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Introduction

Effective Field Theory (EFT) and Renormalization Group (RG) methods have devel-
oped into quite universal tools that can be applied in various fields of physics. Most
efficient use of EFT methods can be made in systems, in which vastly different mass
scales appear and appropriate ratios of these mass scales define small parameters one
aims to expand in.

In nuclear and particle physics, the obvious scales are the masses of the funda-
mental constituents. For the purpose of these lectures we will not discuss the Higgs
mechanism which is assumed to give masses to the quarks and leptons, we rather as-
sume that the masses are fundamental parameters. Another relevant scale in nuclear
and particle physics is the scale ΛQCD ∼ 300 MeV, which is generated by “dimensional
transmutation” in QCD; this scale is the typical scale of the masses of light hadrons
and also governs the running (i.e. the dependence on the renormalization scale µ) of
the strong coupling “constant” αs(µ).

When considering weak interactions, the typical scale is set by the W boson mass
MW which at low energies manifests itself in the Fermi coupling constant GF ∼ 1/M2

W

relevant for the four-fermion coupling in the EFT for weak interactions. When studying
a weak decay of a bottom hadron, the typical scale is set by the b-quark mass mb. Due
to confinement of QCD, this b quark is bound in a hadron, and the relevant scale for
this binding in ΛQCD.

The elementary interaction for weak processes is expressed in terms of quark cur-
rents, however, the observed states are hadrons. Therefore we have to deal with the
effects of strong interactions, which are described in QCD. One important feature
of QCD is its asymptotic freedom, which implies that its running coupling constant
αs(µ) → 0 as µ → ∞. In practical terms this means that αs(MW ) as well as αs(mb)
is a small parameter which allows us to perform a perturbative expansion.

A hadronic matrix element of a quark current evaluated at the scale µ ∼ mb still
contains perturbatively computable pieces, which can be extracted by switching to
an EFT description, which for the cases to be discussed below is the “Heavy Quark
Effective Theory” (HQET). By applying HQET, the hadronic matrix elements are
expressed as a combination of perturbatively computable coefficients and new, suitably
defined matrix elements, which contain the “real” non-perturbative contributions.

For some cases it is convenient to also treat the mass of the charm quark mc as
a perturbative scale, which requires to also describe the c quark in HQET. However,
once we arrive at scales µ ∼ ΛQCD, the strong coupling αs(µ) becomes order one or
bigger, indicating that perturbation theory becomes useless.

Thus weak decays involve a sequence of vastly different mass scales. Assuming that
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the Standard Model (SM) itself is an EFT and that we have physics beyond the SM
(BSM) at some high scale ΛNP, we have ΛNP � MW � mb � mc � ΛQCD where -
except for the last step - the QCD effects can be treated perturbatively by a tower of
suitably constructed EFTs, until finally the non-perturbative QCD effects remain as
matrix elements depending solely on the small scale ΛQCD.

Up to that point this describes the ubiquitous machinery of EFT in general. How-
ever, EFT’s for heavy quarks are in one aspect quite special. In weak interactions at
low scales all effects of e.g. the W boson appear only in the couplings (like the Fermi
coupling), and at low scales this is the only remnant of the heavy W boson. However,
consider now a bottom quark in QCD. In pure QCD, the bottom number is a con-
served quantity, and this statement is independent of the scale. Thus a hadron with
one unit of bottom quantum number will at low scales (i.e. below the bottom quark
mass) still have the bottom quark inside, however, this bottom quark will behave like
a static source of a color field. This is in full analogy to the hydrogen atom: Although
it is a two particle problem, it is a very good approximation to treat the proton in-
side the H atom as a static source of a Coulomb field, in which the electron moves;
any corrections to this picture will be of order melectron/mProton. The simplest type of
such a theory is the already mentioned HQET which describes systems with a single
heavy quark, where all light degrees of freedom are “soft”, i.e. all components of their
momenta are of the order ΛQCD. In the first part of the lectures we will mainly discuss
such systems.

The second part of these lectures is devoted to inclusive processes. Using the Op-
erator Product Expansion (OPE), a standard method in quantum firld theory, we will
set up an expansion, called Heavy Quark Expansion, which has become the basis of
many precision calculations in heavy quark physics.

Heavy quarks can decay weakly into light quarks, and hence there is also the
kinematic situation, where light quarks acquire energies (in the rest frame of the
decaying heavy quark) which scale with the heavy quark mass. For these situations an
EFT has been developed, which is called Soft Collinear Effective Theory (SCET). This
theory has also many applications in high-energy collider physics and will be covered
by a different lecture at this school.

A second class are systems with a heavy quark and a heavy antiquark forming a
bound system such as a charmonium, a bottomonium and also a Bc. Such systems
require to set up yet a different kind of EFT, which is called “Non-relativistic QCD”
(NRQCD). However, do to space and time limitations, this type of theory cannot be
covered in these lectures.

The original work on HQET dates back to the papers by Eichten and Hill [1, 2],
Grinstein [3] and Georgi [4]. The main impact of HQET are the additional symmetries
emerging in the infinite mass limit; this has been noticed first in the papers by Shif-
man and Voloshin [5] and Isgur and Wise [6,7]. The OPE-based method for inclusive
processes has been first set up in the work by Chay, Georgi and Grinstein [8], by Bigi
et al. [9, 10], by Manohar and Wise [11] and also in [12].

There are many reviews on this subject, which are too numerous to be listed here;
a subjective selection is [13–16]. Finally, there are in the meantime a few textbooks
on this subject [17–20], where the different aspects are elaborated on.
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Heavy Quark Effective Theory

We start with the simplest heavy quark expansion, which is the heavy quark effective
theory for systems with a single heavy quark. We shall first construct its Lagrangian by
integrating out heavy degrees of freedom. The remarkable and for phenomenology very
relevant features of HQET are the Heavy Quark Symmetries (HQS) which eventually
yield constraints on the non-perturbative matrix elements at low scales, which are not
evident in full QCD. Since αs(mb) is a perturbative scale, we will compute the one-loop
matching of full QCD to HQET, which will give us some insight into the anatomy of
HQET. Finally we will collect a few results that are used in current phenomenology.

2.1 Construction of the HQET Lagrangian

There are two ways to construct the Lagrangian of HQET. One follows straight the
idea of EFT by identifying the heavy degrees of freedom and integrating them out
from the functional integral [21]. This approach is quite instructive, since it can be
explicitly performed at tree level and also at one loop; it also leads to closed form for
the HQET Lagrangian, at least at tree level.

A second approach follows usual non-relativistic reduction of the Dirac equation
[22], leading finally to a recursive construction of the terms of higher order. This
approach has the disadvantage that it does not explicitly involve the typical steps of
the construction of an EFT. We will not discuss this alternative approach here.

The two approaches seem to have different results, since the Lagrangians derived
in the two cases look different. However, it has been shown that the two approaches
are related by a field redefinition, and that the results for physical quantities are the
same in both cases.

We will first consider the derivation of the HQET Lagrangian from the usual ma-
chinery of EFT, following [21]. The starting point is the Lagrangian of QCD with a
single heavy quark Q written as

LQCD = Q̄(i /D −mQ)Q+ Llight (2.1)

where mQ is the mass of the heavy quark, Dµ = ∂µ+ igAµ is the usual QCD covariant
derivative including the interaction with the gluon Aµ, and Llight is the Lagrangian
for the light quarks and gluons1.

1Llight also contains all terms relevant for the gauge fixing and possibly ghost fields needed for
the quantization of QCD.
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To obtain the Green functions of the corresponding quantum field theory one may
gather them in a generating functional, which is expressed as a functional integral over
the field variables. Thus we write

Z(η, η̄, λ) =

∫
[dQ][dQ̄][dφλ] exp

{
i

∫
d4xLQCD + i

∫
d4x (η̄Q+ Q̄η + φλλ)

}
, (2.2)

where φλ = q, Aaµ denotes the light degrees of freedom (light quarks q and gluons Aµ).
Functional differentiation with respect to the source terms η, η̄ and λ and subsequently
setting the sources to zero yields the Green functions of QCD2, e.g.

δ

δη(x)

δ

δη̄(y)
Z(η, η̄, λ)|η=0,η̄=0,λ=0 = 〈0|T [Q(y)Q̄(x)]|0〉 (2.3)

In order to derive the HQET Lagrangian we consider a system with a single heavy
quark which is bound in a heavy hadron. This hadron has a mass mH and moves with
a certain momentum pH . In case the hadron contains only a single heavy quark, its
mass will scale with the heavy quark mass, likewise its momentum will scale with the
heavy quark mass. To this end, it is convenient to define a four velocity

v =
pH
mH

, v2 = 1, v0 > 0 . (2.4)

which is independent of the heavy quark mass. This vector defines a specific frame,
e.g. v = (1, 0, 0, 0) is the rest frame of the heavy hadron.

Eventually we want to consider the heavy quark inside the heavy hadron; since
most of the hadron mass is given by the quark mass, the heavy quark moves with
almost the same velocity as the heavy hadron. Thus the momentum of the heavy
quark my be written as pQ = mQv + k where k is a small “residual” momentum
satisfying k � mQ.

To implement this idea on the technical side, we use this “external” velocity vector
v to decompose the heavy-quark field Q into an “upper” (or “large”) component φ
and a “lower” (or “small”) component χ

φv =
1

2
(1 + /v)Q ≡ P+Q, /vφv = φ, (2.5)

χv =
1

2
(1− /v)Q ≡ P−Q /vχv = −χ, (2.6)

and to define a decomposition of the covariant derivative into a “time” and a “spatial”
(⊥) part

Dµ = vµ(v ·D) +D⊥µ , D⊥µ = (gµν − vµvν)Dν ,
{
/D⊥ , /v

}
= 2(v ·D⊥) = 0. (2.7)

In terms of these new fields (2.5,2.6) and using (2.7), the Lagrangian of the heavy
quark field (i.e. the first term of (2.1)) takes the form

2We note that the funtional integral (2.2) is mathematically ill defined. For our purposes we take
the practitioner’s point of view and look at (2.2) as a short-hand notation for perturbation theory,
which results from expanding in the strong coupling gs.
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Lheavy = φ̄v(i(v ·D)−mQ)φv − χ̄v(i(v ·D) +mQ)χv + φ̄vi /D
⊥χv + χ̄vi /D

⊥φv (2.8)

To proceed further, we now implement the decomposition of the heavy quark momen-
tum into a “large” and a residual piece. This is achieved by multiplying the heavy
quark field by a phase

φv = e−imQ(v·x)hv , χv = e−imQ(v·x)Hv . (2.9)

Note that the momentum of a field is the derivative acting on the field, i.e.

pµQ ∼ i∂
µQ(x) hence i∂µφv(x) = e−imQ(v·x)(mQv

µ + i∂µ)hv(x)

which means that the derivative acting on the field hv reproduces the residual mo-
mentum introduced above. This observation provides us with the power counting of
HQET: once we have reformulated the theory in terms of hv, we aim at an expansion
in the residual momentum, i.e. in iDµ/mQ.

We express the Lagrangian of the heavy quark in term of the fields hv and Hv and
obtain

Lheavy = h̄vi(v ·D)hv − H̄v(i(v ·D) + 2mQ)Hv + h̄vi /D
⊥Hv + H̄vi /D

⊥hv .(2.10)

With this form of the Lagrangian we can now easily identify the degrees of freedom.
The field hv does not have a mass term, while the field Hv has acquired a mass term
2mQ; the remaining terms are couplings between hv and Hv. Thus in the sense of EFT
the field Hv is the heavy degree of freedom, while the field hv is light.

To construct the EFT, we have to “integrate out” the heavy degree of freedom,
which isHv. In the language of functional integrals this means that we have to integrate
over the field Hv in the generating functional (2.2). It is interesting to note, that in
the case at hand this functional integration can be explicitly performed, at least for
the tree-level Lagrangian (2.10), since there are only quadratic dependences on the
relevant field, hence the functional integral over the field Hv is a Gaussian integral.

In order to integrate over the heavy field Hv, we first split also the source terms in
(2.2) according to∫

d4x (η̄Q+ Q̄η) =

∫
d4x (ρ̄vhv + h̄vρv + R̄vHv + H̄vRv), (2.11)

where ρv and Rv are now source terms for the upper-component field hv and the
lower-component part Hv, respectively. When studying processes at scales well below
the scale 2mQ, no Green function involving the heavy field Hv will be relevant, hence
we can put the corresponding sources to zero. Performing the Gaussian integral over
the field Hv we obtain

Z(ρv, ρ̄v, λ) =

∫
[dhv][dh̄v][dλ] ∆

× exp

{
iS + Sλ + i

∫
d4x (ρ̄vhv + h̄vρv + φλλ)

}
, (2.12)
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where now the action functional for the heavy quark becomes a non-local object

S =

∫
d4x

[
h̄vi(v ·D)hv − h̄v /D⊥

(
1

i(v ·D) + 2mQ − iε

)
/D⊥hv

]
. (2.13)

depending solely on the field hv and (via the covariant derivatives) on gluon fields.
The quantity ∆ is the determinant resulting form the Gaussian integration, which

may formally be written as

∆ = exp

(
1

2
ln [i(v ·D) + 2mQ]

)
(2.14)

= const exp

(
1

2
ln

[
1 +

1

i(v · ∂)− 2mQ + iε
gs(v ·A)

])
However, unlike in other quantum field theories, this determinant is a constant (i.e.
independent of the gluon fields). This can bee seen by either chosing the gauge v ·A = 0
or by expanding the logarithm which leads to an expression which looks like the
fermion bubble diagrams in ordinary QCD; however, here the particles propagate only
in forward time-like directions, since the propagator in configuration space is

1

i(v · ∂)− 2mQ + iε
= δ3(x⊥)θ(v · x)ei2m(v·x) . (2.15)

Hence a closed loop always yields a zero result.
In general, integrating our degrees of freedom yields non-local action functionals

such as (2.13). However, if the degree of freedom that has been integrated out is heavy,
it is in general possible to expand the result in inverse powers of the mass of the heavy
scale. In our case this is quite evident, since we have (v ·D)� 2mQ because (v ·D) is
related to the residual momentum of the heavy quark. Consequently we may expand
to get

1

i(v ·D) + 2mQ − iε
=

1

2mQ

∞∑
n=0

(
−i(v ·D)

2mQ

)n
(2.16)

which expresses the non-local distribution on the left-hand side as a series of local
distributions.

Truncating at some order N yields a local action functional, and hence we get as
the Lagranian

L1/mQ−Expansion = h̄vi(v ·D)hv −
1

2mQ
h̄v /D

⊥
N∑
n=0

(
−i(v ·D)

2mQ

)n
/D⊥hv (2.17)

This expression is the expansion of the QCD Lagrangian up to the order 1/mN+1
Q .

The leading term
LHQET = h̄vi(v ·D)hv (2.18)

is the Lagrangian for a static heavy quark moving with the four velocity v, i.e the
Lagrangian of Heavy Quark Effective Theory (HQET).
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By itself this Lagrangian is not very useful; by choosing an axial gauge v · A = 0
the coupling to the gluons can even be made to vanish. However, this Lagrangain
becomes useful as soon as additional interactions are implemented which are “hard”,
meaning that these interactions change the velocity of the heavy quark. In most ap-
plications we shall consider these are typically electroweak interactions which inject a
large momentum transfer into the system.

