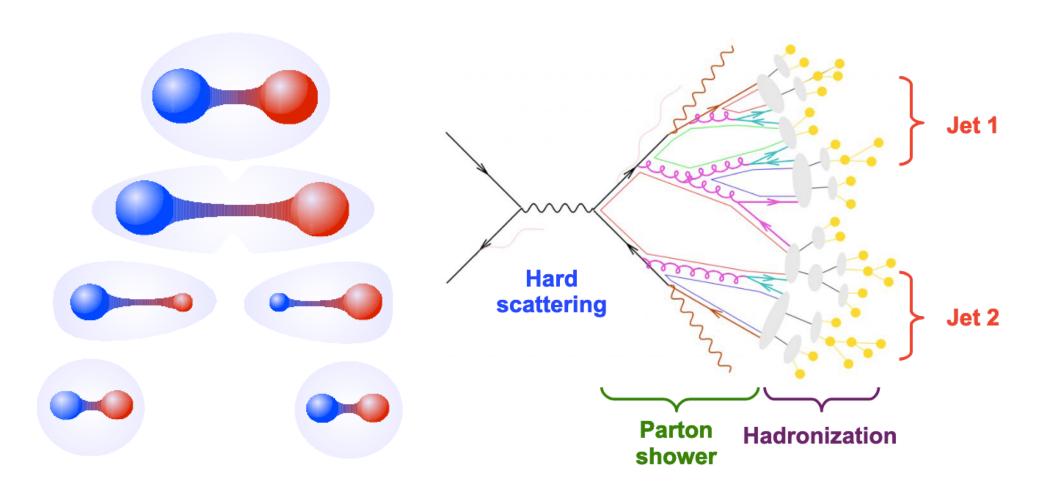
single gluon confinement exchange

## Asymptotic freedom



Screening of the electric (a) and colour (b) charges in quantum field theory. Feynman's diagrams for the creation of virtual particles for the two processes are also showed. [Picture from F. Halzen and D.H. Martin – see references

## Confinement, hadronization, jets



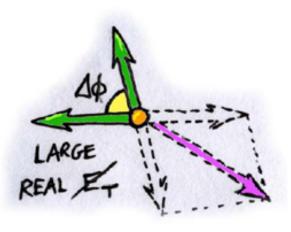
Hadronic jets in ATLAS ATLAS Run Number: 166466, Event Number: 78756195

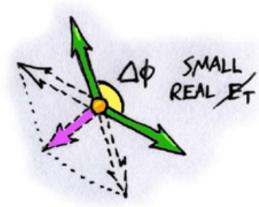
Date: 2010-10-08 08:05:57 CEST

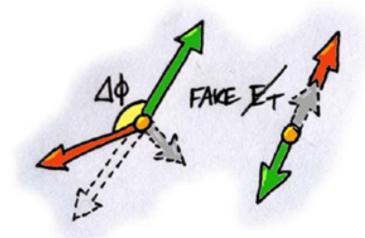
## Neutrino (and other invisible particles) at colliders



- Interaction length  $\lambda_{int} = A / (\rho \sigma N_A)$
- Cross section  $\sigma \sim 10^{-38} \text{ cm}^2 \times E \text{ [GeV]}$ 
  - ✓ This means 10 GeV neutrino can pass through more than a million km of rock
- Neutrinos are usually detected in HEP experiments through missing (transverse) energy (conservation of transverse momentum)





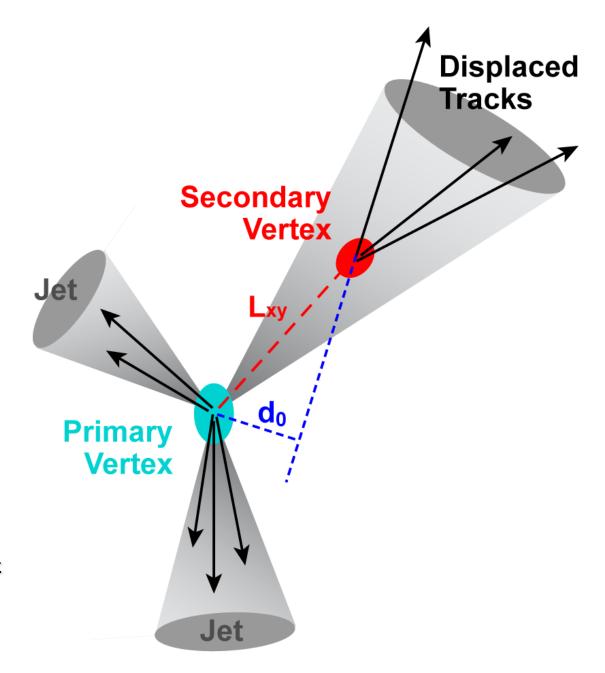


- Missing energy resolution depends on
  - Detector acceptance
  - Detector noise and resolution (e.g. calorimeters)

