Soft - Collinear Effective Theory (SCET)

Boner, Fleming, Pirjol, stewart 2000 ,....
Outline

* Lecture 1
- Introduction.
- Soft Effective Theory
- Factorization of soft γ^{\prime} 's in QED
* Lecture 2
- Momentum regions in the Endakov form factor
- Soft-Collinear Effective The dy
* Lecture 3
- Soft collinear interactions
- Vector current in SCET
- Factorization of Endekov FF
- PDF factorization in DIS § T ire permitting....
" It is better to uncover a little than to cover a lot.
V. Weirskopf

Summery of Wedvesday:

$$
k^{m}=n \cdot k \frac{\hbar^{m}}{2}+\bar{\omega} \cdot k \frac{n^{m}}{2}+k_{\perp}^{\mu}
$$

Scalings: $\left(n \cdot k, \bar{n} \cdot k, k_{\perp}\right)$
hard $h(1,1,1) Q$
$\operatorname{collinec}$
to $p^{m}$$c\left(\lambda^{2}, 1, \lambda\right) Q$
collineer $\bar{c} \quad\left(1, \lambda^{2}, \lambda\right) Q$ to l^{\prime}
soft s $\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right) Q$
Spolit QCD fields into modes

$$
\begin{aligned}
& \mathcal{L}_{\text {SCET }}=\mathcal{L}_{c}+\mathcal{L}_{s}+\mathcal{L}_{c+s} \\
& \mathcal{L}_{c}=\bar{\Psi}_{s} \phi_{s} \psi_{s}-\frac{1}{4} G_{\mu v, G}^{s} G_{s}^{n, a} \\
& L_{c}=\bar{\xi}_{c} \frac{\hbar}{2}\left[\operatorname{inn}_{c}+i \phi_{2} \frac{1}{i n D_{c}} i \phi_{l}\right] \xi_{c}
\end{aligned}
$$

Soft-Collinear Interactions

* $\psi_{s} \sim \lambda^{3}$. No soft querks at leading power.

$$
* \bar{u} \cdot A_{s} \ll \bar{n} \cdot A_{c}, A_{1, s} \ll A_{1 c}
$$

\rightarrow Only u. As it lesoling power!
Subrtitute $n \cdot A_{c} \rightarrow n \cdot A_{c}+n \cdot A_{s}$ in \mathcal{L}, to ottric \mathcal{L} ess.

$$
S_{c+s}=\int d^{4} x \bar{\xi} e^{(x)} \frac{\hbar}{2} n \cdot A_{s}(x) \xi c(x)
$$

Counting: $\quad p_{c_{1}}^{n}+p_{8}^{n}+p_{c_{2}}^{n}$

$$
\begin{aligned}
& p^{\mu} \sim\left(\lambda^{2}, 1, \lambda\right) \\
& x^{m} \sim\left(1, \lambda^{-2}, \lambda^{-1}\right)
\end{aligned}
$$

Derivetive expansion

$$
\begin{aligned}
& x_{\perp} \cdot \partial_{\perp} \phi_{s}(x) \sim \lambda \\
& \frac{1}{\lambda} \lambda^{2} \\
& x_{+} \cdot \partial_{-} \phi_{s}(x) \sim \lambda^{2} \\
& 1 \cdot \lambda^{2} \\
& x_{-} \cdot \partial_{+} \phi_{s}(x) \sim \lambda^{0} \\
& \uparrow \\
& \frac{1}{\lambda^{2}} \lambda^{2}
\end{aligned}
$$

$\leadsto D$

$$
\begin{gathered}
S_{c+s}=\int d^{4} x \bar{\xi}_{c^{(x)}} \frac{\hbar}{2} n \cdot A_{s}(x) \xi c(x) \\
+0(\lambda)
\end{gathered}
$$

summery: $x^{m} \rightarrow x_{-}^{m}$ in soft fields in $s-c$ intersections

After performing the multipole expansion, we arrive at the final form of the leadingpower SCET Lagrangian

$$
\begin{equation*}
\mathcal{L}_{\mathrm{SCET}}=\bar{\psi}_{s} i \not D_{s} \psi_{s}+\bar{\xi}_{c} \frac{\not \lambda}{2}\left[i n \cdot D+i \not D_{c \perp} \frac{1}{i \bar{n} \cdot D_{c}} i \not D_{c \perp}\right] \xi_{c}-\frac{1}{4}\left(F_{\mu \nu}^{s, a}\right)^{2}-\frac{1}{4}\left(F_{\mu \nu}^{c, a}\right)^{2} . \tag{3.38}
\end{equation*}
$$

This expression involves the collinear and soft covariant derivatives

$$
\begin{equation*}
i D_{\mu}^{s}=i \partial_{\mu}+g A_{\mu}^{s}(x), \quad i D_{\mu}^{c}=i \partial_{\mu}+g A_{\mu}^{c}(x) \tag{3.39}
\end{equation*}
$$

as well as the mixed derivative

$$
\begin{equation*}
i n \cdot D=i n \cdot \partial+g n \cdot A_{c}(x)+g n \cdot A_{s}\left(x_{-}\right) \tag{3.40}
\end{equation*}
$$

The associated field-strength tensors are

$$
\begin{equation*}
i g F_{\mu \nu}^{s, a} t^{a}=\left[i D_{\mu}^{s}, i D_{\nu}^{s}\right], \quad i g F_{\mu \nu}^{c, a} t^{a}=\left[i D_{\mu}, i D_{\nu}\right] \tag{3.41}
\end{equation*}
$$

where the derivative appearing in the second commutator in (3.47) is defined as

$$
\begin{equation*}
D^{\mu}=n \cdot D \frac{\bar{n}^{\mu}}{2}+\bar{n} \cdot D_{c} \frac{n^{\mu}}{2}+D_{c \perp}^{\mu} \tag{3.42}
\end{equation*}
$$

