

Interdisciplinary research @ in2p3, a (non-exhaustive) **OVERVIEW**

M. Vanstalle

22/06/2021

Workshop "Physique et Détecteurs à la frontière"

Applied physics for health – main questions

- ▶ Imaging:
 - $\circ~$ Development of new radio isotopes for nuclear medicine
 - Multimodal imaging (PET, SPECT,..)
 - Improvement of imaging perfomance (PET, SPECT)
- ▶ Hadrontherapy & innovative radiotherapy:
 - $\circ~$ Online treatment monitoring
 - Nuclear data for health
 - New beam delivery modes (FLASH, micro-beams, radioactive beams)

From **Verburg et al**., "Energy- and time-resolved detection of prompt gamma-rays for proton range verification", Phys. Med. Biol. (2013).

From **Battistoni et al.**, "The FLUKA code: an accurate simulation tool for particle therapy", Frontiers in Oncology (2016).

From **GSI website:** Setup for carbon ion FLASH experiment

Depth dose profiles

depth in water [mm]

From Kraemer et al., "Helium ions for radiotherapy? Physical and Biological verifications of a novel treatment modality", Med. Phys. (2016).

¹⁸F-FDG

Actors (in2p3)

▶ 12 laboratories involved in applied physics for health

▶ Organized around GDR Mi2B

PET imaging

- XEMIS project: 3γ -imaging (from ^{44}Sc)
 - Direct 3D location of the radioactive source: res. * along LOR $\sim 1 \text{ cm}$ (FWHM)
 - Reduction of injected activity: 100 times less *
- ClearMind project:
 - Development of scintronics crystal for ultra-fast gamma imaging
 - Cherenkov photons detection and scintillation emitted by PbWO₄:Y *
 - Collection efficiency enhancement on photocathode by factor 4! *
 - Coincidence Resolving Time ~ 20 ps FWHM
- Different geometrical approach:
 - DigiPET (dual layer approach, 2D) *
 - Axial approach (2,5D)
 - JackPET (3D) *
 - InsertPET (PET+MRI)

Modular DAQ development (ASICs IMOTEP + FPGA)

Jubatech y

511keV

Y 511keV

γE₀

LOR

Compton

 $cos\theta = 1 - m_e c^2 \frac{E_1}{E_0(E_0 - E_1)}$

(E₂, x₂, y₂,

5

SPECT imaging & in-vivo imaging

- What is the impact of collimating choice in SPECT performances?
 - SPECT prototype:
 - \circ CeBr₃ detectors
 - DAQ (IMOTEP + FPGA)
 - Collimation à lames parallèles (g=2mm, H=20mm) Ο
- In-vivo imaging:
 - CMOS probe for beta detection
 - Multimodal optical endomicroscopy * for in vivo diagnosis of brain tumors
 - Ambulatory gamma-camera of high resolution for thyroid diseases

Imaging for nuclear dismantling

▶ TEMPORAL project Compton camera (and DAQTemp)

- * CeBr₃ crystals coupled to SiPM (modelised in GATE)
- * Reconstruction with MLEM-like algorithm
- ✤ Acquisition card developed for SiPM readout with ASIC PetiROC

IMAGING

Online treatment monitoring – prompt- γ

- CLaRyS project:
- ★ Compton camera with hodoscope (line reconstruction + TOF)
 + 2-mm thick silicon detectors + BGO absorbers ⇒ detection
 efficiency enhancement wrt collimated camera (factor 50!)
- Hodoscope: diamond detector (100 ps TOF resolution with 68 MeV protons)
- * <u>Prospects</u>:

- TEMPORAL detectors: $CeBr_3 + SiPM \implies$ Reconstruction of the interaction point + improvement of time resolution (CC absorber)
- Future integration acquisition system front-end board de
- Future integration in the CLaRyS acquisition system thanks to the front-end board developed in CPPM
- TIARA project (a ToF Imaging ARray for hadrontherapy):
 - * Cherenkov + SiPM
 - * 30 pixels of ~ 1 cm^3

Probability density [a. u.]