# **B-tagging**



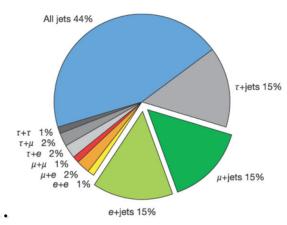
- When a b quark is produced, the associated jet will very likely contain at least one B meson or hadron
- B mesons/hadrons have relatively long lifetime
  - ✓ ~ 1.6 ps
  - They will travel away from collision point before decaying
- Identifying a secondary decay vertex in a jet allow to tag its quark content
- Similar procedure for c quark...

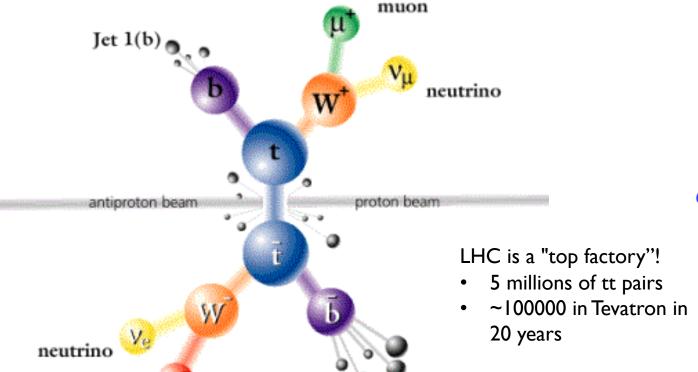


## top quark

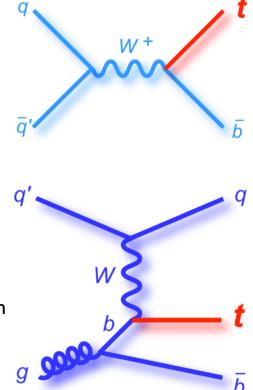


- Mean lifetime  $\sim 5 \times 10^{-13}$  ps
  - ✓ Shorter than time scale at which QCD acts: no time to hadronize!
  - $\checkmark$  It decays as  $t \to Wb$
- Events with top quarks are very rich in (b) jets...





