Factorization for this

To finish the lecture, let us briefly discuss factorization for DNS for large $M_{x}^{2}$, which is slightly simper that the suclakov form factor disenssed above.

Pictorially it looks as follows:

herd final state

$$
\begin{aligned}
& P_{x}=(p+q)^{2} \\
& Q^{2}=-q^{2}
\end{aligned}
$$

Similarly to the treatment of $\sigma\left(e^{+} e^{-} \rightarrow x\right)$ one can obkin the DS cross section from the imaginary part of the expectation value of tho vector currents

$$
\begin{aligned}
& T_{\mu v}(p, q)=\frac{1}{2} \sum_{\text {spin }} i \int d^{4} x e^{i q z} \\
& \quad\left(p(p) \mid T \xi^{l} J_{r}(x) J_{v}(0)\right\}|p(p)\rangle \\
& J^{r}=\sum_{q} e_{q} \bar{\psi}_{q} \gamma^{n} \psi_{q}
\end{aligned}
$$

Pictorially:


$$
\begin{gathered}
L^{\mu v} \\
x \\
\operatorname{Im}\left[T_{\mu}\right)
\end{gathered}
$$

we then want to match

$$
T\left\{J_{r}(x) J_{v}(0)\right\}=\sum_{i} C_{i} O_{i}
$$

Operators in SCET
SCET is relevant because the process involves large energies and a suall invariant mars Mp!

To write down the operators, we choose the Breit frame, in which

$$
\begin{aligned}
& q^{\mu}=(0,0,0,-Q)=Q / 2\left(\bar{n}^{M}-n^{h}\right) \\
& p^{\mu}=\frac{o(1)}{n \cdot p} \frac{n^{r}}{2}+\frac{o\left(\lambda^{2}\right)}{\bar{n} \cdot p} \frac{\bar{n}^{\mu}}{2} \\
& \text { large, } O(Q) \quad p^{2}=n_{p}^{2}!
\end{aligned}
$$

The proton is described by a collinear fill along the $w$-direction and we should write down all operators which have a woutrivial opin-averaged proton matrix element. The leading power operators are of the form

$$
\begin{array}{r}
O_{q}=\bar{\chi}_{c}(s \bar{n}) \Gamma \chi_{c}(t \bar{n}) \\
\Gamma=\frac{\hbar}{2}, \frac{\hbar}{2} \gamma_{s}, \frac{\hbar}{2} \gamma_{\perp}^{m}
\end{array}
$$

$\uparrow$
F Disc boris between only this one $x_{c}$ fields.
gives nonzero matrix element
and (note $\bar{n} \cdot d=0$ )

$$
\begin{gathered}
O_{g}=A_{c}^{\mu}(s \bar{n}) A_{c}^{\nu}(t \bar{n}) \Gamma_{\mu} \\
\Gamma_{\mu} \in\left\{g_{\mu \nu}^{\prime}, n_{r} n_{\nu}\right\} \\
\uparrow \quad \uparrow_{\hat{\nu}} \quad \text { power suppressed }
\end{gathered}
$$

appears.

The product of currents thus hes the form

$$
\begin{aligned}
& =\sum_{q} \int d s C_{\mu v}^{q}(z, s) \bar{x}_{q}(s \bar{n}) \frac{\hbar_{2}}{2} \chi_{q}(0) \\
& -S d s C_{\mu \nu}^{\partial}(z, s) A_{\perp}^{\alpha, c}(\sin ) A_{\perp_{\alpha}}^{a}(0)
\end{aligned}
$$

$$
+O\left(\lambda^{3}\right)
$$

This is reminiscent of the OPE, except that the operators are smeared along the $n$ lightcone, which reflects the fact that the $\bar{n} \cdot \partial$ derivatives are unsuppressed.

Note that the soft fields decauph also from the operators $O_{q}$ and $O_{g}$. To see this note that

$$
\begin{array}{r}
\chi_{c}(x) \rightarrow S_{n}\left(x_{-}\right) \chi_{c}^{(0)}(x) \\
\rightarrow \chi_{c}(s \bar{n}) \rightarrow S_{n}(0) \chi_{c}(s \bar{n})
\end{array}
$$

Therefore only collinear fields contribute.