To illustrate this in some more detail, let us consider the semileptonic decay B →
D`ν̄. The relevant hadronic matrix element is

〈B(p)|b̄γµc|D(p′)〉

which may be obtained from inserting the weak transition current into the generating
functional (2.2)

Z(b→c)(ηb, η̄b, ηc, η̄c, λ) =

∫
[db][db̄][dc][dc̄][dφλ] b̄(0)γµc(0) (2.19)

× exp

{
i

∫
d4xLQCD + i

∫
d4x (η̄bb+ b̄ηb + η̄cc+ c̄ηc + φλλ)

}
,

corresponding to an insertion of the weak b→ c current into the QCD Green functions.
At scales below mc we may use the static limit for both the b and the c quark,

however, the two mesons have different velocities v = p/Mb and v′ = p′/MD, so we
need to introduce two static quarks bv and cv with different velocities. Going through
the same steps as before, now for two heavy quarks with different velocities, we get

Lb→cHQET = b̄vi(v ·D)bv + c̄v′i(v
′ ·D)cv′ (2.20)

Although this looks like a Lagrangian with two heavy quarks, the weak current ensures
that for x0 ≤ 0 we have only the bottom quark (moving with velocity v) which at
x0 = 0 decays into a charm quark, moving with velocity v′.

This kind of approximation is well known since almost one century. It has been
used already in the context of the infrared problem of QED, which for soft photons
becomes “Heavy Electron Effective Theory” [23,24]. Furthermore, once there are two
velocities v and v′ in the game, there is no possibility to trivialize the theory by a
choice of gauge.

Once one considers operator insertions in the Greens functions as in (2.19) one also
needs to re-write the fields appearing in the current, which amounts to re-express the
full QCD field by the static field hv. We get

Q(x) = e−imQvx [hv +Hv] = e−imQvx

[
1 +

(
1

2m+ ivD

)
i /D⊥

]
hv

= e−imQvx

[
1 +

1

2mQ
/D⊥ +

(
1

2mQ

)2

(−ivD) /D⊥ + · · ·

]
hv . (2.21)

Note that this expression is inserted in the functional integral (2.19), so we intergrate
out the heavy field(s) Hv, resulting in the replacement of Hv in the second step of
(2.21).
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The Hamiltonian which can be derived from (2.17) has the unusual property that
it contains “time derivatives” (i.e. terms involving (iv∂)Qv). However, these can be
removed by field redefinitions, resulting in an Hamiltonian without time derivatives.
This Hamiltonian can also be constructed from the start by performing a transfor-
mation (a so-called Foldy-Wouthuysen transformation), which decouples the “large”
and the “small” components of the spinor Q. This yields a Lagrangian which looks
different from the one derived above, starting at 1/m3

Q; likewise, the expansion of the
field in terms if the static field also looks different.

For physical matrix elements both approaches eventually yield the same answer.
To see how this works, we consider a matrix element with a heavy-to-light current of
the form q̄ΓQ with a heavy meson in the initial state |M(v)〉 and some final state |A〉.
Computing to order 1/mQ we get

〈A|q̄ΓQ|M(v)〉 = 〈A|q̄Γhv|H(v)〉+
1

2mQ
〈A|q̄ΓP−i /Dhv|H(v)〉

−i
∫
d4x〈A|T{L1(x)q̄Γhv}|H(v)〉+O(1/m2) , (2.22)

where L1 are the 1/m corrections to the Lagrangian as given in (2.17). In addition,
|M(v)〉 is the state of the heavy meson in full QCD, including all of its mass depen-
dence, while |H(v)〉 is the corresponding state in the infinite-mass limit.

A contribution to L1 with a time derivative will become – upon insertion into the T
product – a local operator, which in turn means that it could as well be absorbed into
the first term by a field redefinition. Using the Hamiltonian without time derivative
(such as the one derived from the Foldy-Wouthuysen transformation) will not have any
local contributions in the second term, while the closed expression (2.17) and (2.21)
will generate such terms, which in the other approach will be contained in the first
term. In this way the result for the the physical matrix element will be the same.

2.2 Symmetries of HQET

Probably the most important property of HQET for phenomenology are the Heavy
Quark Symmetries (HQS) [5–7]. These appear in the infinite-mass limit and are not
present in full QCD. These symmetries have very simple physical origins and are
already manifest in the Lagrangians derived in the last section. In addition, there
is another symmetry which we shall briefly discuss. It is related to the fact, that the
construction of HQET requires to introduce a four velocity vector, which is not present
in full QCD. Thus a change of this velocity vector by an amount of the order 1/mQ

may not change the physics. This so-called “reparametrization invariance” [25–28] has
interesting consequences, since it relates different order in the 1/mQ expansion.

2.2.1 Flavour Symmetry

The QCD Lagrangian is known to have flavour symmetries in the case where quarks
become mass-degenerate: The approximate degeneracy of the up and the down quark
leads to the isospin symmetry, in case all quarks are assumed to be massless, QCD has
a chiral symmetry, of which the flavour SU(3) symmetry is manifest. The underlying
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reason is that the interaction of the quarks with the gluons does not depend on the
mass, it depends only on the color charge of the quarks which is defined by putting
all quarks into the fundamental representation of color SU(3).

This still remains true in the infinite mass limit. Once a heavy quark becomes a
static source of color, its flavour becomes irrelevant. To make this explicit, we consider
the b→ c HQET Hamiltonian (2.20) for the case of two equal velocities

Lb,cHQET = b̄vi(v ·D)bv + c̄vi(v ·D)cv = (b̄v , c̄v)

(
i(v ·D) 0

0 i(v ·D)

)(
bv
cv

)
(2.23)

which as a manifest SU(2) symmetry: for any unitary 2 × 2 matrix U we define the
transformation (

bv
cv

)′
= U

(
bv
cv

)
,

under which the Lagrangian (2.23) remains invariant. Note that this symmetry relates
only heavy quarks moving with the same velocity v.

As a practical application, consider a semileptonic decay of a B meson into a D
meson. Assuming both b and c to be heavy, we may look into the point of maximal
momentum transfer to the leptons, which is q2

max = (mB − mD)2 ≈ (mb − mc)
2.

Looking at this decay in the rest frame of the B meson (which is also the rest frame
of the b quark as mb → ∞), the final state D meson (as well as the c quark as
mc → ∞) remains at rest at this kinematic point, while the two leptons carry away
the energy difference mB−mD ≈ mb−mc in a back-to-back momentum configuration.
As a consequence of heavy flavour symmetry, the light degrees of freedom (the light
quark(s) and gluons forming the meson) cannot be affected by this transition (at this
special kinematic point), which means that their state did not change! We will return
to this example when discussing weak transition form factors.

2.2.2 Spin Symmetry

The second HQS is the so-called heavy quark spin symmetry. It originates from the
fact that in gauge theories like QED and QCD the interaction of the spin of a particle
is always of the form ~σ · ~B, where ~B is the corresponding (chromo)magnetic field.
However, this is a dimension-five operator, and its coupling constant is g/(2mQ),
which is the QCD analogue of the Bohr magneton of the particle. As a consequence,
the spin of a particle decouples in QCD and hence the rotations of the particle’s spin
become a symmetry.

To make this explicit, we look at the HQET Lagrangian and decompose the heavy
quark field into the two spin components. This is achieved by introducing a spin vector
s with s · v = 0 and s2 = −1 such that we can define the projections

h±sv =
1

2
(1± γ5/s)hv hv = h+s

v + h−sv . (2.24)

In terms of these projections we have

L = h̄+s
v (ivD)h+s

v + h̄−sv (ivD)h−sv = (h̄+s
v , h̄−sv )

(
i(v ·D) 0

0 i(v ·D)

)(
h+s
v

h−sv

)
(2.25)
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Then, similarly as before we have an SU(2) symmetry: for any unitary 2 × 2 matrix
U we define the transformation(

h+s
v

h−sv

)′
= U

(
h+s
v

h−sv

)
,

under which the HQET Lagrangian remains invariant. Note that this symmetry relates
again only heavy quarks moving with the same velocity v.

2.2.3 Consequences of Heavy Quark Symmetries

These symmetries have a few interesting consequences which are important to make
HQET a useful tool, since they constrain the non-perturbative matrix elements of
HQET.

The spin symmetry of the heavy quark has the consequence that all the heavy-
hadron states moving with the velocity v fall into spin-symmetry doublets as mQ →∞.
In Hilbert space, this symmetry is generated by operators Sv(ε) as

[hv, Sv(ε)] = i/ε/vγ5hv , (2.26)

where ε, with ε2 = −1, is the rotation axis. The simplest spin-symmetry doublet in the
mesonic case consists of the pseudoscalar meson H(v) and the corresponding vector
meson H∗(v, ε), since a spin rotation yields

exp
(
iSv(ε)

π

2

)
|H(v)〉 = (−i)|H∗(v, ε)〉 , (2.27)

where we have chosen an arbitrary phase to be (−i).
Thus the pseudoscalar ground state meson forms a spin-symmetry doublet with the

vector ground state meson; assuming that the bottom is heavy we have the doublets

|(bū)J=0〉 = |B−〉 ←→ |(bū)J=1〉 = |B∗−〉

|(bd̄)J=0〉 = |B0〉 ←→ |(bd̄)J=1〉 = |B∗0〉 (2.28)

|(bs̄)J=0〉 = |Bs〉 ←→ |(bs̄)J=1〉 = |B∗s〉

which become degenerate in the infinite-mass limit.
For baryons, the situation is more complicated, since the two light quarks can have

either spin 0 or spin 1. The doublets with u and d quarks are∣∣∣[(ud)0Q]1/2

〉
= |ΛQ〉 |ΛQ ⇑〉 ←→ |ΛQ ⇓〉 (2.29)∣∣∣[(uu)1Q]1/2

〉
,
∣∣∣[(ud)1Q]1/2

〉
,
∣∣∣[(dd)1Q]1/2

〉
= |ΣQ〉 (2.30)∣∣∣[(uu)1Q]3/2

〉
,
∣∣∣[(ud)1Q]3/2

〉
,
∣∣∣[(dd)1Q]3/2

〉
=
∣∣Σ∗Q〉 |ΣQ〉 ←→

∣∣Σ∗Q〉 (2.31)

and similar relation for the strange baryons Ξb and Ωb. Note that for the Λb baryon,
the two spin directions of the Λb are the spin-symmetry doublet, since the light degrees
of freedom are in a spinless state and thus the spin of the baryon is the heavy-quark
spin, at least to leading order in 1/mb.
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To leading order, the mass of a heavy Q hadron is the mass of the quark mQ.
However, we may expand the hadron mass in terms of the quark mass, which reads
for the mesonic ground states

mH = mQ + Λ̄− λ1 − 3λ2

2mQ
+ ... (2.32)

mH∗ = mQ + Λ̄− λ1 + λ2

2mQ
+ ... (2.33)

where we have introduced new parameters Λ̄, λ1 and λ2. Λ̄ is the binding-energy
parameter for the heavy hadron

Λ̄ =
〈0|q

←−
ivD γ5hv|H̃(v)〉
〈0|qγ5hv|H̃(v)〉

, (2.34)

while λ1 and λ2 are defined by the HQET matrix elements

2mHλ1 = 〈H̃(v)|h̄v(iD⊥)2hv|H̃(v)〉 (2.35)

2mHλ2 = 〈H̃(v)|h̄v(iD⊥µ )(iD⊥ν )(iσµν)hv|H̃(v)〉 (2.36)

where |H̃(v)〉 is the pseudoscalar Q meson ground state in the infinite-mass limit.
These parameters have a simple physical interpretation: λ1 is the kinetic energy

induced by the residual motion of the heavy quark, λ2 corresponds to the interaction
of the chromomagnetic moment of the heavy quark induced by the interaction with
the chromomagnetic field ~σ · ~B produced by the light degrees of freedom. This implies
in particular that (taking the b and the c quark to be heavy)

m2
B∗ −m2

B = m2
D∗ −m2

D = 4λ2 +O(1/mQ) (2.37)

from which we get λ2 ≈ 0.12 GeV2 which is indeed of the order of Λ2
QCD. Similar

relations can be written for the Q baryons [31,32]; in particular, the chromomagnetic
parameter λ2 vanishes for ΛQ baryons, since the light degrees are in a spin-0 state and
hence cannot induce a chromomagnetic field.

HQS also constrain hadronic matrix elements. In order to extract the corresponding
relations, it is useful to write down a representation for the spins in the ground state
mesons. Introducing a spinor v(v,±) with spin direction ± for the light anti-quarks
and u(v,±) for the heavy quark, we may couple the spins to get the total spin of the
meson

|(bū)J=0(v)〉 → 1√
2

[uα(v,+)v̄β(v,−)− uα(v,−)v̄β(v,+)] ∝
(
γ5
/v − 1

2

)
αβ

|(bū)J=1,M=0(v)〉 → 1√
2

[uα(v,+)v̄β(v,−) + uα(v,−)v̄β(v,+)] ∝
(
/ε long

/v − 1

2

)
αβ

where α and β are spinor indices. Including the proper normalization of the states, we
define the representation matrices for these states
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H(v) =
1

2

√
mHγ5(/v − 1) for the pseudoscalar meson, (2.38)

H∗(v, ε) =
1

2

√
mH/ε(/v − 1) for the vector meson, (2.39)

where the two indices of the matrices correspond to the indices of the heavy quark and
the light anti-quark, respectively, and ε is the polarization vector of the vector meson.

We may now use these representation matrices to exploit the consequences of spin
symmetry in a very simple fashion. We look at a transition current of the form h̄v′Γhv
induced e.g. by a weak transition (such as a b→ c semileptonic process). Spin symme-
try implies that the spin of the heavy quark in the current is the same as the one of the
quark inside the meson, which means that the heavy-quark index of the representation
matrix has to hook directly to the Dirac matrix Γ in the current. Thus for a 0− → 0−

transition we have

〈M(v′)|h̄v′Γhv|M(v)〉 = Tr
[
H(v′)ΓH(v)M(v, v′)

]
(2.40)

where the two light-quark indices of H(v′)ΓH(v) will be contracted with a Dirac-
matrix valued functionM(v, v′) of v and v′ which describes the dynamics of the light
quarks in the transition. This matrix can be decomposed into the basis of the sixteen
Dirac matrices, thus we can write (note that due to parity conservation in strong
interactions there are no contributions with γ5 and γµγ5)

M(v, v′) = 1 ξ1(v · v′) + /v ξ2(v · v′) + /v′ ξ3(v · v′) + /v/v′ ξ3(v · v′) (2.41)

with scalar functions ξi. Inserting this into (2.40) we see that for any Γ this collapses
into

〈M(v′)|h̄v′Γhv|M(v)〉 = Tr
[
H(v′)ΓH(v)

]
ξ(v · v′) (2.42)

with ξ(v · v′) = ξ1(v · v′) + ξ2(v · v′)− ξ3(v · v′)− ξ4(v · v′)
Likewise we can discuss the transitions between the transitions 0− → 1− and

1− → 1− between ground state mesons. Spin symmetry tells us that the function
M(v, v′) for the light degrees of freedom is the same in all cases, and hence

Any transition within the ground-state spin flavour multiplet H(v)
to the ground-state multiplet H(v′), where H(v) denotes either H(v)
or H∗(v, ε) is described by a single nonperturbative function ξ(v ·v′).