electron

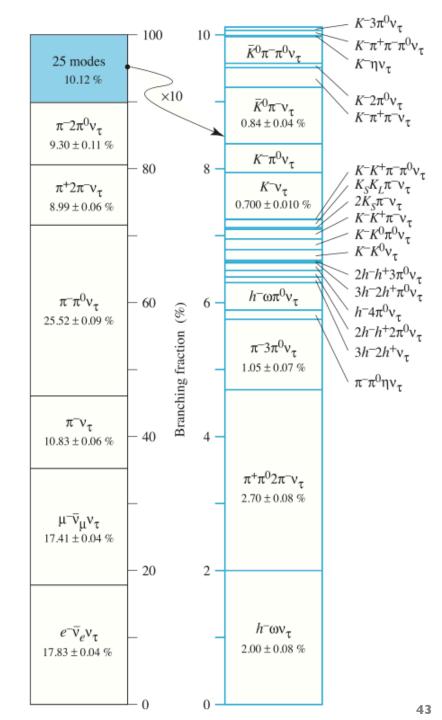


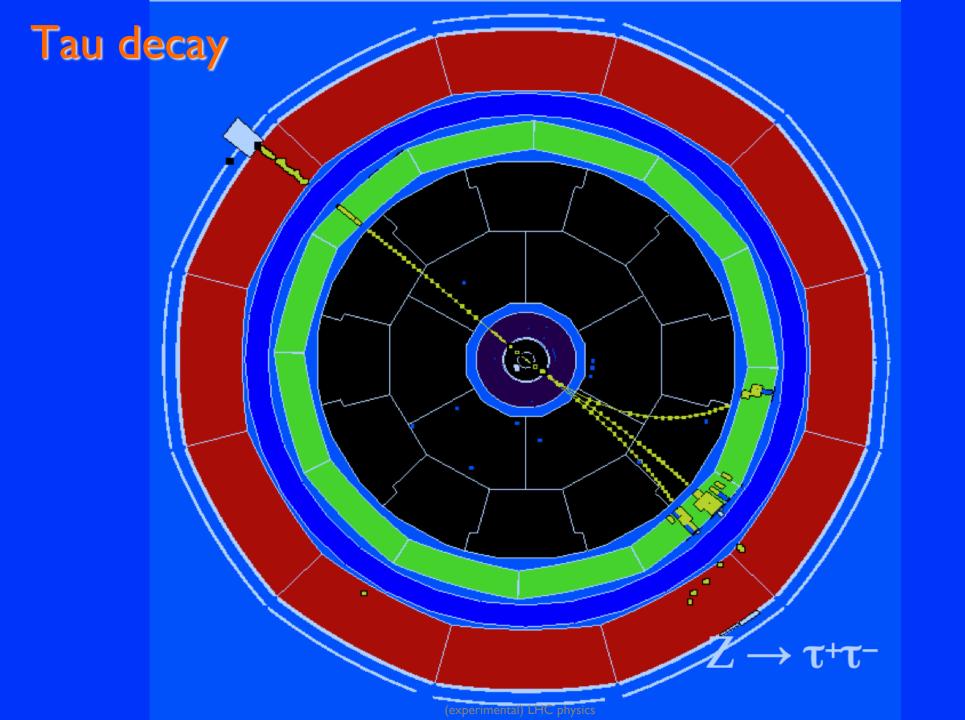
Jet 2 (b)

### Tau

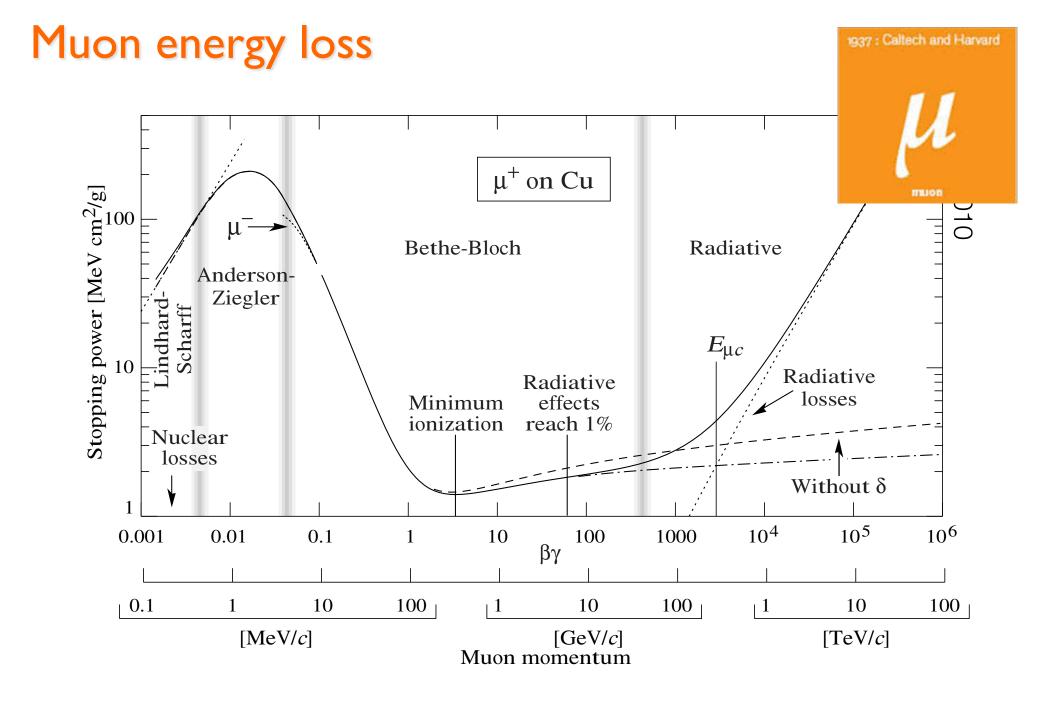


- Tau are heavy enough that they can decay in several final states
  - Several of them with hadrons
  - ✓ Sometimes neutral hadrons
- Mean lifetime ~ 0.29 ps
  - ✓ 10 GeV tau flies ~ 0.5 mm
  - ✓ Too short to be directly seen in the detectors
- Tau needs to be identified by their decay products
- Accurate vertex detectors can detect that they do not come exactly from the interaction point