The matrix elements of $O_{q} \& O_{\delta}$ define the Parton Distribution Functions

$$
\begin{aligned}
& \frac{1}{2} \sum_{\text {spin }}\langle p(p)| \bar{x}_{q}^{(0)}(s \bar{n}) \frac{\ddagger}{2} x_{q}^{(0)}(0)|p(p)\rangle \\
& \quad=\bar{n} \cdot p \int_{-1}^{1} d \xi f_{q / p}(\xi) e^{i \xi s \bar{m} \cdot p}
\end{aligned}
$$

Note: $f_{q_{p}}(\xi)=-f_{q_{p}}(-\xi)$
is the anti-quark PDF

Intuitively, the PDF can be understood by noting that $x$ sunilnibtes a quark inside the proton. This quark carries a fraction $\xi$ of the total proton momentum.

Similarly:

$$
\begin{gathered}
\frac{1}{2} \sum_{\text {spin }}\langle P(p)|-A_{\perp}^{\mu, c}(s \bar{n}) A_{\perp, \mu}^{a}(0\rangle|P(p)\rangle \\
=\int_{-1}^{1} \frac{d \xi}{\xi} f_{g / p}(\xi) e^{\text {ghonPDF }} \text { i sin-p } \\
\left\{f_{g / p}(-\xi)=f_{g / p}(\xi)\right.
\end{gathered}
$$

Since the soft fields decouple and $\mathcal{L}_{C} \cong \mathcal{L}_{\text {QED }}$, these SCET matrix elements are equivalent to the PDF defined in $Q \subset D$.

Plugging into $T_{\mu v}$, we get

$$
T_{\mu v}=i \int d^{\psi} z e^{i q z}
$$

$$
\begin{aligned}
& \left.\subset p(p)\left|T\left\{J_{r}(z) J_{\nu}(0)\right\}\right| p(p)\right) \\
& =\int_{-}^{1} d \xi \sum_{q} \tilde{C}_{q}^{n u}\left(q^{2}, \bar{n} \cdot p \xi\right) \bar{n} \cdot p f_{q / p}(\xi) \\
& \text { t"glne" }
\end{aligned}
$$

To obtsin $\tilde{C}_{q}$, one performs a matching compartation. The easien way to obtein the coefficient is to work with partonic Afotes, i.e. external querks or jluous.

For an externd guark of flevor $q$ and momentum 3.P, we have

$$
f_{q^{\prime} / q}(\xi)=\delta(1-\xi) \delta_{G q^{\prime}}
$$

and the Wilson cofficient is equivalent to the cliagram


In summery, one finds the following:

$$
\sigma_{e^{-} p \rightarrow e^{-} x}=\sum_{i=q \bar{a}, g} \int_{0}^{1} d \xi f_{i / p}(\xi) \cdot \hat{\sigma}_{e^{-} i \rightarrow e^{-x}}
$$

partonic amplitude the incoming parton has momentum

A similar result holds for PP collisions, burt with two PDFs for two incoming partons, e.g


Finally, let us remark that the the PDF matrix elements suffer from nv divergencies and need Tehormalizetion.

The renormelized PDFs depend on the scale $\mu$ and fulfill a $R G$ equation

$$
\begin{aligned}
\frac{d}{d \ln \mu} & f_{i / p}(\xi, \mu)=\sum_{j} P_{i}-j \\
& \otimes f_{j} \\
& \sum_{\xi} \int_{j} d x P_{i \leftarrow j}\left(\xi /{ }_{x}, \alpha_{s}(\mu)\right) f_{j / p}(x, \mu)
\end{aligned}
$$

The different PDFs mix under revormalization.

The PDFs contain non-pertnrbative boundstate dynamics. There are methods to extract information on then using lattice QCD, but as of how mort information on them is obtained by assuming a functional form (ct some reference socle $\mu_{0}$ ) and then fitting to experimentally measured cross sections.

The paper hep-ph/0202088 (8mer, Fheming, Pirjel, Rothrtein, Aurart) provides many furtur examples of factorization theorums derived in SCET.

