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spatially exclusive—so each halo is like a small hard sphere); assuming that it scales like !(r)
is a gross overestimate. Using !hh(r|m1; m2) ≈ b(m1)b(m2)!lin(r), i.e., using the linear, rather than
the non-linear correlation function, even on the smallest scales, is a crude but convenient way of
accounting for this overestimate. Although the results of [258,223] allow one to account for this more
precisely, it turns out that great accuracy is not really needed since, on small scales, the correlation
function is determined almost entirely by the one-halo term anyway. Although almost all work to
date uses this approximation, it is important to bear in mind that it’s form is motivated primarily by
convenience. For example, if volume exclusion e!ects are only important on very small scales, then
setting !(r) ≈ !1-loop(r) rather than !lin(r), i.e., using the one-loop perturbation theory approximation
rather than the simpler linear theory estimate, may provide a better approximation.
Because the model correlation function involves convolutions, it is much easier to work in Fourier

space: the convolutions of the real-space density pro"les become simple multiplications of the Fourier
transforms of the halo pro"les. Thus, we can write the dark matter power spectrum as

P(k) = P1h(k) + P2h(k); where

P1h(k) =
∫
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Here, u(k|m) is the Fourier transform of the dark matter distribution within a halo of mass m
(Eq. (80)) and Phh(k|m1; m2) represents the power spectrum of halos of mass m1 and m2. Following
the discussion of the halo–halo correlation function (Eq. (87)), we approximate this by

Phh(k|m1; m2) ≈
2
∏

i=1

bi(mi)Plin(k) (89)

bearing in mind that the one-loop perturbation theory estimate may be more accurate than Plin(k).

4.2. Higher-order correlations

Expressions for the higher order correlations may be derived similarly. However, they involve
multiple convolutions of halo pro"les. This is why it is much easier to work in Fourier space:
the convolutions of the real-space density pro"les become simple multiplications of the Fourier
transforms of the halo pro"les. Similarly, the three-point and four-point correlations include terms
which describe the three and four point halo power spectra. The bi- and tri-spectra of the halos are
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It depends on the halo mass function (fit to simulations) and halo profile (NFW), 
concentration parameter. 

It is often replaced by the linear power spectrum, or augmented by higher-order perturbative 
contributions (1-loop, ...).

Halo models

Pairs of particles are either in the same halo or in 2 different halos:

1-halo term:
dominates at high k (small scales),
associated with intra-halo regions

2-halos term:

It dominates at low k (large scales), associated with the correlation function of halos.

If one considers the total matter power spectrum, it must converge to the linear matter 
power spectrum on large scales.



Valageas & Nishimichi (2011)

ratio of P(k) to a smooth reference

logarithmic power �2(k) = 4⇡ k3P (k)

If one uses perturbation theory, one needs to go beyond SPT:
- better accuracy
- good behavior at high     for             : does not explode 
above 

P2H(k)k
P1H(k)

- partial resummations
- Lagrangian approach 
(- ad-hoc cutoff)

in combination with EFT if Eulerian EFT 

SPT resum.

2-halos

1-halo

The transition region is difficult to get right: 
usually a lack of power.



real-space two-point correlation function

- Rather easy to recover the BAO peak, especially with 
Lagrangian approaches (Zeldovich approx. already works much 
better than linear theory).

- To obtain the real-space correlation one needs a well-behaved 
power spectrum from low to high k
(so that the Fourier integral converges).

- The lack of power at the transition also shows in the 
real-space correlation function.

- The separation between quasi-linear and non-linear 
scales/effects is cleaner in the correlation function than 
in the power spectrum (e.g., see the BAO peak).



Transition region
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Table 2. Halo-model parameter descriptions and values before and after fitting.

Parameter Description Original value Fitted value Equation in text

!v Virialized halo overdensity 200 418 × "−0.352
m (z) 13

δc Linear collapse threshold 1.686 1.59 + 0.0314 ln σ 8(z) 17
η Halo bloating parameter 0 0.603 − 0.3 σ 8(z) 26
f Linear spectrum transition damping factor 0 0.188 × σ 4.29

8 (z) 23
k∗ One-halo damping wavenumber 0 0.584 × σ−1

v (z) 24
A Minimum halo concentration 4 3.13 14
α Quasi-linear one- to two-halo term softening 1 2.93 × 1.77neff 27

k = 0.1h Mpc−1 corresponding to physical scales of the order of
tens of Mpc. On these scales, contributions to the density field will
include, but are not limited to, large structure at the turn-around
radius, sheets, filaments and voids. It would be rather surprising
if the complexity of non-linear evolution on these scales could be
accurately modelled by a simple sum of crude one- and two-halo
terms. In testing, we noted that the halo model performed most
poorly around these transition scales and we address this problem
by modelling the transition via

!2(k) = [(!
′2
2H)α + (!