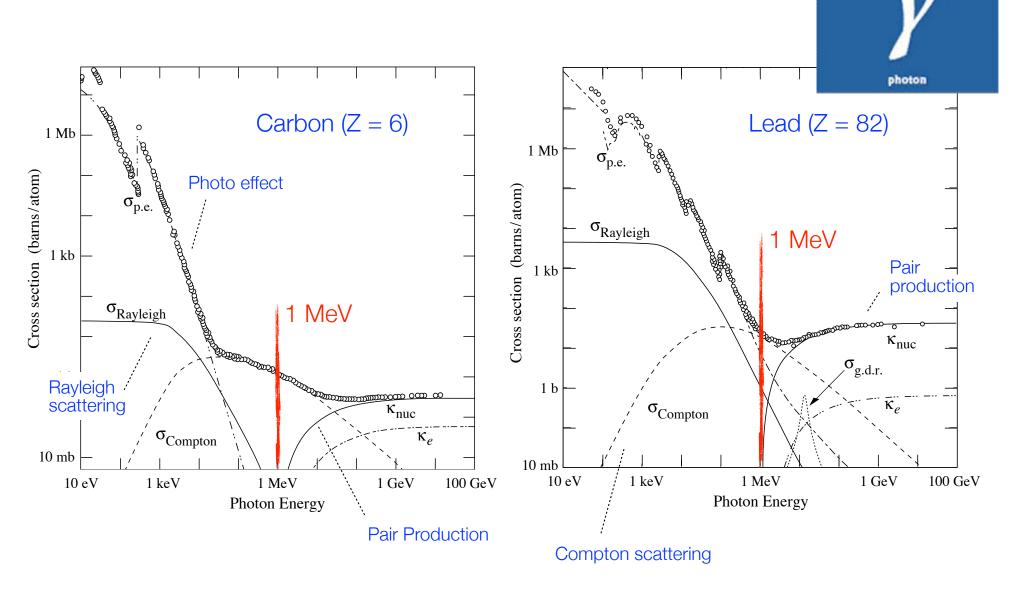




## Additional information



## Interaction of photons with matter



1923: Washington University\*

# HEP, SI and "natural" units

| Quantity                            | HEP units                                             | SI units                           |
|-------------------------------------|-------------------------------------------------------|------------------------------------|
| length                              | I fm                                                  | 10 <sup>-15</sup> m                |
| charge                              | е                                                     | 1.602·10 <sup>-19</sup> C          |
| energy                              | I GeV                                                 | $1.602 \times 10^{-10} J$          |
| mass                                | I GeV/c <sup>2</sup>                                  | $1.78 \times 10^{-27} \text{ kg}$  |
| $\hbar = h/2$                       | 6.588 x 10 <sup>-25</sup> GeV s                       | $1.055 \times 10^{-34} \text{ Js}$ |
| С                                   | $2.988 \times 10^{23} \text{ fm/s}$                   | $2.988 \times 10^{8} \text{ m/s}$  |
| ћс                                  | 197 MeV fm                                            | •••                                |
| "natural" units ( $\hbar = c = I$ ) |                                                       |                                    |
| mass                                | I GeV                                                 |                                    |
| length                              | $I \text{ GeV}^{-1} = 0.1973 \text{ fm}$              |                                    |
| time                                | $I \text{ GeV}^{-1} = 6.59 \times 10^{-25} \text{ s}$ |                                    |

### Relativistic kinematics in a nutshell

$$E^2 = \vec{p}^2 + m^2$$
 $\ell = \frac{\ell_0}{\gamma}$   $E = m\gamma$ 
 $t = t_0\gamma$   $\vec{p} = m\gamma\vec{\beta}$ 
 $\vec{\beta} = \frac{\vec{p}}{E}$ 