The function ξ is called the Isgur Wise (IW) function, and relation (2.42) is one of the
“Wigner-Eckart Theorems” of Spin symmetry and can be written as

〈H(v′)|h̄v′Γhv|H(v)〉 = ξ(v · v′) Tr
{
H(v′)ΓH(v)

}
, (2.43)

This relation has remarkable consequences. Assuming that both b and c are heavy,
we find that the six form factors describing the semileptonic transitions B → D and
B → D∗ in the infinite-mass limit for both b and c quark reduce to a single one, the
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IW function. Furthermore, the current b̄γµb is a conserved current in pure QCD, which
translates into a normalization statement for the IW function

ξ(v · v′ = 1) = 1 (2.44)

where the physical argument for this normalization has been given in the last para-
graph of sec. 2.2.1. Note that the point v ·v′ = 1 corresponds exactly to the point q2

max

of maximal recoil to the leptons discussed in sec. 2.2.1.
For phenomenological applications these symmetries are very useful, however, only

once the corrections to the symmetry limit can be somehow handled. There are two
sources of corrections, which are on the one hand the radiative corrections through
hard gluons, on the other hand the ones induced by subleading terms in the 1/mQ

expansion.
We will discuss the latter and consider the 1/mQ corrections to the normalization

statement (2.44) which originated from the conservation of the heavy quark current,
which in turn is related to HQS. In this case we can apply a general theorem originally
derived by Ademollo and Gatto [29] to the case of HQS. The theorem, derived by Luke
in [30] in the context of HQS, states that

In the presence of explicit symmetry breaking, the matrix elements of
the currents that generate the symmetry are normalized up to terms
which are second-order in the symmetry-breaking interaction.

For the case of HQS, the argument can be outlined in a simple way, taking as
an expample the b → c case. The relevant symmetry is the heavy-flavor symmetry
between b and c in the case mb,c →∞. This symmetry is an SU(2) symmetry and is
generated by three operators Q± and Q3, where3

Q+ =

∫
d3x b̄v(x)γ0cv(x) , Q− =

∫
d3x c̄v(x)γ0bv(x) ,

Q3 =

∫
d3x (b̄v(x)γ0bv(x)− c̄v(x)γ0cv(x)) ,

[Q+, Q−] = Q3 , [Q+, Q3] = −2Q+ , (Q+)† = Q− . (2.45)

Let us denote the ground-state flavour symmetry multiplet by |B〉 and |D〉. The
operators then act in the following way:

Q3|B〉 = |B〉 , Q3|D〉 = −|D〉 ,
Q+|D〉 = |B〉 , Q−|B〉 = |D〉 ,
Q+|B〉 = Q−|D〉 = 0 . (2.46)

The Hamiltonian of this system has a 1/mQ expansion which is decomposed into a
symmetric and a symmetry breaking part

3We set x0 = 0 in the following relations, such that we have to compute equal-time
(anti)commutators. In case the symmetry is exact, the operators do not depend on x0 anyway, but
once the symmetry is broken, there will be a “small” dependence on x0.
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H = H
(b)
0 +H

(c)
0 +

1

2mb
H

(b)
1 +

1

2mc
H

(c)
1 + · · ·

= H
(b)
0 +H

(c)
0 +

1

2

(
1

2mb
+

1

2mc

)
(H

(b)
1 +H

(c)
1 )

+
1

2

(
1

2mb
− 1

2mc

)
(H

(b)
1 −H(c)

1 ) + · · ·

= Hsymm +Hbreak . (2.47)

Note that the symmetry breaking term does not commute any more with Q± but it
still commutes with Q3 (which only means that we still can distinguish B and D).
Thus to order 1/mQ we still have common eigenstates of H and Q3, which we shall

denote by ˜|B〉 and ˜|D〉. Sandwiching the commutation relation, we obtain

1 = ˜〈B|Q3
˜|B〉 = ˜〈B|[Q+, Q−] ˜|B〉

=
∑
n

[
˜〈B|Q+

˜|n〉 ˜〈n|Q− ˜|B〉 − ˜〈B|Q− ˜|n〉 ˜〈n|Q+
˜|B〉
]

=
∑
n

[
| ˜〈B|Q+

˜|n〉|2 − | ˜〈B|Q− ˜|n〉|2
]
, (2.48)

where the ˜|n〉 form a complete set of states of the Hamiltonian Hsymm +Hbreak. The
matrix elements may be written as

˜〈B|Q± ˜|n〉 =
1

EB − En
˜〈B|[Hbreak, Q±] ˜|n〉 , (2.49)

where EB and En are the energies of the states ˜|B〉 and ˜|n〉, respectively. In the case
˜|n〉 = ˜|D〉 the matrix element on the left-hand side will be of order unity, since both

the numerator and the energy difference in the denominator are of the order of the
symmetry breaking. For all other states, the energy difference in the denominator is
non-vanishing in the symmetry limit, and hence this difference is of order unity; thus
the matrix element for these states will be of the order of the symmetry breaking.
From this we conclude that

˜〈B|Q+
˜|D〉 = 1 +O

[(
1

2mb
− 1

2mc

)2
]
. (2.50)

For simplicity we have used states normalized to unity.
In order to relate this to the form factor normalization, we observe that the gen-

erators are obtained from integrating over the time-components of the current; the
general expression for the matrix elements reads (q = p− p′)

〈B(p)|b̄γµc|D(p)〉 =
1√

4v0v′0

(
(vµ + v′µ)f+(q2) + (vµ − v′µ)f−(q2)

)
. (2.51)

Switching to HQET for b and c, taking the time component and integrating over ~x
yields
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d3~x 〈B(p)|b̄v(x)γ0cv(x)|D(p)〉 = (2π)3δ3(~p− ~p′)f+(q2

max) (2.52)

where the δ function appears because we are using momentum eigenstates, thus it
corresponds to the above normalization to unity. Furthermore, q2

max = (mB −mD)2 is
the maximal momentum transfer in the B → D transition, corresponding to the point
v = v′. Comparing to (2.50) we find

f+(q2
max) = 1 +O

[(
1

2mb
− 1

2mc

)2
]

(2.53)

Note that the statement on the corrections only holds for the form factors which
are normalized due to the symmetry; we also have f−(q2) = 0 from HQS, however,
including corrections this means

f−(q2
max) = O

[
1

2mb
− 1

2mc

]
(2.54)

2.2.4 Reparametrization Invariance

Finally, there is another symmetry in HQET called Reparametrization Invariance
(RPI). It originates from the fact that our starting point was full QCD which is a
Lorentz invariant theory. Clearly, when introducing the velocity vector v we explicitly
break Lorentz invariance by fixing a time like direction which, to some extent is arbi-
trary and could be also varied sightly. To this end, a HQET constructed with v and a
HQET constructed with v′ = v + δv should give the same physical results [25–28].

In order to study the consequences of this simple fact, we write down the variation
δRPI of the relevant quantities under a small change in the velocity

v → v + δv , (v + δv)2 = 1 and thus v · δv = 0 ,

hv → hv +
δ/v

2

(
1 + P−

1

2mQ + ivD
i /D

)
hv ,

iD → iD −mQ δv . (2.55)

In particular the last relation, which originates from the splitting of the heavy-quark
momentum, leads to the observation that the transformation (2.55) relates different
orders in the 1/mQ expansion.

This can be easily illustrated using the Lagrangian as an example. We start from the
expression (2.13) for the action of the heavy quark after integrating out the the small-
component field Hv. This (non-local) expression is invariant under (2.55). Expanding
(2.13) in local operators according to (2.17) shows that (2.55) actually relates terms
of subsequent orders such that

δRPIL1/mQ−Expansion = O(1/mN+2
Q ) (2.56)

since (2.17) includes all terms up to and including terms of order 1/mN+1
Q . Looking

at the leading term we find
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δRPIh̄v(ivD)hv = h̄v(i δv D)hv

which is exactly cancelled by the variation of the first subleading term

δRPI
1

2mQ
h̄v(i /D

⊥)2hv = −h̄v(i δv D)hv

and as a consequence we have4

δRPI

(
h̄v(ivD)hv +

1

2mQ
h̄v(iD

⊥)2hv

)
= O(1/m2

Q)

These relations are all tree level relations; however, RPI has to hold also including
QCD corrections in HQET, which means the the relations derived from RPI should
hold to all order in αs. For the Lagangain this means that one may derive relations
between the renormalization constants of the operators appearing in (2.17) which are
true to any oder in αs. In particular it means for renormalization constants of the first
few terms

Zhh̄v(ivD)hv + (Zhc1)
1

2mQ
h̄v(iD

⊥)2hv

= Zh

(
h̄v(ivD)hv + c1

1

2mQ
h̄v(iD

⊥)2hv

)
(2.57)

where Zh is the renormalization constant of the the static heavy-quark field. Thus RPI
fixes the renormalization constant of the kinetic energy term to be c1 ≡ 1.

2.3 HQET at one loop

Up to now, all discussions refer to the tree-level expressions. We have set up an expan-
sion in ΛQCD/mQ which is, however, only one of the small parameters we can expand
in. To become a useful tool, also the perturbative QCD corrections have to be taken
into account.

The strong coupling constant taken at the scale µ ≥ 1 GeV αs(mQ) constitutes
another small parameter which may serve as an expansion parameter. In particular, the
heavy quark-mass scale µ = mQ is large enough to warrant a perturbative expansion.
This has the advantage, that many contributions can be computed perturbatively, in
particular the matching between HQET and full QCD. In the following we discuss the
underlying technology and study the one loop diagrams.

The reader who is interested in the technical aspects of perturbative calculations in
HQET will find all details in the textbook by Grozin [17], which includes the relevant
master integrals even up to two loops.

2.3.1 The Feynman rules of HQET

I assume that the reader is to some extend familiar with the Feynman rules of QCD, in-
cluding the discussion of gauge fixing, so I will not repeat here the standard technology
of calculations within QCD.

4The antisymmetric combination (iσµν)(iD⊥
µ )(iD⊥

ν ) is reparametrization invariant.



HQET at one loop 17

However, to compute within HQET, we need to set up the Feynman rules of HQET.
These are derived from the HQET Lagrangian (2.18)

LHQET = h̄vi(v ·D)hv = h̄vi(v · ∂)hv + igh̄vi(v ·A)hv (2.58)

The propagator can be read off from the first term, while the heavy quark-gluon
coupling is encoded in the second term.

The recipe to obtain the propagator from the first term is to invert the distribution
appearing between the two fields according to

(v · ∂)P (x) = δ4(x) . (2.59)

Fourier transforming this relation yields

P (x) =

∫
d4k

(2π)4

1

v · k + iε
e−ikx

where we have already fixed the boundary conditions by adding a small imaginary part
iε, ensuring that particles propagate into forward time direction. The interpretation
of this propagator becomes evident by performing the k integration in the rest frame
v = (1, 0, 0, 0); we get

P (x) = θ(x0)δ3(~x) (2.60)

which is the propagator of a static quark sitting at the origin. In order to insert this
into a general Feynman diagram we still have to multiply this by the projector P+

defined in (2.5).
The second term in (2.58) yields the coupling of a static quark to the gluon field.

The resulting Feynman rule has the same form as the usual one for the quark-gluon
coupling, with the matrix γµ replaced by vµ, which reflects the heavy quark spin
symmetry,

Fig. 2.1 shows the two resulting additional Feynman rules; here k denotes the
residual momentum of the heavy quark moving with velocity v.

2.3.2 One loop diagrams 1: Quark Self Energy

We are now ready to compute Feynman diagrams. As in full QCD there is a set of
divergent diagrams, and the handling of these divergencies requires renormalization.
We shall discuss this here for a few examples at the one-loop level.

We start with a sample calculation of the self energy; fig. 2.2 (a) is the self energy in
full QCD, while fig. 2.2 (b) shows the corresponding diagram in HQET. The expression
in full QCD (fig. 2.2 (a)) is well known and reads

ΣQCD(p) = −ig2T aT aµ4−D
∫

dDl

(2π)D
1

(l2 + iε)

γµ(/p+ /l +mQ)γµ

(p+ l)2 −m2
Q + iε)

. (2.61)

Making use of the Feynman rules we get the expression corresponding to diagram (b)

Σ(v · k) = −ig2T aT aµ4−D
∫

dDl

(2π)D
1

(l2 + iε)(v · k + v · l + iε)
P+ , (2.62)

where we have anticipated a divergence in D = 4 and regularize the diagrams by
dimensional regularization. As usual, the factor µ4−D is introduced to keep the di-
mension of Σ fixed as D varies.
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g

Fig. 2.1 Feynman rules of HQET. All other elements are the same as in full QCD. i and j

are color indices, k is the residual momentum of the heavy quark moving with the velocity v

and gS = g is the strong coupling constant.

(a) (b)

Fig. 2.2 One-loop self energy diagram of a light and a heavy quark

.

In order to evaluate (2.62), we quote a useful relation which we shall use to combine
denominators of propagators

1

AnBm
= 2m

Γ(m+ n)

Γ(n)Γ(m)

∞∫
0

dλ
λm−1

(A+ 2λB)m+n
(2.63)

where this relation also holds for non-integer m and n. Using this we can combine the
denominators in (2.62) into

Σ(v · k) = −2ig2µ4−DCF

∞∫
0

dλ

∫
dDl

(2π)D
1

(l2 + 2λ[v · k + v · l] + iε)2
(2.64)

where we inserted T aT a = CF I where CF = 4/3. In order to apply the one-loop
master formula of dimensional regularization
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∫
dDl

(2π)D
(l2)α

(l2 −M2)β
= (−1)α+β i

2DπD/2
(M2)α−β+D/2 Γ(α+D/2)Γ(β − α−D/2)

Γ(D/2)Γ(β)
(2.65)

we need to shift the integration variable l → l − λv which removes the term linear in
l in the denominator, leaving us with

Σ(v · k) = −ig2µ2ε 8

3

∞∫
0

dλ

∫
dDl

(2π)D
1

(l2 − λ2 + λv · k + iε)2
, (2.66)

where we have defined D = 4−2ε. Performing the integration over the loop momentum
with the help of (2.65) we find

Σ(v · k) = CF
αs
2π

Γ(ε)

∞∫
0

dλ

(
4πµ2

λ2 − 2λv · k

)ε
(2.67)

For the renormalization, we are interested in the divergence as D → 4 (or ε → 0),
which manifests itself as a simple pole

Σ(v · k) = CF
αs
2π

1

ε
(v · k) + finite Terms . (2.68)

Renormalization proceeds in the usal way. We insert the self energy into the heavy-
quark propagator and get

S
(1)
HQET(v · k) =

i

(v · k)
+

i

(v · k)
(−iΣ(v · k))

i

(v · k)
+ · · · (2.69)

=

(
1 + CF

αs
2π

1

ε

)
i

(v · k)
+ · · ·

from which we can read off the wave function renormalization constant of HQET (in
the MS scheme)

ZHQET = 1 + CF
αs
2π

1

ε
(2.70)

This can be compared to the result in full QCD. A similar calculation yields for
the wave function renormalization of the quark field in full QCD

ZQ = 1− CF
αs
4π

1

ε
(2.71)

We note that the two renormalization constants are different, which is not a surprise,
since the UV behaviour of the two theories is different. In fact, the divergencies in
HQET are related to logarithmic mass dependencies of full QCD, which become di-
vergent as mQ → ∞. For our case this can be made explicit by looking at the result
in full QCD obtained form (2.61), which reads (for p2 < m2)

Σ(p) = /p

[
−αs

4π
CF

1

ε̄
− αs

4π
CF

(m2
Q + p2)(m2

Q − p2)

(p2)2
ln

(
m2 − p2

m2

)]
+ · · · (2.72)
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where we have used
1

ε̄
=

1

ε
− γ + ln 4π

, and the ellipses denote non-logarithmic terms and contributions proportional to mQ.
Inserting p = mv + k and keeping the leading terms only yields

Σ(v) = /v

[
−αs

4π
mQCF

1

ε̄
+
αs
2π
CF (v · k) ln

(mQ

v · k

)]
+ · · · . (2.73)

The first term is taken care of by the renormalization of full QCD, i.e. the pole term
defines the field renormalization of the full quark field. However, as can be seen in (2.73)
the finite term in (2.72) develops in the heavy quark limit a logarithmic divergence,
the prefactor of which defines the renormalization constant of the static heavy quark
field.