′2
1H)α]1/α , (27)

where α is the final parameter that we adjust to match simulations.
Values of α < 1 soften the transition between the two terms whereas
α > 1 sharpen it. The power at these scales is quite smooth, so fitting
the transition via α is sufficient.

4 R ESULTS

We fit the parameters introduced in the previous section to data
from all 37 nodes of COSMIC EMU at redshifts z = 0, 0.5, 1, 1.5
and 2 with equal weight given to each redshift and node and k
weighted equally in logarithmic space from 0.01 to 10h Mpc−1. We
use a least-squares method to characterize goodness of fit and use
an MCMC-like approach to fit all parameters simultaneously. Our
best-fitting parameters are given in Table 2 where there are a total of
12 parameters that are fitted to simulations, which can be compared
with 34 for the Takahashi et al. (2012) version of HALOFIT. The
cosmological dependences of each of our parameters was inferred
by some experimentation. In Table 2, we see that α depends on neff,
which is the effective spectral index of the linear power spectrum at
the collapse scale, defined in Smith et al. (2003):

3 + neff ≡ −d ln σ 2(R)
d ln R

∣∣∣∣
σ=1

. (28)

However, our neff is slightly different from that in Smith et al. (2003)
because we define σ (R) using a top-hat filter, rather than a Gaussian.

The accuracy of this model is demonstrated in the upper row of
Fig. 2, which shows a ratio of the halo model to COSMIC EMU at z = 0,
0.5, 1 and 2. One can see that our fitted halo-model predictions are
mainly accurate to within 5 per cent across all redshifts for the range
of scales shown. We call this calibrated halo model HMCODE and refer
to it thus throughout the remainder of this work. We also tested our
model at z = 3, a redshift to which it was not calibrated, and
found that errors rarely exceed 10percent. Takahashi et al. (2012)
use the framework of the original HALOFIT of Smith et al. (2003),
but obtain improved accuracy by fitting to modern simulation data
with superior resolution, extending to k = 30h Mpc−1. The authors
also focus their attention on models close to the current 'CDM
paradigm, rather than more general models (such as those with

power-law spectra or curved models). Takahashi et al. (2012) used
simulations of 16 different cosmological models around the best fits
from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite
(WMAP7 – Komatsu et al. 2011; WMAP9 – Hinshaw et al. 2013)
and include models with w ̸= −1. One can see how well Takahashi
et al. (2012) compare to COSMIC EMU in the lower row of Fig. 2
where HALOFIT can be seen to be comparable to our halo model but
there is more high-k spread at z = 0 and a systematic overprediction
of the power around k = 1h Mpc−1 that worsens with increasing
redshift. The stated accuracy of this version of HALOFIT is 5 per cent
for k < 1h Mpc−1 and 10 per cent up to 10h Mpc−1, which is
consistent with what is seen here. A similar plot for the original
Smith et al. (2003) version of HALOFIT shows large underpredictions
for k > 0.5h Mpc−1. From this point onwards, we only compare to
the revised Takahashi et al. (2012) version of HALOFIT.

In Fig. 3, we show how our model fares for cosmological pa-
rameters derived from recent data sets (see Table 3). Once again we
compare to COSMIC EMU and show results for both our calibrated halo
model and for the Takahashi et al. (2012) HALOFIT at z = 0.5. One
can see that the error from the halo-model approach rarely exceeds
2 per cent for k < 10h Mpc−1 for these cosmologies, with the worst
error being an overprediction of the amplitude of the BAO peaks
around k = 0.2h Mpc−1. This arises because we did not attempt to
model the exact non-linear damping of this feature in the power
spectrum, and so our prediction here is very close to the undamped
linear prediction. That our errors are better here than for the more
general models shown in Fig. 2 is because these models all lie close
to the centre of the COSMIC EMU parameter space (see Table 1). The
Takahashi et al. (2012) HALOFIT model works better at BAO scales,
but overpredicts the power at k > 0.5h Mpc−1 systematically at
around the 4 per cent level.

The model presented here performs similar to, but slightly better
than, the Takahashi et al. (2012) version of HALOFIT and has several
advantages. Foremost, because we retain the apparatus of the halo
model in our calculation, it means we can produce !2(k) to arbitrar-
ily high k in a physically motivated way. Even though such extreme
scales receive a small weight in lensing, they can be important if the
modelling is badly wrong in this regime (e.g. Harnois-Déraps et al.
2015). A polynomial-based fitting formula such as HALOFIT risks
generating pathological results when moving beyond the regime
constrained by simulations and it is not at all obvious how to extend
COSMIC EMU. In Fig. 4, we show a comparison of the power spectrum
predicted out to k = 100h Mpc−1 with different models, simply to
illustrate the range of behaviour at k > 10h Mpc−1. Given that no
simulations exist that could claim to accurately predict the matter
power spectrum to k = 100h Mpc−1 at z = 0, we cannot make any
quantitative statements about the accuracy of either model at these
extreme scales, although both perform comparably. The grey shaded
region in Fig. 4 delimits these extreme scales and it is interesting to
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Figure 1. A comparison of the original halo model, described in Section 2.2,
to node 0 of COSMIC EMU (!m = 0.25, !b = 0.043, ns = 0.97, w = −1,
σ 8 = 0.8, h = 0.72) at z = 0 (upper; solid red) and z = 1 (lower; solid blue).
The spectrum from COSMIC EMU is shown as black crosses. One can see that
the halo-model power spectrum is qualitatively correct in shape, but under-
predicts the true power at the tens of per cent level at scales k ! 0.2h Mpc−1