# Cross section: magnitude and units

Standard

cross section unit:

$$[\sigma] = mb$$

with  $1 \text{ mb} = 10^{-27} \text{ cm}^2$ 

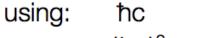
or in

natural units:

$$[\sigma] = \text{GeV}^{-2}$$

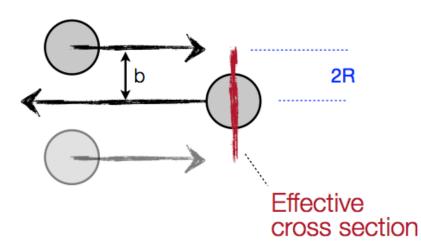
with 
$$1 \text{ GeV}^{-2} = 0.389 \text{ mb}$$
  
  $1 \text{ mb} = 2.57 \text{ GeV}^{-2}$ 

Estimating the proton-proton cross section:



= 0.1973 GeV fm

 $= 0.389 \text{ GeV}^2 \text{ mb}$ 



Proton radius: R = 0.8 fm Strong interactions happens up to b = 2R

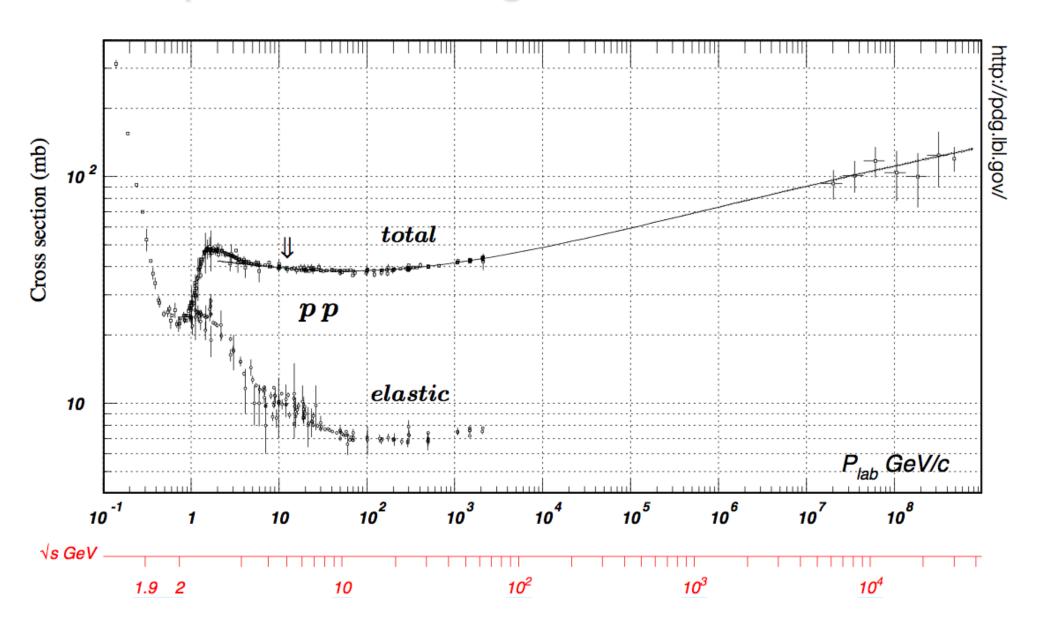
$$\sigma = \pi (2R)^2 = \pi \cdot 1.6^2 \text{ fm}^2$$

$$= \pi \cdot 1.6^2 \cdot 10^{-26} \text{ cm}^2$$

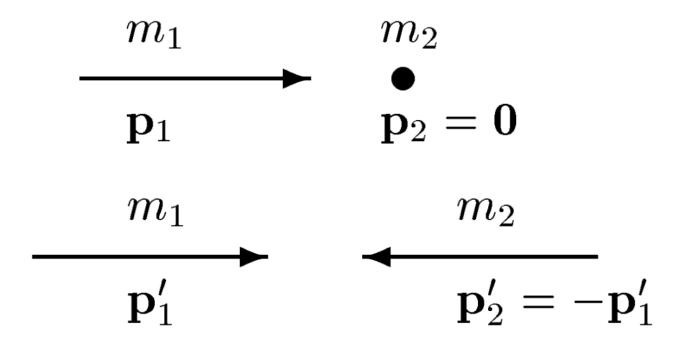
$$= \pi \cdot 1.6^2 \cdot 10 \text{ mb}$$