2.3.3 One loop diagrams 2: The b→ c Current

As the next example we will discuss the b → c vector current and consider the QCD
radiative corrections at one loop. Starting at a high scale above the b quark mass, we
compute the one-loop diagrams shown in diagram (a) of fig. 2.3, together with the
corresponding diagrams with self-energy insertions in the external legs. Adding the
three contributions and including the proper renormalization, the one-loop result is
UV finite, in other words, the current b̄γµc does not have an anomalous dimension, This
actually is true at all orders, since this current is conserved in the limit of vanishing
masses.

(a) (b) (c)

Fig. 2.3 Feynman diagrams for the b→ c vertex corrections in full QCD (a), in the theory

with a static b quark (b) and in a theory with static b and c quarks (c). Thick lines denote

quarks in HQET.

Since the anomalous dimension of this current vanishes, we will not encounter any
large logarithms of the form (αs/π) ln(M2

W /m
2
b) when we run down to the bottom
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mass scale. At µ = mb we have to match the vector current V
(b→c)
µ of full QCD to

operators in a theory where we use HQET for the b quark. We have schematically

V (b→c)
α =

∑
i

C
(0)
i (µ)J

(b→c)
i,α +

1

2mb

∑
k

C
(1)
k (µ)O

(b→c)
k,α + · · · (2.74)

where J
(b→c)
i,µ and O

(b→c)
k,µ are local operators and C

(0)
i and C

(1)
k (µ) are (computable)

Wilson coefficients, and the ellipses denote even higher orders in the 1/mb expansion.
In our example we will consider only the leading term which is expressed in terms of
two operators

J
(b→c)
1,µ = c̄γµhv (2.75)

J
(b→c)
2,µ = c̄hv vµ (2.76)

The relations (2.74) are operator relations, and in order to compute the matching
we may use any states we prefer. For the case at hand we want to compute the
perturbative corrections, and thus it is convenient to use on shell states for the b and
c quarks. Furthermore, since we are interested in scales well above the charm-quark
mass, we compute with a massless charm quark.

Computing the one-loop diagrams in full QCD shown in diagram (a) of fig. 2.3
(together with the diagrams with self-energy insertions in the external legs) and ex-
panding in the result in 1/mb yields the result

〈V (b→c)
µ 〉 =

(
1 +

αs
2π

[
ln
m2
b

λ2
− 11

6

])
γµ +

2αs
3π

vµ . (2.77)

As stated above, the result is UV finite, but we had to introduce an infrared regulator
λ which is e.g. a small gluon mass. This is due to the fact, that we are using on-shell
“free” quark states in the calculation; if we could compute the matrix element with
hadronic states, these IR singularities would be absent.

The next step in the matching procedure is to compute the corresponding diagrams
in an HQET where the b quark is replaced by a static quark. Computing the one-loop
contribution shown in diagram (b) of fig. 2.3 (together with the diagrams with self-
energy insertions in the external legs) and performing the proper renormalization of
the heavy and light quark fields we obtain (using again a small gluon mass to regulate
the infrared divergence of the amplitudes)

〈J (b→c)
1,µ 〉 =

(
1 +

αs
2π

[
1

ε̄
+ ln

µ2

λ2
− 5

6

])
γµ . (2.78)

Note that this result is UV divergent which is to be expected, since we changed the
high-energy behaviour of the theory by switching to a static b quark. Consequently
we need to renormalize the current operator, in the MS scheme this just amounts to
removing the 1/ε̄ pole.
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We can now read off the coefficients in (2.74) by taking the corresponding matrix
elements of (2.74), we obtain

C
(0)
1 (µ) = 1 +

αs
2π

[
ln
m2
b

µ2
− 8

3

]
(2.79)

C
(0)
2 (µ) =

2αs
3π

(2.80)

Note that the IR regulator λ has dropped out which is a general feature of a matching
calculation. It is due to the fact that the IR behaviour in the full and the effective
theory have to be the same, once the effective theory is properly constructed.

The UV divergence in the effective theory is related to the mass dependence in the
full theory, which can be seen by comparing (2.77) to (2.78), since the prefactor of the
lnm2

b term in (2.77) is the same as the coefficient in front of the 1/ε̄ pole in (2.78). This
fact allows us to make use of renormalization-group (RG) methods in order to re-sum
logarithms of the mass mb. However, these logarithms will be of the form ln(m2

b/m
2
c)

once we scale down to the charm-quark mass mc, and the RG methods will allow us
perform a resummation of terms of order (αs/π)n lnn(m2

b/m
2
c), which makes sense as

soon as the log is so large that it overwhelms the αs supression. We shall assume this
as we go on, although the constant term −3/8 in (2.79) is numerically comparable to
the term with the logarithm.

In order to obtain the RG equation, we note that the left hand side of (2.74) is
independent of the scale µ . The µ dependence on the right-hand side originates from
the fact that we decided to shift the contributions of scales between mb and µ ≤ mb

into the Wilson coefficient, while the pieces from scales below µ are still contained in

the matrix element of the operator J
(b→c)
1,µ . This observation leads to

0 = µ
d

dµ
〈V (b→c)
α 〉 =

(
µ
d

dµ
C

(0)
1 (µ)

)
〈J (b→c)

1,α 〉µ + C
(0)
1 (µ)

(
µ
d

dµ
〈J (b→c)

1,α 〉µ
)

(2.81)

The logarithmic derivative acting on the matrix element of the current is the anomalous
dimension, which is computed from the divergence occurring in (2.78). In our one-loop
case the anomalous dimension is given by(

µ
d

dµ
〈J (b→c)

1,α 〉µ
)

= −γhb→c 〈J
(b→c)
1,α 〉µ =

αs
π
〈J (b→c)

1,α 〉µ (2.82)

This translates into an evolution equation for the coeffiient C
(0)
1 (µ)(

µ
d

dµ
− γhb→c

)
C

(0)
1 (µ) = 0 . (2.83)

The coefficient C
(0)
1 (µ) is evaluated as a power series in αs, and hence the µ dependence

has actually two sources: Aside form the explicit dependence (see (2.79)) there is also
the µ dependence of αs. To make this explicit, we write

C
(0)
1 (µ) = C

(0)
1 (αs, µ) ,
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and write the total derivative as

µ
d

dµ
C

(0)
1 (µ) =

(
µ
∂

∂µ
+ β(αs)

∂

∂αs

)
C

(0)
1 (αs, µ)

where we have introduced the QCD β function as

µ
d

dµ
αs(µ) = β(αs(µ)) = −2αs(µ)

αs(µ)

4π

(
11− 2

3
nf

)
+ · · · , (2.84)

where nf is the number of active flavours. Inserting all this yields(
µ
∂

∂µ
+ β(αs)

∂

∂αs
− γhb→c

)
C

(0)
1 (αs, µ) = 0 . (2.85)

The general solution of this equation is given by

C
(0)
1 (αs(µ), µ) = exp

− αs(mb)∫
αs(µ)

γhb→c(a)

β(a)
da

C
(0)
1 (αs(mb),mb) , (2.86)

which gives the coefficient C
(0)
1 (αs(µ), µ) in terms of the initial value C

(0)
1 (αs(mb),mb)

obtained form the matching calculation.
In order to obtain the leading log result, we insert the one-loop results for γhb→c

and β and use the tree-level value C
(0)
1 (αs(mb),mb) = 1 for the matching coefficient,

which yields finally

C
(0)
1 (αs(µ), µ) =

(
αs(mb)

αs(µ)

)−6/25

. (2.87)

Expanding this result in αs(µ) using the one-loop result for the running coupling
reproduces the logarithmic term in (2.74).

Scaling further down we eventually arrive at the charm-quark mass mc. Assuming
that we can also treat the charm quark as a heavy quark, we may again replace
the charm quark by a static quark. This allows us to scale further down to scales
below mc, however, at some point we arrive at µ = ΛQCD where we cannot compute
perturbatively any more.

We shall again look at the vector current, however, since we now compute in HQET
only, due to spin symmetry the results will also hold for other currents. At one-loop,
we need to compute diagram (c) of fig. 2.3 and match it to the result obtained in the
theory where only the b quark is taken to be static.

The diagram (c) of fig. 2.3 contains also an UV divergence, which is related to the
logarithmic mc dependence of diargam (b), if we had included the charm mass in the
calculation. Thus we need to include a renormalization of the heavy-to-heavy current,
which due to this renormalization has an anomalous dimension, for which we find at
one loop

γhb→hc
(v · v′) =

4αs
3π

[(v · v′)r(v · v′)− 1] (2.88)
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with

r(x) =
1√

x2 − 1
ln
(
x+

√
x2 − 1

)
.

This result is remarkable, since usually anomalous dimensions do not depend on kine-
matic variables. However, the velocities in HQET are external variables and thus this
is not a problem. We also note that at v = v′ the anomalous dimension vanishes, which
is necessary, since this current is a generator of HQS at this kinematic point and thus
cannot have an anomalous dimension.

The running below mc is governed by the RGE(
µ
∂

∂µ
+ β(αs)

∂

∂αs
− γhb→hc(v · v′)

)
C̃(0)(αs, µ) = 0 , (2.89)

where the number of active flavours is now 3. In the effective theory with both b
and c as heavy quarks the matrix element of the current is (up to trivial factors) the
Isgur-Wise function, and thus we can write our result as a renormalization of this
function

ξ(v · v′) = ζ(v · v′,mb,mc, µ)ξ0(v · v′, µ) (2.90)

where ξ0(v · v′, µ) is the “bare” Isgur-Wise function and

ζ(v · v′,mb,mc, µ) =

(
αs(mb)

αs(mc)

)−6/25(
αs(mc)

αs(µ)

)(8/27)[(v·v′)r(v·v′)−1]

(2.91)

where the first factor originates from the running from mb to mc, while the second one
comes from the running from mc to some small scale µ. This result has been derived
first in [33].

In full QCD, the amplitude for a b → c transition via the c̄γµb current can be
analytically continued to values of q2 ≥ (mB+mD)2 which correspond to a creation of
a B and a D meson by the current. In terms of the velocities this is the region where
v · v′ ≤ −1, in which case the anomalous dimension (2.88) picks up an imaginary
part [34]. At the first look this is puzzling, however, it is related to the coulombic
phases which appear once the two particles are both in the final state and can re-
scatter through soft gluons.

2.4 Applications to Phenomenology

Finally we discuss a few phenomenological results obtained from HQET. The most
prominent result is the fact that due to HQS all transitions between ground-state
heavy mesons mediated by a bilinear quark current are given in terms of a single
form factor, the Isgur Wise function introduced in (2.43). Assuming that both b and c
quarks are heavy, we can consider the decays B → D`ν̄ and B → D∗`ν̄ for which the
hadronic matrix element of the current c̄γµ(1− γ5)b is exactly of the form of (2.43).

For heavy quarks it is convenient to use the four velocities of the hadrons v and
v′ as kinematic variables, which are at leading order the same as the velocities of the
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heavy quarks. The general parametrization of the matrix elements requires a total of
six form factor which can be defined as

〈D(v′)|c̄γµb|B(v)〉 =
√
mBmD

[
ξ+(y)(vµ + v′µ) + ξ−(y)(vµ − v′µ)

]
, (2.92)

〈D∗(v′, ε)|c̄γµb|B(v)〉 = i
√
mBmD∗ξV (y)εµαβρε

∗αv′βvρ , (2.93)

〈D∗(v′, ε)|c̄γµγ5b|B(v)〉 =
√
mBmD∗

[
ξA1(y)(vv′ + 1)ε∗µ − ξA2(y)(ε∗v)vµ

−ξA2(y)(ε∗v)v′µ
]
, (2.94)

where ε is the polarization of the charmed vector meson and y = v · v′. Applying now
(2.43) to (2.92 - 2.94) we find five relations among the form factors ξi

ξi(y) = ξ(y) for i = +, V, A1, A3 , ξi(y) = 0 for i = −, A2 . (2.95)

which eventually reduces the number of independent form factors to only one.
In addition, we may make use of Lukes Theorem derived in section 2.2.3 which

yields a statement about the size of the corrections; one finds

ξi(1) = 1 +O

([
1

2mc
− 1

2mb

]2
)

for i = +, V, A1, A3 ,

ξi(1) = O
(

1

2mc
− 1

2mb

)
for i = −, A2 . (2.96)

This has interesting phenomenological applications. Computing the rates for the ex-
clusive decays B → D`ν̄ and B → D∗`ν̄ in terms of the form factors ξi we get

dΓ

dy
(B → D`ν`) =

G2
F

48π3
|Vcb|2(mB +mD)2

(
mD

√
y2 − 1

)3

×
∣∣∣∣ξ+(y)− mB −mD

mB +mD
ξ−(y)

∣∣∣∣2 (2.97)

dΓ

dy
(B → D∗`ν`) =

G2
F

48π3
|Vcb|2(mB −mD∗)

2m2
D∗

(
mD∗

√
y2 − 1

)
×(y + 1)2|ξA1(y)|2

∑
i=0,±

|Hi(y)|2 (2.98)

with the squared helicity amplitudes

|H±(y)|2 =
m2
B −m2

D∗ − 2ymBmD∗

(mB −mD∗)2

[
1∓

√
y − 1

y + 1
R1(y)

]2

, (2.99)

|H0(y)|2 =

(
1 +

mB(y − 1)

mB −mD∗
[1−R2(y)]

)2

. (2.100)

Here we have defined the form factor ratios

R1(y) =
ξV (y)

ξA1(y)
, R2(y) =

ξA3(y) + mB

mD∗
ξA2(y)

ξA1(y)
. (2.101)
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These expression collaps in the limit mb,mc →∞ into

dΓ

dy
(B → D`ν`)→

G2
F

48π3
|Vcb|2(mB +mD)2

(
mD

√
y2 − 1

)3

|ξ(y)|2 , (2.102)

dΓ

dy
(B → D∗`ν`)→

G2
F

48π3
|Vcb|2(mB −mD∗)

2m2
D∗

(
mD∗

√
y2 − 1

)
(y + 1)2

×
[
1 +

4y

y + 1

m2
B −m2

D∗ − 2ymBmD∗

(mB −mD∗)2

]
|ξ(y)|2 . (2.103)

The impact of these relations is that the absolute normalization of the form factor is
given by HQS, and hence a model independent extraction of the CKM matrix element
Vcb becomes possible by extrapolating the measured differential rates to the kinematic
point y = 1.

