Superconductors for particle and radiation detectors

Shamashis Sengupta IJCLab, Orsay

with

Claire Marrache-Kikuchi, Stefanos Marnieros, Laurent Bergé, Louis Dumoulin, Emiliano Olivieri

Pôle: Astroparticles, Astrophysics, Cosmology (A2C), Ingénierie

Outline

Physics of superconductors

Application to detectors

Future prospects

Superconductivity

Quantum phenomenon + Collective phenomenon

1. Zero resistance for T<Tc

2. Exclusion of magnetic field

3. Strong decrease of specific heat

Superconductivity

Microscopic pairing mechanism: Cooper pairs

Δ = strength of the superconductivity

$$\Delta \propto k_B T_c$$

$$\xi = \frac{\hbar v_F}{k_B T_c}$$

Thin films of Nb_xSi_{1-x}

The films can be either superconducting or insulating depending upon different proportions of Nb and Si, as well as thickness and disorder

Superconductors and insulators

NbSi thin films

Synthesis

NbSi applied to detectors

Fig.: Conductivité à 4 K fonction de la concentration x_{Nb} .

NbSi: superconducting or insulating sensor

Fig. 1 (Color online) a. Superconducting critical temperature as a function of the normal sheet resistance for different compositions. The two parameters can thus be independently tuned. The lines are guides to the eye. b. Resistance characteristics of the 175 Å and 500 Å thick Nb₁₄Si₈₆ samples

Advantages

- Composition and thickness adjustable for operating temperature of 50-100 mK
- \bullet Optimal thermal decoupling (10⁻¹¹ W.K⁻¹ for a typical film of 100 μ m x 100 μ m x 100 nm @ 70 mK)
- Short response time (* 1 ms @ 70 mK)
- Read-out via interdigited electrodes → SQUID-based electronics
- Read-out via meander-shaped electrodes → transistor-based electronics

<u>Case 2:</u> absorption through antennas; thermometer = superconducting

NbSi (TES)

High selectivity for the

energy spectrum &

Good filling factor

polarization

• Smaller NbSi film \rightarrow lower G tunable normal R of the film

Nb,,Si,

0.01

1/d (A⁻¹)

0.02

1000

SIT in NbSi applied to detectors Massive bolometers

NbSi TES layers evaporated on massive crystals.

In the frame of the EDELWEISS project for dark matter research, 200 g Ge crystals combined to spiral-shaped TES were developed.

5 eV baseline resolution has been be demonstrated using "Neganov-Luke" amplification.

Superconducting nanowires

Superconducting nanowire single photon detector (SNSPD)

Marsili et al., Nano Lett. 11 (2011)

Superconducting nanowires

Superconducting nanowires

Nanowire with a 200 nm wide channel

Recent proposals

PHYSICAL REVIEW LETTERS 123, 151802 (2019)

Detecting Sub-GeV Dark Matter with Superconducting Nanowires

Yonit Hochberg, ^{1,*} Ilya Charaev, ^{2,†} Sae-Woo Nam, ^{3,‡} Varun Verma, ^{3,§} Marco Colangelo, ^{2,||} and Karl K. Berggren ^{2,¶}

¹Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel

²Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA

³National Institute of Standards and Technology, Boulder, Colorado 80309, USA

WSi superconductor nanowire

FIG. 2. The photon counts as a function of the absolute bias current, exhibited by the prototype WSi device tested in a fiber-coupled package at 300 mK.

1550 nm wavelength, ~0.8 eV

Summary

Several types of applications of superconductors can be developed for detecting radiation and particles.

Superconducting nanowires have emerged as candidates in the search for low mass dark matter.