$$= 80 \text{ mb}$$

## Proton-proton scattering cross-section



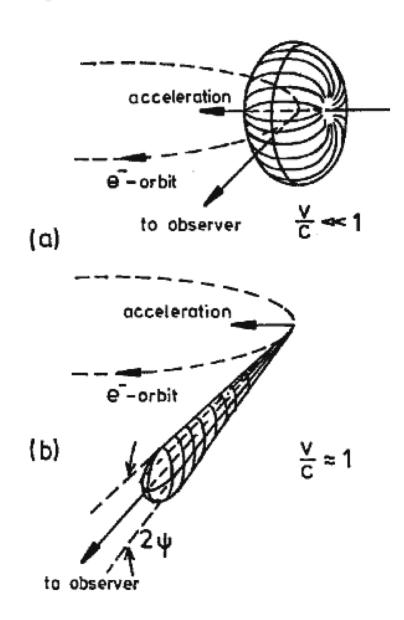
## Fixed target vs. collider



How much energy should a fixed target experiment have to equal the center of mass energy of two colliding beam?

$$E_{\text{fix}} = 2\frac{E_{\text{col}}^2}{m} - m$$

## Syncrotron radiation



energy lost per revolution

$$\Delta E = \frac{4\pi}{3} \frac{1}{4\pi\epsilon_0} \left( \frac{e^3 \beta^3 \gamma^4}{R} \right)$$

electrons vs. protons

$$rac{\Delta E_e}{\Delta E_p} \simeq \left(rac{m_p}{m_e}
ight)^4$$

It's easier to accelerate protons to higher energies, but protons are fundamentals...

## Magnetic spectrometer

Charged particle in magnetic field

$$\frac{d\vec{p}}{dt} = q\vec{\beta} \times \vec{B}$$

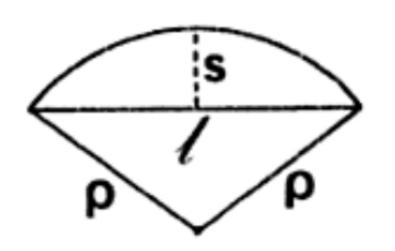
If the field is constant and we neglect presence of matter, momentum magnitude is constant with time, trajectory is helical

$$p[\text{GeV}] = 0.3B[\text{T}]\rho[\text{m}]$$

Actual trajectory differ from exact helix because of:

- magnetic field inhomogeneity
- particle energy loss (ionization, multiple scattering)

### Momentum measurement



$$\rho \simeq \frac{l^2}{8s}$$

$$p = 0.3 \frac{Bl^2}{8s}$$

I = chord

$$\rho$$
 = radius

$$\left| \frac{\delta p}{p} \right| = \left| \frac{\delta s}{s} \right|$$

smaller for larger number of points

measurement error (RMS)

Momentum resolution due to measurement error

$$\left|\frac{\delta p}{p}\right| = A_N \frac{\epsilon}{L^2} \frac{p}{0.3B}$$

Momentum resolution gets worse for larger momenta

in magnetic field

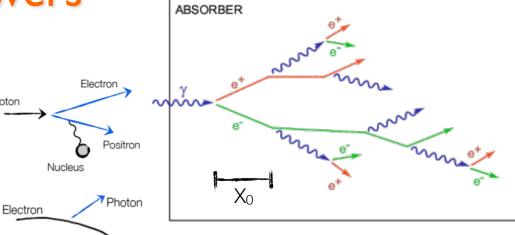
projected track length resolution is improved faster by increasing L then B

## Electromagnetic showers

Dominant processes at high energies ...

Photons: Pair production

Electrons: Bremsstrahlung



#### Pair production:

$$\sigma_{
m pair} pprox rac{7}{9} \left( 4\,lpha r_e^2 Z^2 \lnrac{183}{Z^{rac{1}{3}}} 
ight) \ = rac{7}{9} rac{A}{N_A X_0} \qquad {
m [X_0: radiation length]} {
m [in \ cm \ or \ g/cm^2]}$$

Absorption coefficient:

$$\mu = n\sigma = \rho \frac{N_A}{A} \cdot \sigma_{\text{pair}} = \frac{7}{9} \frac{\rho}{X_0}$$