For the decay B → D∗`ν̄ we find

lim
y→1

1√
y2 − 1

dΓ

dy
(B → D∗`ν`) =

G2
F

4π3
(mB −mD∗)

2m3
D∗ |Vcb|2|ξA1(1)|2 . (2.104)

where the form factor ξA1(1) = ξ(1) = 1 is normalized by HQS. In fact, ξA1 is also
protected against linear corrections in 1/mc due to (2.96), and hence one expects a
determination of Vcb from (2.104) with an uncertainty of about ten percent.

One can also use the process B → D`ν̄ for a determination of Vcb, however, there is
an additional factor of y2−1 which makes the extrapolation more difficult, furthermore,
due to the presence of ξ−(1) ∼ 1/mc we expect this to be not as precise as for
B → D∗`ν̄.

The state of the art is by now far more advanced. First of all, QCD corrections
have been computed or both the vector and the axial vector current [35]

〈c(v)|c̄γµb|b(v)〉 = 1 +
2αs
3π

[
3m2

b + 2mcmb + 3m2
c

2(m2
b −m2

c)
ln

(
mb

mc

)
− 2

]
(2.105)

〈c(v)|c̄γµγ5b|b(v)〉 = 1− αs
π

[
mb +mc

mb −mc
ln

(
mc

mb

)
+

8

3

]
. (2.106)

Numerically (including also the known α2
s corrections) one finds [36]:

〈c(v)|c̄γµb|b(v)〉 = ηV = 1.022± 0.004 (2.107)

〈c(v)|c̄γµγ5b|b(v)〉 = ηA = 0.960± 0.007 (2.108)

Furthermore, QED corrections have been compute as well and amount to an enhance-
ment of the rates by a factor ηew = 1.007. In addition the recoil corrections have been
estimated by using QCD sum rules which indicate a furhter decrease of the matrix
element of the axial current by another 10%.

More recently, lattice calculations of the form factors have become available at the
non-recoil point as well as for y 6= 1, even for finite values of the quark masses. All
this yields a quite consistent picture giving us a quite reliable value for Vcb, a recent
analysis [37] yields

|Vcb| =
(
41.9+2.0

−1.9

)
× 10−3 . (2.109)



3

Heavy Quark Expansion

In inclusive processes one often make use of the so-called Operator Product Expansion
(OPE) which is a standard tool in quantum field theory. In fact the OPE lies at the
heart of the EFT approach, since it is actually this tool which allows us to separate
scales.

The most prominent example is deep inelastic scattering e + p → e′ + X (DIS)
which is an inclusive process governed by a large scale set by the momentum transfer
Q2 of the electron. Clearly the amplitudes will contain pieces related to this large
scale Q2 which we expect to be computable in perturbation theory, since αs(Q

2) is
small. The nonperturbative parts are eventually the parton distributions of the quarks
inside the proton, which are determined by the binding effects of the quarks inside
the proton. The expansion which is set up in this case in powers of Λ2

QCD/Q
2 which

is very small, such that usually only the leading term is considered.
In the case at hand we shall proceed along the same lines as in DIS. The expan-

sion, the Heavy Quark Expansion (HQE) will in this case be in powers of ΛQCD/mQ;
however, in our case we will also take subleading terms into account.

3.1 Inclusive Decays

Inclusive decays are all processes where a summation over final states is performed. In
case we sum over all possible decay channels, we obtain the “most inclusive” quantity,
which is the total decay width of a particle.

However, there are cases where we can single out certain final states. In particular,
in weak decays we may also produce leptons, and we may want to sum over the final-
state hadrons

Γ(B → X`ν̄) =
∑
f

Γ(B → f`ν̄)

Likewise, we may also consider radiative processes, where photons are emitted.
In both cases we are interested in kinematic distributions such as the energy spec-

trum of the charged lepton or the photon or the invariant mass spectrum of the leptons

dΓ(B → X`ν̄)

dE`
=
∑
f

dΓ(B → f`ν̄)

dE`

In the chapter we will discuss, how to set up an expansion in inverse powers of the b
quark mass for inclusive processes.
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3.2 Operator Product Expansion (OPE)

We start with the total decay rate of a heavy hadron H(pH). Assuming that H is a
ground-state hadron, it can only decay by a weak decay, which is mediatied by an
effective hamiltonian density Heff (x). To leading order in the weak interaction we
obtain - up to trivial factors - for the total rate1

Γ ∝
∑
X

(2π)4δ4(pH − pX)|〈X|Heff (0)|H(pH)〉|2 , (3.1)

where X is the final state with momentum pX , and we sum over all final states taking
into account four-momentum conservation. We use the relation

Heff (x) = e−iP̂xHeff (0)eiP̂x ,

where P̂µ is the (four) momentum operator, and write∑
X

(2π)4δ4(pH − pX)|〈X|Heff (0)|H(pH)〉|2

=
∑
X

∫
d4y exp (i(pH − pX)y) 〈H(pH)|Heff (0)|X〉〈X|Heff (0)|H(pH)〉

=
∑
X

∫
d4y 〈H(pH)|Heff (y)|X〉〈X|Heff (0)|H(pH)〉

=

∫
d4y 〈H(pH)|Heff (y)Heff (0)|H(pH)〉 , (3.2)

where in the final step we made use of the fact, that∑
X

|X〉 〈X| = 1

is the unit operator, since we sum over all states in the Hilbert space.
Finally we may use the optical theorem to relate the matrix element of the product

of the Hamiltonian to the time-ordered product∫
d4y 〈H(pH)|Heff (y)Heff (0)|H(pH)〉

= 2 Im

∫
d4y 〈H(pH)|T{Heff (y)Heff (0)}|H(pH)〉 . (3.3)

This relation is the starting point of all further considerations. The matrix element
in (3.3) still contains the heavy quark mass mQ and our goal is to set up an expansion

1In the following we often drop the argument of field operators or of other space time dependent
operators O(x), we define O ≡ O(0). Likewise we write ∂µO ≡ (∂µO(x))|x=0.
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in inverse powers of this mass. Since Heff induces a decay of the heavy quark, we
expect it to be of the form

Heff = Q̄R+ h.c. , (3.4)

where R consists of light(er) quarks and possibly gluons. In order to make the depen-
dence on the heavy mass explicit, we use (2.9) and write2

Q(x) = exp(−imQ(v · x))Qv(x) , v =
pH
mH

(3.5)

corresponding to the splitting of the heavy-quark momentum into the large part mQv
and a residual part related to the derivative acting on Qv. Note that we do not use
here the static field introduced above, rather Qv(x) is still the field of full QCD, up
to the above phase redefinition.

With this phase redefinition we get∫
d4y 〈H(pH)|T{Heff (y)H†eff (0)}|H(pH)〉

=

∫
d4y exp(imQ(v · y))〈H(pH)|T{H̃eff (y)H̃†eff (0)}|H(pH)〉 (3.6)

where H̃eff is obtained from Heff by the replacement (3.5)

H̃eff = Q̄vR+ h.c. .

Expression (3.6) is the starting point of an Operator Product Expansion (OPE), which
is a standard method in quantum field theory (for a textbook presentation see e.g. [38]).
Without going into details, the main relation is∫

d4y e−iqx T [O1(x)O2(0)] =
∑
n

Cn(q)On(0) , (3.7)

where O1 and O2 are renormalized local operators and On are renormalized local
operators which can be ordered by increasing dimension, and Cn(q) are coefficients
depending on the momentum transfer q. Note that each term on the right hand side
must have the same dimension, so the increasing dimension of the operators will be
compensated by inverse powers of q. Thus for sufficiently large momentum transfer q
one may truncate the series on the right hand side, and one obtains an approximation
scheme in terms of powers of 1/q.

Applying the OPE in the context of QCD, one may make use of the fact that at
large q QCD becomes perturbative. This means in particular that we may compute the
coefficients in QCD perturbation theory, while the matrix elements of the operators
contain the non-perturbative information. This scheme is at the heart of all applica-
tions of QCD-based EFT’s and has been used in many different contexts such as weak
interactions and in DIS.

2We note that Qv(0) = Q(0); however, once a derivative is acting on the field Qv it corresponds
to the residual momentum i∂µQv(0) ∼ kµ.
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Inclusive differential rates can be computed for processes with leptons and/or pho-
tons in the final state. These rates are inclusive with respect to the final-state hadrons,
but we may consider the kinematic distributions of the final state photons and lep-
tons. To be explicit, let us study a semileptonic transition based on the quark decay
Q→ q + `+ ν̄. The effective Hamiltonian can be written as

Heff =
4GFVCKM√

2
JµL

µ (3.8)

where Jµ = Q̄LγµqL is the left-handed hadronic current and Lµ = ¯̀
LγµνL is the

leptonic current and GF is the Fermi-coupling constant. Inserting this into (3.2), we
get

8G2
F |VCKM|2

∑
X,`ν̄

(2π)4δ4(pH − pX − k − k′)|〈X`ν̄|JµLµ|H(pH)〉|2 (3.9)

= 8G2
F |VCKM|2

∑
X

d̃kd̃k
′
(2π)4δ4(pH − pX − k − k′)|〈X|Jµ|H(pH)〉 〈`(k)ν̄(k′)|Lµ|0〉|2 ,

where d̃k and d̃k
′

denote the phase-space integrations over the leptons. Since the
leptons do not have any strong interaction, we can decompose this expression into an
hadronic and a leptonic part. We get∑

X

d̃kd̃k
′
(2π)4δ4(pH − pX − k − k′)|〈X|Jµ|H(pH)〉 〈`(k)ν̄(k′)|Lµ|0〉|2 (3.10)

=

∫
d4q

(2π)4

∑
X

(2π)4δ4(pH − pX − q)〈H(pH)|J†α|X〉〈X|Jβ |H(pH)〉

×
∫

d̃kd̃k
′
(2π)4δ4(q − k − k′)〈0|Lα†|`(k)ν̄(k′)〉〈`(k)ν̄(k′)|Lβ |0〉 .

The leptonic part can be evaluated separately and is taken usually to lowest order in
perturbation theory; the hadronic part is encoded in the hadronic tensor, which can
be decomposed into scalar functions Wi, i = 1, .., 5

Wαβ(q) =
∑
X

(2π)4δ4(pH − pX − q)〈H(pH)|Jα†|X〉〈X|Jβ |H(pH)〉 (3.11)

= −gαβW1 + vαvβW2 − iεαβµνvµqνW3 + qαqβW4 + (vαqβ + vβqα)W5 ,

where we introduced pH = mHv. These scalar functions depend on the two invariants
q2 and v · q; in terms of these we get e.g. for the triply differential rate (E` = v · k,
Eν = v · k′)

dΓ

dq2 dE` dEν
=
G2
F |VCKM|2

2π3

[
W1q

2 +W2

(
2E`Eν −

1

2
q2

)
+W3q

2(E` − Eν)

]
(3.12)

where the phase space is restricted by 4E`Eν − q2 ≥ 0.



Operator Product Expansion (OPE) 31

With the hadronic tensor we can go through the same steps (3.1, ... ,3.3), but we
have to insert the phase factor exp(−iqy) into the y integration:∫

d4y exp(−iqy) 〈H(pH)|J†µ(y)Jν(0)|H(pH)〉

= 2 Im

∫
d4y exp(−iqy) 〈H(pH)|T{J†µ(y)Jν(0)}|H(pH)〉 (3.13)

Performing the replacement (3.5) we end up with∫
d4y exp(−iqy) 〈H(pH)|T{J†µ(y)Jν(0)}|H(pH)〉 = (3.14)∫

d4y exp(iy(mQv − q)) 〈H(pH)|T{J̃†µ(y)J̃ν(0)}|H(pH)〉 .

The time-ordered product of the two hadronic currents has the same decomposition
(3.11) as the hadronic tensor with scalar functions Ti, i = 1, ..., 5. These functions have
an analytic structure as depicted in fig. 3.1: for a fixed value of q2 we have pH−q = pX
where pX is the momentum of the final hadronic state, thus m2

H+q2−2mH(v·q) = m2
X .

Thus the maximal value of v · q is given by

(v · q)max =
1

2mH
(m2

H + q2 −m2
X min)

where mX min is the mass of the lightest hadronic state with the correct quantum
numbers. Thus for the states with a q quark in the final state, the Ti exhibit a cut

−∞ ≤ (v · q) ≤ 1

2mH
(m2

H + q2 −m2
X min) (3.15)

However, there can also be intermediate states with two Q quarks and a q antiquark,
which yield a branch cut

1

2mH
(m2

H + q2 −m2
X(QQc̄) min) ≤ (v · q) ≤ ∞ (3.16)

where mX(QQc̄) min denotes the mass of the lightest state with the quark content QQc̄.
The relevant Wi are given by the discontinuity Ti of the left hand cut according to
(3.13).

To compute a doubly differential rate one needs to integrate over one of the vari-
ables, which in the present case is e.g. the neutrino energy. Using (3.13) this integration
can be replaced by the contour integration depicted in Fig. 3.1. Note that there is a
gap between the two cuts such that the contour does not get close to the singularity,
which indicates that a perturbative calculation is possible for sufficiently “smeared”
quantities.

Before closing the general set-up I need to point out some subtleties. The proof
that an OPE exists can strictly only be performed in the deep euclidean region, i.e.
for q2 → −∞ in (3.7). However, in all applications in heavy quark physics we are
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Fig. 3.1 Sketch of the analytic structure of the Ti in the v ·q plane for fixed q2 (Figure taken

from [11]).

actually in the minkowskian region; the momentum in (3.6) is mQv which is time-like,
as well as the momentum mQv−q for the differential rate. This innocent looking point
of analytically continuing from the euclidean to the minkowskian region is, however,
quite subtle; strictly speaking the OPE in the minkowskian region is not proven.

Annother, to some extent related issue is the issue of duality, i.e. the question, to
what extend partonic results are “dual” to the real hadronic results. Originally this
question has been raised in the context of e+e− → hadrons: How can the differential
cross sections obtained from the calculation of e+e− → partons (quarks and gluons)
be related to e+e− → hadrons? It has been argued in [39] that such a comparison
becomes possible once as suitable “smearing” (i.e. a convolution with smooth weight
functions) has been performed.

In the context of heavy-quark physics this has been made more precise in [40],
where the question of duality has been connected to the HQE. As we shall see below,
the leading term of the HQE for inclusive decays is the parton model, i.e. the decay of
a “free” quark. Form a naive notion of quark-hadron duality one would assume this to
be a reasonable approxmation, even for suitably “smeared” differential quantities. A
more quantitative definition of duality as in [40] links this to the HQE, which means
on the one hand the convergence of the expansion itself as well as the absence (or at
least smallness) of non-analytic terms in the expansion parameters.