As stated above, we omitted the terms involving the \bar{c} fields for brevity in the Lagrangian (3.38). They have the same form as the ones involving c fields, but with $n \leftrightarrow \bar{n}$ and $x_{-} \leftrightarrow x_{+}$.

$$
\begin{gathered}
n \longleftrightarrow \bar{n} \\
\mathcal{L}_{c} \longleftrightarrow \mathcal{L}_{i}
\end{gathered}
$$

Vector current in SCET

$$
\begin{aligned}
& J^{\mu}=\bar{\psi} \gamma^{\mu} \psi \rightarrow J_{\text {SCaT }}^{\mu}=\bar{\xi} \bar{c} \gamma^{n} \xi_{c} \\
& \text { tree! } \\
& \bar{\xi}=\gamma^{n} \xi_{c}=\bar{\xi}=\overbrace{\left[n^{n} \cdot \frac{\hbar}{2}+\bar{n}^{-} \frac{k_{2}}{2}+\gamma_{+}^{n}\right] \xi_{c}}^{=0} \\
& =\bar{\xi}_{c} \gamma_{1}^{m} \xi_{c}
\end{aligned}
$$

Problem: Operators with derivatives hot always suppressed.

$$
\bar{n} \cdot \partial \psi_{c} \sim \lambda^{0} Q \psi_{c}
$$

ω Need arbitrarily ling h decretive,

$$
\begin{aligned}
& \phi_{c}(x+t \bar{h}) \\
& =\sum_{n=0}^{\infty} \frac{t^{n}}{h^{!}}(\bar{n} \cdot \partial)^{n} \varphi_{c}(x)
\end{aligned}
$$

$$
\begin{aligned}
& \int d t C(t) \varphi_{c}(x+t \bar{L}) \\
& \text { 4 n.D for genge } \\
& =\sum_{n=0}^{\infty} \frac{C_{n}}{n!}(\bar{n} \cdot \partial)^{n} \phi_{c}(x)^{n} \\
& \text { where } c_{n}=\int d t c(t) t^{n} \\
& \bar{\xi}_{c}(x t t \bar{u}) U_{c}(x+t \bar{n}, x) \xi_{c}(x) \\
& u_{c}\left(x+t \bar{n}_{j} x\right) \quad t \quad \bar{n} \cdot A_{c}^{a} t^{6} \\
& =\mathbb{P} \exp \left[i s \int_{0}^{t} d t^{\prime} \dot{r} \cdot A_{e}\left(x+t t^{t}\right)\right]
\end{aligned}
$$

$$
U_{c}(x+t \bar{s}, x)=W_{c}(x+t \bar{n}) W_{c}^{+}(x)
$$

Define building blocks:

$$
\begin{gathered}
X_{c}^{(x)}=w_{c}^{+}(x) \xi_{c}^{(x)} \\
A_{c}^{\mu}=w_{c}^{+}\left(D_{c}^{\mu} w_{c}\right) \\
\left.\mathcal{J}_{\text {scet }}^{\mu}(0)=\int_{d i g} f t C_{v}(s, t) \bar{X}_{i}(\operatorname{su}) \delta_{+}^{\mu} X_{c}^{(t i)}\right)
\end{gathered}
$$

Tree-level: $C_{v}(\delta, t)=\delta(s) \delta(t)$

$$
\begin{aligned}
& x_{c}(t \bar{n})=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}(\bar{n} \cdot D)^{n} \xi c^{(0)} \\
& C_{v}(s, t)-x C_{v}^{\text {novents }}
\end{aligned}
$$

Take metrix element:

$$
\begin{gathered}
\langle q(e)| J_{\text {SCET }}^{\mu}(0)|q(p)\rangle \\
=\int d d f d t c_{V}(s, t) \bar{n}(e) \gamma_{\Delta}^{\mu} u(p) e^{i t \bar{n} \cdot p} \\
\cdot e^{-i s u \cdot e} \\
=\tilde{C}_{V}(\bar{n} \cdot p n e) \bar{u}(e) \gamma_{i}^{\mu} u(p)
\end{gathered}
$$

$$
\tilde{C}_{v}\left(Q^{2}\right)
$$

QCD:

Decoupling traf!' \& fectorization

$$
\begin{aligned}
& \xi_{c}(x)=S_{n}\left(x_{-}\right) \xi_{c}^{(0)}(x) \\
& A_{c}^{H}(x)=S_{n}\left(x_{-}\right) A_{c}^{(0)}(x) S_{L}^{+}(x)
\end{aligned}
$$

Sof wilson line cloly h

$$
\begin{aligned}
& \bar{\xi}_{c} \frac{\hbar}{2} u \cdot D \xi c \\
&=\xi_{c}^{(0)} \frac{\hbar}{2} u \cdot D_{c}^{(0)} \xi_{c}^{(0)}
\end{aligned}
$$

$$
\begin{aligned}
& J_{s C e T}^{\mu}= \int d s \int d t C_{v}(s, t) \\
& \bar{\chi}_{i}^{(0)}(s u) S_{\bar{n}}^{+}(0) \gamma_{i}^{m} S_{n}(0) \\
& \chi_{c}^{(0)}(t \bar{n})
\end{aligned}
$$

(B)

Event-shepes in 2-jet production (e.g. thrurt)

Prell-yen proces
$\left(p p \rightarrow e^{t} e^{-}+X\right)$ hecr
threshold.

Deep Inckastic soattering

$$
\left(e^{-} p \rightarrow e^{-}+x\right)
$$

for suell M_{x}