Hadrontherapy

- LAPD (Large Acceptance Pixelised Detector), developed @ LPC Clermont
- 12 modules of LYSO+PMT, 2×120 channels *
- Performances:
 - \circ Energy resolution: 14% @ 511 keV (FWHM) o CRT: 3.4 ns
- Prospects: *
 - Unfortunately, no more fundings, but detector available and operational!
 - SOBP tests, heterogeneous media...

z_{MAR} [mm]

8

Bragg peak monitoring

▷ Detection of UV (from transparent medium) and X-rays from bremsstrahlung (from opaque medium) during treatment ⇒ range verification of the Bragg peak

▶ <u>Prospects:</u>

- * Tests with SOBP (Spread-Out Bragg peaks)
- $\ast~$ Heterogeneous media

From **Ralite et al.**, *"Bremsstrahlung X-rays as a non invasive tool for ion beam monitoring"*, Nuclear Instruments and Methods in Physics B (2021).

- Ultra-thin detectors for low energy beams
 - * AIFIRA beam line: protons and $\alpha @ 3 \text{ MeV} \implies$ How to monitor low energy ions delivered to the sample?
 - ***** Two detectors developed in collaboration between CENBG and CEA-LIST:
 - \circ Secondary electrons emitter for α beams (400 nm-thick)
 - o Monocrystal diamonds for protons (2 μm-thick)

- PEPITES (Profileur à Electrons secondaires pour Ions ThérapeutiquES)
 - * Secondary electrons emitter, thickness $<10\;\mu{\rm m}$ WET
 - $\ast~$ Monitoring of proton beam around 100 MeV, 1 pA-10 nA
 - ***** Will be installed on ARRONAX
 - * Good candidate for beam monitoring in **FLASH therapy!**

- Beam monitoring with nanometric ionization chamber for FLASH therapy + adapted electronic (iDORA)
- $\ast~$ Reducing the ionization yield of a 500 factor
- ★ 800 µs timing response

- Beam monitoring and dosimetry with BCT
 - ★ Tested for FLASH therapy with electrons 5-7 MeV (orsay)
- ▶ 3D dose monitoring for protontherapy
 - * Ultra-fast camera to reconstruct 3D dose profile
 - ${\ensuremath{\ast}}$ Quality control of IBA S2C2

Nuclear data for hadrontherapy & space

- ▶ FRACAS spectrometer for cross-section measurements on ARCHADE accelerator
 - ***** ToF wall of 75 YAP:Ce crystals

Time Of Flight

- * PPAC electrodes for beam monitoring
- ★ Gaseous trackers (uRWell, MWPC) development

Conception S.Salvador

ÍPHC

- FOOT (FragmentatiOn Of Target) experiment
- IPHC involved in vertex detector
 + inner tracker development
- ▶ CLINM (Cross-sections of Light Ion and Neutron Measurements) :
 - * Measurement of impact of secondary particles on biomolecules

Magnets

Inner Tracker

Vertex tracker

Beam monitor

- * Δ E-ToF telescope (plastic scint. + CeBr₃) for charged particles identification
- * Neutrons measured by RPT (Recoil Proton Telescope)

Nuclear data for hadrontherapy & space

- ▶ Neutron spectrometry by RPT (Recoil Proton Telescope)
 - $\ast~$ Energy reconstruction of neutrons between 5-50 MeV
 - * Compact device, real-time, high fluence (10^8 n/s/cm^2)
 - $\ast~$ Recoil protons reconstructed by CMOS (FastPIX) tracker

Acknowledgements

M. Vanstalle

22/06/2021

Workshop "Physique et Détecteurs à la frontière"

About the platforms...

- Platforms were installed in several labs
- ▶ For charged particles:

* AIFIRA platform: low energy p & α (3 MeV), micro-beams irradiation \Rightarrow detector characterization (diamonds micro-dosimeters, CMOS-detectors for neutrons...)

- * ARRONAX pre-clinical platform with p & α up to 70 MeV, to study FLASH irradiation effect
- * Radiograaff (developed at IP2I, now moved at IJClab), p <3.5 MeV
- *** Cyrcé**, p @ 25 MeV
- * GANIL
- * CAL