3.3 Tree level Results

To be specific, we start out by constructing the OPE for an inclusive semileptonic
b → c decay. The starting point is the expression (3.14) in the form (now we have
Jµ = c̄γµ(1− γ5)b)∫

d4y exp(−iqy)T{J†µ(y)Jν(0)} =

∫
d4y exp(iy(mQv − q))T{J̃†µ(y)J̃ν(0)} (3.17)
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for which we want to perform an OPE according to (3.7)∫
d4y exp(iy(mQv − q))T{J̃†µ(y)J̃ν(0)} =

∑
n

C(n)
µν On . (3.18)

The key point of the OPE is that it is an operator relation, which means that we can

take any matrix element of this relation to compute the coefficients C
(n)
µν . Hence the

simplest way to proceed (having discussed above that we may compute the coefficients
in perturbation theory) is to take a matrix element with free quark and gluon states.

We start with a free b quark with momentum pb = mbv + k corresponding to the
splitting of the quarks momentum into a large part mbv and a residual part k. The
leading tree-level diagram is simply given by the propagator of the free charm quark,
leaving us with

R(0)
µν = ū(pb)γµ(1− γ5)

[
1

/Q+ /k −mc

]
γν(1− γ5)u(pb) (3.19)

where we introduce Q = mbv− q. At tree level, the construction of the OPE proceeds
by expanding in the residual momentum k which is assumed to be small in all its
components. For the propagator we get

1

/Q+ /k −mc
=

1

/Q−mc
− 1

/Q−mc
/k

1

/Q−mc
+

1

/Q−mc
/k

1

/Q−mc
/k

1

/Q−mc
+ · · · (3.20)

Starting with the leading term, we get

R(0,0)
µν =

1

Q2 −m2
c

ū(pb)γµ(1− γ5)(/Q+mc)γν(1− γ5)u(p)

=
2

Q2 −m2
c

ū(p)γµ /Qγν(1− γ5)u(pb) (3.21)

Before we continue, a subtlety should be mentioned. We did not expand the spinors
u(pb) in powers of k, which looks a bit inconsistent on first sight. The matching proce-
dure we employ is to compare the matrix element between fixed states of the right-hand
and the left-hand side of (3.18). Consequently, we also would need to compute the ma-
trix element between free quark states with the same momentum pb = mbv + k on
both sides of the equation. Thus the same spinors u(pb) will appear on both sides,
and thus the expansion of the spinors would cancel. Therefore we can as well drop the
expansion of the spinors in both the left and the right hand side.

Integrating over the leptonic phase space, neglecting the lepton mass, one finds
that we have to contract this expression with the tensor

Lµν = q2gµν − qµqν (3.22)

For illustrative reasons we only discuss the first term (even without the factor q2, so
we contract only with the metric tensor) and leave it as an exercise to do the full
calculation. We thus get
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R(0,0) =
2

Q2 −m2
c

ū(pb)γµ /Qγ
µ(1− γ5)u(pb)

=
−4

Q2 −m2
c

ū(pb)/Q(1− γ5)u(pb) (3.23)

At leading order (with this particular contraction of the indices) we see that the leading
order expression for the OPE is∫

d4y exp(iyQ)T{J̃†µ(y)J̃µ(0)} =
−4

Q2 −m2
c

(bv(0)/Q(1− γ5)bv(0)) +O(k) (3.24)

This is the simplest example of a matching calculation, i.e. the comparison of the
right-hand side of (3.18) to the expansion of the left-hand side. The leading terms
turn out to be a dimension-three operators; as we shall see, the higher-order terms
involve higher-dimensional operators.

The next step is to take the matrix elements with the real B meson states. In our
mini-example we need to discuss the matrix element of a dimension-three operator

〈B(v)|b̄v(0)γλ(1− γ5)bv(0)|B(v)〉 = 〈B(v)|b̄(0)γλ(1− γ5)b(0)|B(v)〉 = 2mBvλ (3.25)

which does not contain any unknown parameter, since the vector current b̄v(0)γλbv(0)
is a conserved current, hence its forward matrix elements between B meson states is
normalized, while the corresponding matrix element with the axial current vanishes.

In fact, in other applications different dimension-three matrix elements can appear,
which differ from the case at hand only by the Dirac matrix between the heavy quark
operators Qv,

Q̄vΓQv = Q̄ΓQ : General dimension three operator (3.26)

where Γ is an arbitrary Dirac matrix. However, taking a forward matrix element be-
tween the pseudoscalar ground state meson, only Γ = 1 and Γ = γµ are non-vanishing.

As pointed out above, the vector current of the heavy quark Q is conserved, with
the consequence that it does not induce an unknown hadronic matrix element:

〈H(pH)|Q̄vγλQv|H(pH)〉 = 〈H(pH)|Q̄γλQ|H(pH)〉 = 2pHλ (3.27)

The matrix element of Q̄vQv = Q̄Q can also be related to the vector current by the
equations of motion

/vQv = Qv −
i /D

mQ
Qv (3.28)

(ivD)Qv = − 1

2mQ
(i /D)(i /D)Qv (3.29)

Using (3.28) we get

〈H(pH)|Q̄vQv|H(pH)〉 = 〈H(pH)|Q̄v/vQv|H(pH)〉+
1

mQ
〈H(pH)|Q̄v(i /D)Qv|H(pH)〉

= 2mH +
1

mQ
〈H(pH)|Q̄v(i /D)Qv|H(pH)〉 (3.30)



Tree level Results 35

which means that to leading order in the HQE no unknown hadronic parameter is
induced in general. Furthermore, it is easy to see that (3.30) has no contribution of
order 1/mQ: Starting form the equation of motions (3.28) we get the relation

Q̄vγαQv = Q̄vγα/vQv +
1

mQ
Q̄vγα(i /D)Qv . (3.31)

Taking the conjugate of (3.28) and multiply form the right with Qv we get

Q̄vγαQv = Q̄v/vγαQv +
1

mQ
Q̄v(i /D)γαQv + total derivative (3.32)

where we do not need to take into account the total derivative, since it will not con-
tribute to the forward matrix elements. Averaging (3.31) and (3.32) and taking the
forward matrix element (〈...〉 = 〈H(pH)|...|H(pH)〉) yields

〈Q̄vγαQv〉 = vα 〈Q̄vQv〉+
1

mQ
〈Q̄v(iDα)Qv〉 (3.33)

Contracting this with vα yields the relation

〈Q̄v/vQv〉 = 〈Q̄vQv〉+
1

mQ
〈Q̄v(ivD)Qv〉 (3.34)

Comparing this to (3.30) we find that

〈Q̄v(i /D)Qv〉 = −〈Q̄v(ivD)Qv〉 =
1

2mQ
〈Q̄v(i /D)(i /D)Qv〉 , (3.35)

where we have used (3.29). Inserting this into (3.30) we finally get

〈Q̄vQv〉 = 2mH +
1

2m2
Q

〈Q̄v(i /D)(i /D)Qv〉 (3.36)

which proofs that the corrections are O(1/m2
Q).

In order to obtain the total rate, we have to take the imaginary part of (3.24). To
this end, we re-install the iε prescription into the propagator and use the relation

2 Im
1

x+ iε
= (2π)δ(x) (3.37)

from which we finally obtain

Γ ∼ 2 Im

∫
d4y exp(iyQ) 〈B(v)|T{J̃†µ(y)J̃µ(0)}|B(v)〉 (3.38)

= −8(2π)δ(Q2 −m2
c)mB(v ·Q) + · · · (3.39)

This result is in fact a general statement: in combination with (3.30,3.36) we get

The leading term in the HQE is the partonic result, i.e. the decay of a “free” heavy quark.
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Next we look at the first term in the k expansion

R(0,1) = 2

(
1

Q2 −m2
c

)2

ū(pb)γµ /Q/k /Qγ
µ(1− γ5)u(pb)

= −4

(
1

Q2 −m2
c

)2

ū(pb)[Q
2/k − 2(Q · k)/Q](1− γ5)u(pb) (3.40)

Comparing this to the OPE (3.18) we find (kµ → iDµ)∫
d4y exp(iyQ)T{J̃†µ(y)J̃µ(0)} = leading term (3.41)

+2

(
1

Q2 −m2
c

)2 [
Q2(bv(0)(i /D)(1− γ5)bv(0))− 2QµQν(bv(0)(iDµ)γν(1− γ5)bv(0))

]
Again we have to take the forward matrix element of this expression. We use the
equations of motion (3.28) and (3.29) and get for the general case (the contribution
with γ5 vanish due to parity)

〈H(pH)|Q̄v(iDµ)ΓQv|H(pH)〉 = O
(

1

mQ

)
(3.42)

where the explicit relation for the first term in (3.41) is given by (3.35). This shows
that these contributions are actually at least of order 1/m2

Q. This is in fact a general
statement

There are no contributions of order 1/mQ in the HQE .

This does not mean that the first term in the k expansion vanishes, rather the
dimension-four matrix elements are 1/mQ suppressed.

In order to obtain the corresponding contribution to the rate, we have to take the
imaginary part by re-inserting the iε prescription into the propagator. Using

2 Im

(
1

x+ iε

)2

= −2 Im
d

dx

(
1

x+ iε

)
= −(2π)δ′(x) (3.43)

we obtain a contribution to the differential rate proportional to the derivative of the
“on-shell” δ function, which, however is of order 1/m2

b .
In order to obtain the full 1/m2 contributions, one needs to expand Rµν to second

order in kµ, which yields for our toy example

R(0,2) = 2

(
1

Q2 −m2
c

)3

ū(pb)γµ /Q/k /Q/k /Qγ
µ(1− γ5)u(pb) (3.44)

which eventually matches on operators with two derivatives:

Q̄vΓ(iDµ)(iDν)Qv : General dimension five operator. (3.45)
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However, at that order an obvious problem arises: While kµkν is clearly a symmetric
tensor, the product of two covariant derivatives contains an antisymmetric part, since
the covariant derivatives do not commute, their commutator is the field-strength tensor

Q̄vΓ[(iDµ), (iDν)]Qv = −igsQ̄vΓGµνQv (3.46)

Obviously the expansion in k cannot give us this antisymmetric piece. However, the
antisymmetric part is related to the field strength, i.e. to the emission of a gluon. In
order to pin this down we thus have to compute a matrix element of (3.18) between a
quark state and a state with a quark and a gluon. For the left hand side of (3.6) the
leading order result is

S(0)
µν = ū(pb)γµ(1− γ5)

[
1

/Q+ /k −mc

]
T a/ε(q)

[
1

/Q+ /k + /q −mc

]
γν(1− γ5)u(pb)

(3.47)
where q is the momentum of the gluon with color a and polarization ε. Note that also
the momentum of the gluon is soft, so we have to perform a combined expansion in k
and q. Furthermore, the gluon appears as part of the covariant derivative, so also the
polarization ε counts as one power in the 1/mb expansion; this means that in order to
arrive at the second order, we have to expand (3.47) only to first order in k and q.

To obtain the coefficient of the antisymmetric combination (3.46) we thus have to
find the coefficient in front of the combination

Gαβ ←→ qαεβ − qβεα .

This concludes the sketch of the practical aspects of the matching procedure to obtain
the coefficients in (3.18). The procedure remains the same even once αs corrections are
included, which means that the expansions in k and gluon momenta and polarization
has to be performed for the expression including αs corrections. By comparing the two
sides of (3.6) one thus obtains the perturbative expansion of the coefficients.

Finally it is worthwhile to point out, that the tree level expressions for the case
of semileptonic decays can be obtained systematically [41], since the ordering of the
covariant derivatives can be traced by using for the charm propagator an external field
propagator of the form [

1

/Q+ i /D −mc

]
.

Expanding this under the assumption that the components of iD do not commute
yields formally the same expression as (3.20)

1

/Q+ i /D −mc
=

1

/Q−mc
− 1

/Q−mc
i /D

1

/Q−mc
+

1

/Q−mc
i /D

1

/Q−mc
i /D

1

/Q−mc
+ · · ·

(3.48)
but now the ordering of the covariant derivatives in the correct one, i.e. for the second
order term we have

1

/Q−mc
i /D

1

/Q−mc
i /D

1

/Q−mc
= (iDµ)(iDν)

[
1

/Q−mc
γµ

1

/Q−mc
γν

1

/Q−mc

]
where the term in the bracket has the correct antisymmetric piece in the indices µ and
ν. However, this unfortunately only works at tree level.
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3.4 HQE parameters

The non-perturbative input in the HQE is given in terms of the hadronic matrix
elements of operators, which have generically the form3

〈H(pH)|Q̄v(iDµ1
)(iDµ2

) · · · (iDµn
)ΓQv|H(pH)〉 ,

where Γ is some Dirac matrix. Note that these operators have dimension n + 3 and
are defined in full QCD, which implies that they still depend on the mass. In principle
one can perform an expansion in 1/mQ and the leading term will be just

〈H̃(v)|h̄v(iDµ1)(iDµ2) · · · (iDµn)Γhv|H̃(v)〉 ,

with the static field hv and the meson state |H̃(v)〉 in the infinite mass limit.
We have already discussed the dimension-three operators and have shown that

there is no unknown matrix element at dimension three, since all matrix elements can
be related to the conserved Q-quark vector current, up to terms of order 1/m2

Q. We also
saw already that all the matrix elements of dimension-four operators are suppressed
by one power of 1/mQ, and thus the first nontrivial contribution appears at dimension
five, i.e. for n = 2.

Before going into the technicalities a historic remark is in order. The idea that
the decay of a ground-state hadron with a single heavy quark can be approximately
described by the decay of the “free” quark inside the hadron is quite old [42]. However,
the HQE proves this to be the leading term of a systematic expansion, where the
leading non-perturbative corrections turn out to be of the order Λ2

QCD/m
2
Q. In the

early days of the HQE this was seen as an embarrassment: As a consequence the
lifetimes of all ground state hadrons of a specific heavy flavour should be identical
to leading order, the corrections should be of order Λ2

QCD/m
2
Q, and, as we shall see

below, the lifetime differences should even be of the order Λ3
QCD/m

3
Q. Before the

precise measurement of bottom-hadron lifetimes, the lifetimes of charmed hadrons
were available; with mD ≈ mc ∼ 1.8 GeV and ΛQCD ∼ 0.3 GeV we naively expect
lifetime differences to be below one percent. However, the lifetimes of ground-state
charmed hadrons vary by a factor of five, which is hard to explain as a Λ3

QCD/m
3
Q

effect. Nevertheless, in the meantime we have a qualitative understanding how such
large lifetime differences can emerge.

At each order in the 1/mQ expansion we need to identify, how many independent
parameters actually appear. At dimension five the two independent parameters can
be defined as

−2mH µ̂
2
π = 〈H(pH)|Q̄v(iD)2Qv|H(pH)〉 (3.49)

−2mH µ̂
2
G = 〈H(pH)|Q̄v(iDµ)(iDν)(iσµν)Qv|H(pH)〉 (3.50)

and any general matrix element can be related to these two through the “trace formula”

3In fact, this does not cover all possible operators; there can also be operators with light quarks,
which need to be discussed separately.
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〈H(pH)|Q̄v(iDµ)(iDν)ΓQv|H(pH)〉 = −2mH
µ̂2
π

6
Tr

(
1 + /v

2
Γ

)
(gµν − vµvν)

−2mH
µ̂2
G

12
Tr

(
1 + /v

2
(−iσµν)

1 + /v

2
Γ

)
+O

(
1

mQ

)
(3.51)

From this we get our third statement on the HQE

The first subleading corrections in the HQE are given by µ̂π and µ̂G.