### Bremsstrahlung:

$$\frac{dE}{dx} = 4\alpha N_A \, \frac{Z^2}{A} r_e^2 \cdot E \, \ln \frac{183}{Z^{\frac{1}{3}}} = \frac{E}{X_0}$$

$$\rightarrow E = E_0 e^{-x/X_0}$$

After passage of one  $X_0$  electron has only  $(1/e)^{th}$  of its primary energy ... [i.e. 37%]

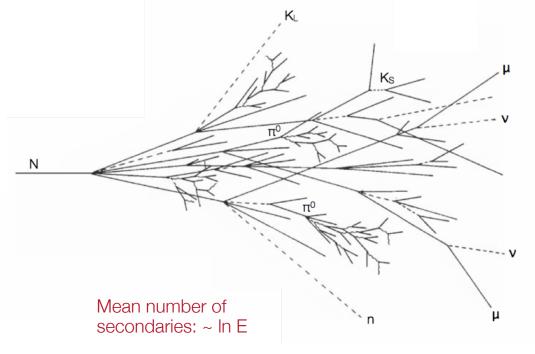
Critical energy: 
$$\left. \frac{dE}{dx}(E_c) \right|_{\text{Brems}} = \left. \frac{dE}{dx}(E_c) \right|_{\text{Ion}}$$

### Hadronic showers

#### Shower development:

- 1.  $p + Nucleus \rightarrow Pions + N^* + ...$
- 2. Secondary particles ...
  undergo further inelastic collisions until they
  fall below pion production threshold
- 3. Sequential decays ...

 $\pi_0 \rightarrow \gamma \gamma$ : yields electromagnetic shower Fission fragments  $\rightarrow \beta$ -decay,  $\gamma$ -decay Neutron capture  $\rightarrow$  fission Spallation ...



Typical transverse momentum: pt ~ 350 MeV/c

Substantial electromagnetic fraction .....

fem ∼ In E

[variations significant]

Cascade energy distribution:

[Example: 5 GeV proton in lead-scintillator calorimeter]

5000 MeV [29%]

## Homogeneous calorimeters

★ In a homogeneous calorimeter the whole detector volume is filled by a high-density material which simultaneously serves as absorber as well as as active medium ...

| Signal              | Material                                   |  |
|---------------------|--------------------------------------------|--|
| Scintillation light | BGO, BaF <sub>2</sub> , CeF <sub>3</sub> , |  |
| Cherenkov light     | Lead Glass                                 |  |
| Ionization signal   | Liquid nobel gases (Ar, Kr, Xe)            |  |

- ★ Advantage: homogenous calorimeters provide optimal energy resolution
- ★ Disadvantage: very expensive
- ★ Homogenous calorimeters are exclusively used for electromagnetic calorimeter, i.e. energy measurement of electrons and photons

# Sampling calorimeters

#### Principle:

Alternating layers of absorber and active material [sandwich calorimeter]

#### Absorber materials:

[high density]

Iron (Fe)

Lead (Pb)

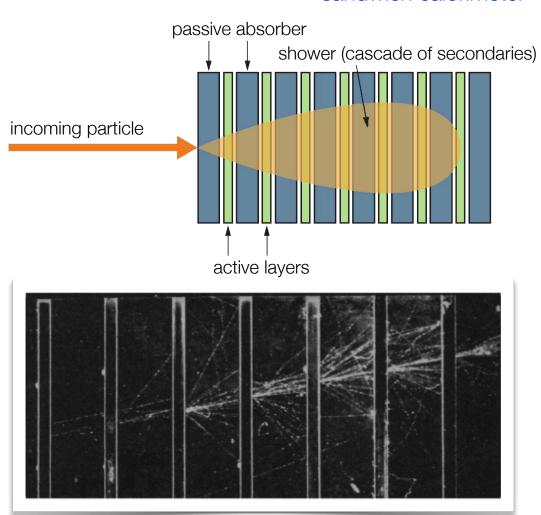
Uranium (U)

[For compensation ...]

#### Active materials:

Plastic scintillator
Silicon detectors
Liquid ionization chamber
Gas detectors

## Scheme of a sandwich calorimeter



## A typical HEP calorimetry system

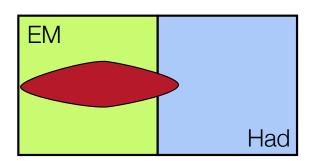
Typical Calorimeter: two components ...