The parameter µ̂2
π is called the kinetic energy parameter, since it is related to the

term ~p2/(2mQ) appearing in the Schrödinger equation, the parameter µ̂G is called the

chromomagnetic moment, since it describes the coupling ~σ · ~B of the heavy-quark spin
to the chromomagnetic field ~B.

The values of these parameters have to be taken from either experimental data or
calculations in Lattice QCD or in a model. As an example, µ̂G can be obtained from
hadron spectroscopy. Looking at the expansions of heavy hadron masses in inverse
powers of the quark mass (2.32,2.33), we infer that we may use (2.37) to fix the value
of the chomomagnetic moment, while the kinetic energy parameter cannot be obtained
from spectroscopy.

Before we continue to higher orders, we point out a few details. In many applications
it turns out to be useful to split the covariant derivative into a “time derivative” and
a “spatial” part according to (2.7). To this end, one may as well use the definitions

−2mHµ
2
π = 〈H(pH)|Q̄v(iD⊥)2Qv|H(pH)〉 (3.52)

−2mHµ
2
G = 〈H(pH)|Q̄v(iD⊥µ )(iD⊥ν )(iσµν)Qv|H(pH)〉 (3.53)

and we have µπ = µ̂π + O(1/m2
Q) and µG = µ̂G + O(1/mQ). Furthermore, all these

parameters still depend on the heavy quark mass; expanding also this mass dependence
yields mass independent parameters λ1 and λ2 defined in HQET by

2mHλ1 = 〈H̃(v)|h̄v(iD⊥)2hv|H̃(v)〉 (3.54)

2mHλ2 = 〈H̃(v)|h̄v(iD⊥µ )(iD⊥ν )(iσµν)hv|H̃(v)〉 (3.55)

The advantage of expanding any mass dependence and to define “static” quantities
λ1 and λ2 is that these will be the same for any heavy quark, thus one might compare
inclusive bottom with inclusive charm decays. The advantage of using µπ and µG, or
µ̂π and µ̂G becomes clear only when going to higher orders: Starting at 1/mQ one
also need to take into account the expansion of the state, since we have |H(pH)〉 =
|H̃(v)〉+O(1/mQ), which in general leads to non-local matrix elements involving the
subleading terms in the Lagrangian (2.17).

At dimension six we will have three derivatives

〈H(pH)|Q̄v(iDµ)(iDα)(iDν)Qv|H(pH)〉

together with four-quark operators. At tree level, we can express all dimension six
matrix elements in terms of two parameters which are given by
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2mH ρ̂
3
D = 〈H(pH)|Q̄v(iDµ)(ivD)(iDµ)Qv|H(pH)〉 (3.56)

2mH ρ̂
3
LS = 〈H(pH)|Q̄v(iDµ)(ivD)(iDν)(−iσµν)Qv|H(pH)〉 (3.57)

where we have again used the covariant definitions. For these parameters, the same
remarks apply as for µ̂π vs µπ vs. λ1 etc., which will have differences appearing as
terms of subleading order in the 1/mQ expansion.

In a similar fashion as for the terms of dimension five we can write a trace formula,
which reads in this case

〈H(pH)|Q̄v(iDµ)(iDα)(iDν)ΓQv|H(pH)〉 = 2mH
ρ̂3
D

6
Tr

(
1 + /v

2
Γ

)
(gµν − vµvν)vα

+2mH
ρ̂3
LS

12
Tr

(
1 + /v

2
(−iσµν)

1 + /v

2
Γ

)
vα +O

(
1

mQ

)
. (3.58)

Note that a consistent calculation of higher order terms requires to also take into
account the subleading terms in the trace formula (3.51).

One may continue in the same fashion to higher orders [43], however, the number
of independent parameters will grow strongly as one proceeds to orders higher than
1/m3

Q. At order 1/m4
Q there is a total of 11 independent parameters, at 1/m5

Q there are

already 25 new parameters. While the four parameters up to 1/m3
Q can be extracted

from the data, the large number of parameters appearing at even higher orders have
to be modeled or may one day be taken from lattice calculations.

3.5 QCD Corrections

The HQE has the potential to compute total and specific differential rates with ex-
tremely high precision. However, as pointed out above, the leading term is always the
decay of the heavy quark inside the heavy hadron, where the result is the same as if
we were discussing a “free” quark. If we ignore for the moment the mass of the final
state particles, the decay width will be

dΓ ∼ G2
F |VCKM|2m5

Q , (3.59)

which induces an enormously strong dependence on the heavy quark mass. In the
early days of the HQE this was considered to be problem, since the heavy-quark mass
is not a straightforward observable. Unlike for an electron, this mass cannot be just
measured as a pole in the propagator, since there are no asymptotic states of outgoing
quarks. The quark mass is thus just a parameter in the QCD Lagrangian and, in fact,
depends on the scheme one chooses to define it.

It seems that any ambiguity or uncertainty related to the heavy quark mass enters
into the predictions of HQET enhanced by a factor of five, however, as we shall discuss
below, this problem can be controlled and is related to a suitable choice of a scheme
in which the mass is actually defined.

3.5.1 Why do we need a mass scheme?

When computing Feynman diagrams we insert a quark mass into the quark propaga-
tors. This mass is defined by the location of the pole of the propagator, which is the
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usual definition of what is called the pole mass mPole
Q . When constructing HQET we

redefine the heavy quark momentum by pQ = mQv + k, using some mass definition,
which we choose to be also the pole mass. However, due to

mH = mQ + Λ̄ +O(1/mQ)

we may compensate any redefinition of the mass by a corresponding shift in the pa-
rameter Λ̄.

The mass renomalization is related to the quark propagator. Including the (one
particle irreducible) self energy contributions Σ(p), the renormalized quark propagator
becomes

S(p) =
−iZOS

2

/p−m0 + Σ(p,mPole
Q )

−→ −i
/p−mPole

Q

as p2 → (mPole
Q )2 (3.60)

where the pole mass is related to the bare mass by a formal (perturbative) series

m0 = ZOS
m mPole

Q =

(
1 +

∞∑
n=1

cn

(αs
π

)n)
mPole
Q (3.61)

The coefficients cn are divergent and need to be regularized. The standard way to
regularize QCD is dimensional regularization (DimReg) where the loop integrals over
momenta are computed in D = 4− 2ε space-time dimensions. At one loop one obtains

c1 = −CF

([
1

ε
+ γE − 4π

]
3

4
+ 1 +

3

4
ln

µ2

(mPole
Q )2

+O(ε)

)

where in the case of the pole mass the scale µ is fixed by the on-shell condition
(3.60) and CF = 4/3 is the value of the SU(3) Casimir operator in the fundamental
representation.

Alternatively one may use another definition of the quark mass, such as the the
MS definition, for which we have a relation similar to (3.61)

m0 = ZMS
m mMS

Q =

(
1 +

∞∑
n=1

bn

(αs
π

)n)
mMS
Q (3.62)

where the MS scheme is defined by removing only the 1/ε+γE−4π term, which means
at one loop order

b1 = −CF
[

1

ε
+ γE − 4π

]
3

4
(3.63)

Note that the MS mass depends on the scale µ and is a running parameter.
The key point relevant for our discussion is that different mass definitions can be

related by perturbation theory with finite coefficients. We have

mPole
Q = zPole→MS mMS

Q =
ZMS
m

ZOS
m

mMS
Q (3.64)
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and

zPole→MS = 1 +

∞∑
n=1

an

(αs
π

)n
and a1 = −CF

(
3

4
ln

µ2

(mPole
Q )2

+ 1

)
(3.65)

Consider now a rate of the form (3.59) and assume that we have fixed the mass
scheme to be e.g. the pole mass. Computing radiative corrections to (3.59) takes the
schematic form

dΓ ∼ G2
F |VCKM|2(mPole

Q )5

(
1 +

αs
π
r1 +

(αs
π

)2

r2 + · · ·
)

(3.66)

with (after proper renormalization) finite coefficients ri. Switching now to another
mass definition such as e.g. the MS scheme, we find

dΓ ∼ G2
F |VCKM|2(mMS

Q )5(zPole→MS)5

(
1 +

αs
π
r1 +

(αs
π

)2

r2 + · · ·
)

(3.67)

= G2
F |VCKM|2(mMS

Q )5
(

1 +
αs
π

(r1 + 5a1) + · · ·
)

Thus we conclude that the choice of a mass scheme determines the size of the radiative
corrections. In other words, with a clever choice of the mass definition one can absorb
radiative corrections into the definition of the mass. Clearly such a mass definition
must also allow us to obtain the numerical value for the mass from independent data
as precisely as possible, since the dependence on the fifth power is still present.

It turns out that the pole mass is a particularly bad choice for a mass scheme, since
the coefficients r1 are large and do not seem to converge well [44–46]. Related to the bad
convergence is another problem with the pole mass, since it has an intrinsic uncertainty
of the order of ΛQCD due to an infrared renormalon, which we discuss below. Better
definitions are so-called short distance masses (e.g. the MS mass) which do not have
this problem and can thus be determined in principle with arbitrary precision. For
most of these short-distance masses the QCD corrections converge much better; there
are even mass definitions especially designed for the HQE.

3.5.2 Short Distance Masses

We use again the pole mass as a starting point. In terms of the MS mass we have

mPole
Q = zPole→MS mMS

Q =

(
1 +

∞∑
n=1

an

(αs
π

)n)
mMS
Q (3.68)

The main point of the following discussion is the fact that this perturbative relation
is not converging, rather it is an asymptotic series. This is due to factorially growing
contributions in the coefficients an ∼ n!. In fact, one can show that the asymptotic
behavior of the perturbative series is [44]

zPole→MS = 1 +
CF e

5/6

π

µ

mMS
Q

αs
∑
n

(−2β̂0αs)
n n! (3.69)
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where

β̂0 =
1

4π

(
11− 2nf

3

)
is the leading term of the β̂ function of QCD and nf is the number of active flavors.

In order to consider the consequences of this observation, we study the Borel trans-
form of the perturbative series, defined by

z(α) =

∞∑
n=0

anα
n+1 −→ B[z](t) =

∞∑
n=0

an
n!
tn (3.70)

If both series for z and B[z] were convergent, one could define the reverse operation
by

z(α) =

∞∫
0

dt exp

(
− t
α

)
B[z](t) (3.71)

which indeed has the same series expansion as the original z. However, the terms shown
in (3.69) lead to poles on the positive real axis in the Borel transform, which are called
renormalons. For the case at hand, the leading term originates from a singularity at
t = 1/2 and hence the integral in (3.71) cannot be computed without a prescription
of how to avoid this pole. This leads to an ambiguity which can be expressed by
shifting the singularity in the complex t plane by a small amount ε either upwards or
downwards, hence we use

1

t− 1/2 + iε
− 1

t− 1/2− iε
= 2πδ(t− 1/2)

leaving us with an ambiguity of the form

∆z(α) ∝ µ

mMS
Q

exp

(
− 1

2α(µ)

)
∼ ΛQCD

mMS
Q

(3.72)

where we have inserted the running coupling of QCD in terms of ΛQCD.
Although these arguments can still be made more stringent, we have at least seen

the essence of the reasoning which leads to the conclusion that the pole mass has an
intrinsic uncertainty of the order of ΛQCD, related to infrared contributions, which can
be related to the coulombic self interactions of a heavy quark.4

To this end, it means that the pole mass cannot be used for precise predictions.
In particular, inserting the pole mass into (3.66) yields large QCD corrections which
are mainly due to this particular choice of the mass. In other words, a more clever
choice of the mass definition can minimize the size of the QCD corrections and lead
to a much better convergence.

Another problem induced by this becomes apparent once power corrections are
included. Given an intrinsic uncertainty of the order ΛQCD in the mass in (3.66)

4We note that the mass mMS
Q does not suffer from this problem. This can be seen from its relation

to the bare mass, where only the ultraviolet 1/ε poles are removed.
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renders the power corrections, which are by themselves O(Λ2
QCD/m

2
Q), completely

meaningless.
Thus it is obvious that we have to switch to a “short-distance” mass such as the

MS mass. This mass depends on the scale µ which is usually taken to be µ ≥ mMS
Q ;

below this scale one should switch to HQET, and thus it becomes clear that one should
use mass definitions which are “designed” to go to scales as low as 1 GeV. There are
two mass schemes which are frequently used in the context of the HQE which are the
kinetic mass scheme and the 1S mass scheme.

3.5.3 Kinetic Mass Scheme

As we discussed above, the pole mass contains a renormalon ambiguity of the order of
ΛQCD. In order to avoid this problem, we look at the expansion of the heavy hadron
mass of the pseudoscalar ground state meson (2.32) we have a physical quantity (the
hadron mass) on the left hand side, which cannot suffer from such an ambiguity.
However, on the right hand side, we have not yet specified, what mass definition is
used. If we use the pole mass, we find that this ambiguity has to cancel between mPole

Q

and the binding-energy parameter Λ̄ defined in (2.34).
Clearly Λ̄ as well as the parameters in the HQE of the heavy hadron mass are non-

perturbative. However, one may write down a QCD sum rule, called a “Small-Velocity”
sum rule [47], which allows us to estimate these parameters. This sum rules also allows
us to compute the perturbative contribution to these parameters in a hard cut-off
scheme. As we pointed out in the discussion of the HQE for the heavy quark mass, all
ambiguities in the heavy quark mass have to cancel against the ambiguities in the HQE
parameters Λ̄ and µ2

π, such that the meson mass is a well defined physical quantity.
Writing down an expression similar as for the hadron mass up to the kinetic energy
term and inserting the perturbative expressions for Λ̄ and µ2

π yields the definition of
the quark mass in the “kinetic” scheme.

mkin
Q (µ) = mPole

Q − [Λ̄(µ)]pert −
1

2mkin
Q (µ)

[µ2
π(µ)]pert , (3.73)

which is a short distance mass like the MS mass, since the renormalon ambiguities in
the pole mass cancel against the ones in Λ̄ and µ2

π. Here, the leading order expression
for Λ̄ and µ2

π read [47]

[Λ̄(µ)]pert =
16

9

αs(µ)

π
µ+O(α2

s) (3.74)

[µ2
π(µ)]pert =

4

3

αs(µ)

π
µ2 +O(α2

s) , (3.75)

where µ is the hard cut-off.
The kinetic mass is a short distance mass and can be extracted e.g. from the

thresholds in e+e− → hadrons with a very high precision; currently the uncertainty is
about 50 MeV [48].
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3.5.4 1S Mass Scheme

As has been discussed in [44, 45] the infrared contributions of the pole mass can be
attributed to the color Coulomb field of the heavy quark. In a nonrelativistic picture,
this Coulomb field is the main contribution to the binding of a system with heavy
quarks, and hence it is suggestive to try to find a definition of the b quark mass in
terms of a bottomonium state. If one chooses the ground state of the bottomonium,
one may compute this in terms of the mass parameter in the Lagrangian in a non-
relativistic picture, i.e. in NRQCD (see the last part of the lectures).

To this end, we consider the mass of the lowest lying JPC = 1−−, 3S1 bottomonium
state, called Υ, for which precise measurements exist. The (perturbative) relation
between the Υ mass and the pole mass reads schematically

mΥ = 2mpole
b

(
1− (αsCF )2

8

{
1 +

αsβ0

π
(`+ 1) +

(
αsβ0

π

)2(
1

2
`2 + `+ 1

)
+ · · ·+

+

(
αsβ0

π

)n(
1

n!
`n +

1

(n− 1)!
`n−1 + ...+ `+ 1

)
+ · · ·

})
(3.76)

where

` = ln

[
µ

mbαsCF

]
, β0 = 4πβ̂0 = 11− 2nf

3
and CF =

4

3

We note that there is a mismatch concerning the orders in αs, since the binding
energy of the nonrelativistic binding energy is α2

s and hence the series expansion is
in powers of {α2

s, α
3
sβ0, ..., α

n+2
s βn0 , ...}. This is in contrast to the usual perturbative

expansion (e.g. the relation of the MS mass to the pole mass) which is in terms of
{αs, α2

sβ0, ..., α
n+1
s βn0 , ...}. It has been noted in [49,50] that this mismatch disappears

in high orders, since we have for large n(
1

n!
`n +

1

(n− 1)!
`n−1 + ...+ `+ 1

)
≈ exp(`) =

µ

mbαsCF
(3.77)

which fixes the mismatch in the series expansion. In fact, this exponentiation also
ensures the cancellation of the renormalons of the pole mass [49].

Thus at low orders one has to compare different orders in αs which can be made
explicit by introducing a counting parameter ε = 1 such that

mΥ = 2mpole
b

(
1− (αsCF )2

8

{
ε+

αsβ0

π
(`+ 1)ε2 +

(
αsβ0

π

)2(
1

2
`2 + `+ 1

)
ε3+

+ · · ·+
(
αsβ0

π

)n(
1

n!
`n +

1

(n− 1)!
`n−1 + ...+ `+ 1

)
εn+1 + · · ·

})
(3.78)

while for the decay rate for a B decay we write for the leading order (schematically)

Γ =
G2
F |VCKM|2

192π3
(mPole

b )5

[
1 + c1

αs
π
ε+ c2

α2
s

π2
β0ε

2 + ...+ cn
αns
πn
βn−1

0 εn + ...

]
(3.79)
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Replacing the pole mass in this relation by the Υ(1S) mass (3.78) and combining the
corresponding orders in ε yields

Γ =
G2
F |VCKM|2

192π3

(mΥ

2

)5 [
1 + ĉ1ε+ ĉ2ε

2 + ...+ ĉnε
n + ...

]
(3.80)

which exhibits a quick convergence. In combination with a precise measurement of
mΥ one can get precise predictions for semileptonic decays as wel as for moments of
spectra.

3.6 End-Point Regions

When studying the spectra of photons and leptons within the HQE one finds in some
regions of phase space a pathological behaviour which prevents us to interpret the
spectra point by point. These regions are related to endpoints of the spectra where
the HQE breaks down. As an example, let us consider the endpoint of the electron
spectrum in semileptonic B decays. The maximal lepton energy is given by

Emax =
m2
B −m2

2mB

where m is the mass of the lightest final state that can be produced. Close to this
energy the possible final states are very few, in the extreme case only the single state
with mass m contributes. Clearly one cannot expect an inclusive calculation to be
correct here, in other words, the HQE breaks down in this region.

Neglecting the mass of the final-state quark (which we expect to be a good ap-
proximation for the b→ u case) already the partonic result behaves pathologically in
the endpoint region, since it is a θ function. In fact, one finds for the charged lepton
energy spectrum up to 1/m2

b

dΓ

dy
=
G2
Fm

5
b |Vub|2

192π3

[
θ(2E −mb)y

{
(3− 2y)y − 5y2

3

µ2
π

m2
b

+
y

3
(6 + 5y)

µ2
G

m2
b

}
+
µ2
π − 11µ2

G

6m2
b

δ(1− y) +
µ2
π

6m2
b

δ′(1− y)

]
(3.81)

with y = 2E/mb. Nevertheless, the integrated inclusive rate exists and can be compute
in a 1/mb expansion as shown above, for the case at hand we get

Γ =
G2
Fm

5
b |Vub|2

192π3

[
1− µ2

π + 3µ2
G

2m2
b

]
. (3.82)

In addition, one can show by the same steps as for the total rate also moments of the
spectra can be computed in the HQE.

Obviously the spectrum cannot be interpreted point by point, in particular close to
the endpoint, since the true expansion parameter is ΛQCD/(mb− 2E), which becomes
large close to the endpoint. Very close to the endpoint we have a region which is
dominated by single states or resonances, where a description in terms of (a sum over
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a few) exclusive states is appropriate, and this region is defined by 0 ≤ (mb − 2E)2 ≤
Λ2

QCD.
This particularly means that such a fine “resolution” of the spectrum in the end-

point region is impossible within the HQE. However, if we look at the structure of
the terms of the HQE, we see that the “most singular” term (i.e. the term with the
highest derivative of the δ-function) is the last term in (3.81); in fact, proceeding to
1/m3

b exhibits a term with δ′′(1− x) etc. These terms can be summed by a technique
analogous to to what is done in Deep Inelastic Scattering (DIS), leading to nonpertur-
bative functions instead of nonperturbative parameters. These techniques have been
set up in [51–53] and put the model suggested in [54] on a firm theoretical basis.

In order to illustrate this technique, we will (instead of B → Xu`ν̄) consider B →
Xsγ. The leading contribution to this process is mediated by the operator

O7 =
e2

16π2
mb s̄Lσ

µνbR Fµν Heff =
4GF√

2
VtbV

∗
tsC7(µ)O7(µ) . (3.83)

Computing the inclusive rate for B → Xsγ using only this operator yields up to order
1/m2

b

Γ(B → Xsγ) =
αG2

Fm
5
b

16π4
|VtbV ∗ts|2|C7(mb)|2

[
1− µ2

π + 3µ2
G

2m2
b

]
. (3.84)

However, one may also compute the photon spectrum for this decay, which at tree level
and to leading order is a δ function, fixing the photon energy to the value Eγ = mb/2
determined by the two-particle kinematics of the partonic process. This behaviour
persists also for the tree-level expressions at higher orders in the HQE, leading to
derivatives of δ functions.

Up to terms of order 1/m2
b one finds for the spectrum

dΓ

dy
=
αG2

Fm
5
b

32π4
|VtbV ∗ts|2|C7(mb)|2 (3.85)

×
(
δ(1− y)− µ2

π + 3µ2
G

2m2
b

δ(1− y) +
µ2
π − µ2

G

2m2
b

δ′(1− y) +
µ2
π

6m2
b

δ′′(1− y)

)
.

Gluon emission will eventually lead to a nontrivial spectrum, however, a pertur-
bative calculation is possible only in the region where the gluon and the final-state
strange quark have a sizable invariant mass to warrant a perturbative treatment. Close
to the endpoint we face the same situation as in B → Xu`ν̄: The spectrum computed
for the HQE cannot be interpreted point by point.

However, instead of studying the spectrum point by point, one may take moments
of the spectrum. In fact, one may interpret the result (3.85) in terms of an expansion
in singular functions, i.e. a moment expansion of the form [55]

1

Γ

dΓ

dy
=

∞∑
n=0

Mn

n!
δ(n)(1− y) , (3.86)

where δ(n) denotes the nth derivative of the δ function, and the moments are defined
as
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Mn =

∞∫
0

(y − 1)n
(

1

Γ

dΓ

dy

)
. (3.87)

From the structure of the HQE we infer that the moments Mn have a 1/mb ex-
pansion, the leading term of which is of order 1/mn

b . For the case of B → Xsγ we
get

M1 = O(1/m2
b) =

µ2
π − µ2

G

2m2
b

(3.88)

M2 =
µ2
π

6m2
b

+O(1/m3
b)

M3 = − ρ3
D

18m3
b

+O(1/m4
b) .

From this structure it is evident that a re-summation scheme would be desirable in
which the leading contribution to each moment is re-summed. In order to set this up we
take a look at the tree-level calculation of B → Xsγ. Taking the time ordered product
of two effective Hamiltonians from (3.83) and using the external-field propagator as in
(3.20) (in this case of the massless s quark) we have

1

/Q+ i /D
=

/Q+ i /D

Q2 + 2(Q · iD) + (i /D)2
(3.89)

where Q = mbv − q, and q is the photon momentum. In the case where Q2 is large
compared to the terms with the covariant derivatives, one obtains the usual power
counting and we may perform the expansion as in (3.20) with mc → 0. However, we
have Q2 = m2

b(1− y) and thus this quantity is not large compared to the other terms
in the denominator, in which case we cannot expand as in (3.20). Instead we are in
the kinematic region, where Q2 is small and v ·Q is of the order mb.

The region we are interested in is the one where Q2 and (Q · iD) are of the same
order, which ismbΛQCD. Note that this is not the resonance region, where - as discussed
above - Q2 is actually of order Λ2

QCD. Thus in the endpoint region mb(1− y) ∼ ΛQCD

we can re-sum the leading contributions to the moments by approximating

1

/Q+ i /D
=

/Q

Q2 + 2(Q · iD)
+ · · · (3.90)

Since Q is (almost) a light-like vector, it is convenient to introduce light cone vectors
n and n̄ according to

n2 = 0 = n̄2 n · n̄ = 2 v =
n+ n̄

2
and Q · iD ≈ (v ·Q)(n · iD) . (3.91)

Introducing the shape function (or light-come distribution function) f according
to

2MBf(ω) = 〈B(v)|b̄vδ(ω + i(n ·D))|B(v)〉
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allows us now to write this as a convolution, so we get (e.g. for Γ = 1)

〈B(v)|b̄v
/Q

Q2 + 2(Q · iD)
bv|B(v)〉 =

∫
dω f(ω)

v ·Q
Q2 + 2ω(v ·Q)

. (3.92)

The shape function is a nonperturbative function, where the moments of f are given
in terms of HQE parameters

f(ω) = δ(ω) +
µ2
π

6
δ′′(ω)− ρ3

D

18
δ′′′(ω) + · · · (3.93)

Using this function and using (3.90) one obtains for the spectrum of B → Xsγ

dΓ

dy
=
αG2

Fm
6
b

32π4
|VtbV ∗ts|2|C7(mb)|2f(mb(y − 1)) (3.94)

=
αG2

Fm
5
b

32π4
|VtbV ∗ts|2|C7(mb)|2

(
δ(1− y) +

µ2
π

6m2
b

δ′′(1− y)− ρ3
D

18m3
b

δ′′′(1− y) + · · ·
)

showing that the shape function indeed re-sums the most singular terms, i.e. the terms
with the highest derivatives of δ functions.

The shape function f plays the same role as the parton distributions of DIS. It is
genuinely non-perturbative, however, it is also universal. For the case of B decays, this
means that this shape function appears in the end point regions mb(1− y) ∼ ΛQCD of
any inclusive heavy-to-light transition. In other words, it also appears in the description
of the end-point region of B → Xu`ν̄. This leads to a relation between this decay and
B → Xsγ which is exploited in phenomenological analyses.

The shape function has a few interesting properties. First of all, we note that the
first moment vanishes, i.e., the term with the first derivative of the δ function is absent.
This is a consequence of the equations of motion. The second moment is non-vanishing;
since this moment is taken with respect to the partonic end-point (defined by the
quark mass), this means that the shape function has to extend beyond the partonic
endpoint y = 1 corresponding to the photon energy Eγ = mb/2 and ω = 0. The shape
function is non-vanishing for −∞ ≤ ω ≤ Λ̄, where the region 0 ≤ ω ≤ Λ̄ is entirely
non-perturbative. The parameter Λ̄ is exactly the same as the one appearing in the
expansion of the heavy hadron masses (2.32,2.33), since the true phase space (ignoring
the masses of the final-state hadrons) has a maximal photon energy Emax

γ = mB/2.
Thus the shape function ensures the correct phase-space boundary, which is given in
terms of the B meson mass.

In fact, the vanishing of the first moment corresponds to a definition of the quark
mass. A measurement of the photon spectrum of B → Xsγ yields directly the shape
function, and the reference point for which the first moment vanishes yields a mea-
surement of Λ̄ and hence a definition of the quark mass.

All further discussion, including the way to include radiative corrections, requires
more heavy machinery. Since the end-point region in heavy-to-light decays is related
to (in the restframe of the B meson) energetic light degrees of freedom, the proper tool
is in this case “Soft Collinear Effective Theory” which is beyond the scope of these
lectures, and I refer the reader to the lectures of Thomas Becher at the same school.
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Summary

In these lectures the physical foundations of heavy quark methods have been outlined,
with a focus on technical issues. There are many aspects of heavy quark theory that
could not be covered:

• Heavy quark expansions (HQET as well as HQE) have an enormous impact on
particle physics phenomenology. Unitil the development of these methods, the
hadronic matrix elements had to be modelled, introducing an uncontrollable sys-
tematic uncertainty into the theoretical predictions. Heavy quark methods have
not made models fully obsolete; however, the use of a model is often necessary
only for an estimate of subleading terms, for which one cannot make use of a QCD
lattice calculation. To this end, many constraints on physics beyond the Standard
Model coming from heavy flavour physics could be made much more stringent on
the basis of heavy quark methods.

• There are still other types of heavy quark methods, which could not be covered
by the lectures. As an example, in an exclusive non-leptonic decay like B → ππ,
the two pions have (in the rest frame of the B meson) energies of the order
of the B meson mass, thus there are light quarks and gluons which have large
momenta. Since the settings we have discussed in these lectures are such that the
light degrees of feedom have “small” momenta, it becomes clear that a different
effective theory needs to be used in such cases. The relevant theory for this case is
“Soft Collinear Effective Theory” (SCET) which has been invented in the context
of B decays, but has many applications also in collider physics. There has been
an extra lecture on SCET at this school.

• Another class of heavy quark systems are hadrons with two heavy quarks, such
as the quarkonia bb̄ and cc̄ as well as the Bc = (bc̄) or “doubly heavy baryons”
containing two or even three heavy quarks. Also in this case one has to set up a
slightly modified effective theory, since the static approximation turns out to be
insufficient. Rather one needs to include the kinetic energy ~p2/(2m) into the lead-
ing Lagrangian. This leads to non-relativistic QCD (NRQCD) which corresponds
to the leading term of a systematic expansion in the relative velocity v between
the heavy constituents. The structure of NRQCD turns out to be also more com-
plicated than HQET, since the dynamics of binding generates mass scales, which
are the inverse Bohr radius mQv and the binding energy mQv

2. For small v this
generates a hierarchy of mass scales, and - depending on the sizes of the dynami-
cally generated mass scales relative to ΛQCD - requires to set up different effective
field theories.
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Overall, heavy quark methods have put the flavour physics of heavy hadrons onto a
solid basis, allowing us to perform in many cases precision calculations including the
control over uncertainties. Starting from the original idea encoded in HQET, more
and more applications have been discovered and elaborated; it seems that these ideas
have even still a potential which is not yet fully explored.
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