Schematic of a typical HEP calorimeter

Electromagnetic (EM) + Hadronic section (Had) ...

Different setups chosen for optimal energy resolution ...

Electrons Photons

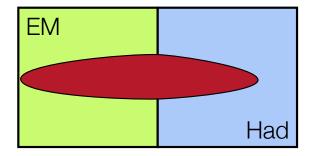


But:

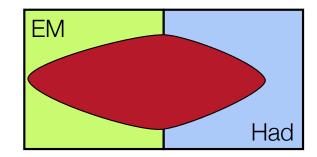
Hadronic energy measured in both parts of calorimeter ...

Needs careful consideration of different response ...

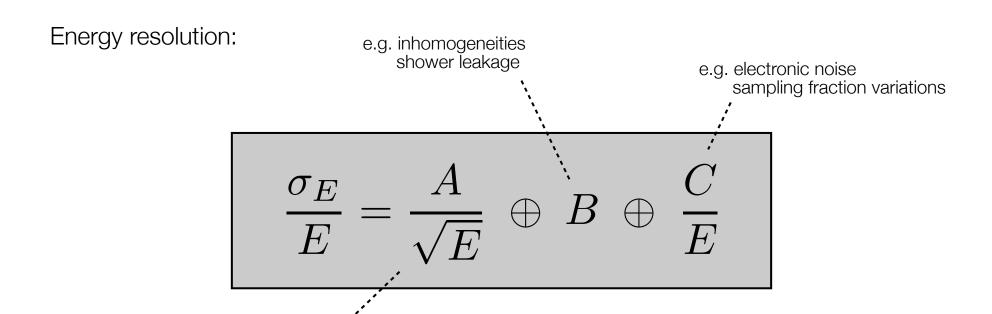
Taus Hadrons



Jets



## Energy resolution in calorimeters



#### Fluctuations:

Sampling fluctuations

Leakage fluctuations

Fluctuations of electromagnetic

fraction

Nuclear excitations, fission,

binding energy fluctuations ...

Heavily ionizing particles

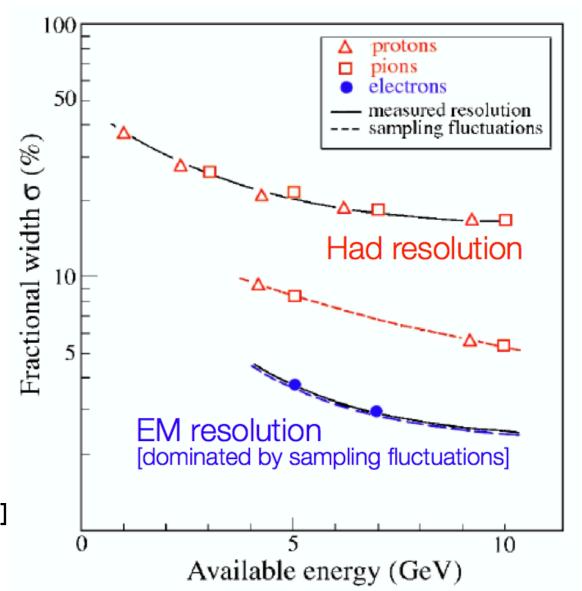
#### Typical:

A: 0.5 - 1.0 [Record:0.35]

B: 0.03 – 0.05

C: few %

### Resolution: EM vs. HAD



Sampling fluctuations only minor contribution to hadronic energy resolution

[AFM Collaboration]

## Radiation length

$$X_0 = rac{716,4\cdot A}{Z(Z+1)\lnrac{287}{\sqrt{Z}}}$$

Où Z est le numéro atomique et A est le nombre de masse.

## Interaction mode cheat sheet ("light" particles)



- electrically charged
- ionization (dE/dx)
- electromagnetic shower...



- electrically charged
- ionization (dE/dx)
- can emit photons
  - electromagnetic shower induced by emitted photon...
    - but it's rare...



- electrically neutral
- pair production
  - ✓ E > I MeV
- electromagnetic shower...



- produce hadron(s)
  jets via QCD
  hadronization
  process
- For now, let's just think about hadrons...
  - √ ionization
  - ✓ hadronic shower...

# How do we "see" particles?