at both redshifts. This is exactly the scale at which the one-halo term comes
to dominate over the linear power (short-dashed lines in the top panel). The
long-dashed lines show a preview of the final fits we are able to produce
in this work, which agree with COSMIC EMU at the 5 per cent level across
all scales. In the top panel, our model seems to track the simulation almost
exactly and is hard to distinguish.

weak lensing is to achieve its claimed future precision. Additionally,
in Monte Carlo Markov chain (MCMC) analyses, the chains will
inevitably wish to explore outside the parameter range of COSMIC

EMU and it is unclear how to proceed in this case. In this paper, we
fit a variant of the halo model to data from the ‘nodes’ of COSMIC

EMU, which are the exact locations within the cosmological parame-
ter space where the simulations were run. This has two advantages.
The accuracy of the emulator is likely to be highest at the nodes,
because there is no interpolation taking place. Secondly, in using
the nodes we are taking advantage of the Latin hypercube deign of
COSMIC EMU. Our resulting halo-model fits can be used to extend the
simulations to higher k, or higher z, in a physical way because they
are motivated by theoretical arguments. Additionally, we show in
Section 5 that the halo model can be adapted to account for the influ-
ence of baryons on the matter power spectrum, by fitting parameters
relating to halo internal structure to data from hydrodynamical sim-
ulations. We also suggest that a successful fitting recipe can be used
directly to explore models outside the COSMIC EMU parameter space.

In Fig. 1, we show a comparison of the power spectrum predicted
by our original incarnation of the halo model (NFW haloes; Bullock
et al. 2001 concentrations; Sheth & Tormen 1999 mass function;
#v = 200; δc = 1.686) to the power spectrum of COSMIC EMU node
0, which is vanilla %CDM near the centre of the parameter space,
at z = 0 and 1. It is immediately obvious that the halo-model
prediction is qualitatively reasonable in form, but deviates in detail

from the simulations showing an underestimate of power of ≃
30 per cent for k > 0.5h Mpc−1. There are several possible reasons
for the relatively poor performance of the halo model. Halo-finding
algorithms tend only to assign half of the particles in a simulation
into haloes (Jenkins et al. 2001; More et al. 2011) so the non-
linear distribution of half of the mass in the simulation is treated
by the halo model via an extrapolation of the formula for the mass
function. There are also clearly unvirialized objects in the quasi-
linear regime that are not taken into account in our halo-model
formalism, which also neglects halo substructure and asphericity
as well as non-linear material that may lie outside the halo virial
radius. In addition, a scatter in any halo property at fixed mass will
change the halo-model power spectrum prediction. For example,
Cooray & Hu (2001) investigate a halo model with a scatter in
c(M), which typically boosts the power, while Giocoli et al. (2010)
also include the power due to halo substructure via a substructure
mass function. How the measured power spectrum is altered under
various assumptions can also be seen in recent simulation work by
van Daalen & Schaye (2015) or Pace et al. (2015).

Other problems are visible at large scales, where the halo-
model power can be seen to overpredict the simulations for
k < 0.1h Mpc−1. At these scales, the power is mildly non-linear
and the two-halo term is in error, as well as the two- to one-halo
transition. Attempts to accurately model quasi-linear scales using
the halo model have been made by Valageas & Nishimichi (2011),
Mohammed & Seljak (2014) and Seljak & Vlah (2015), who use
perturbation theory results as a two-halo term, and by Smith, Scoc-
cimarro & Sheth (2007) who includes non-linear halo bias in the
two-halo term. Accurate modelling of mildly non-linear power is
an active field of research due to the importance of these scales for
BAO measurements.

3.2 Fitting a general halo model

Rather than attempting to improve the halo model by adding miss-
ing ingredients (e.g. Smith et al. 2007; Giocoli et al. 2010), thus
making it more complicated, in this paper we take a more prag-
matic approach: it is possible that part of the inaccuracy of the
power-spectrum calculation stems partly from incorrect parame-
ter choices. The model contains quantities such as #v, which are
round numbers motivated by analytic arguments. We may there-
fore hope that improved results may be obtained by fitting the halo
model to simulated power spectra using these quantities as physi-
cally motivated free parameters. Our proposed changes represent a
prescription for producing effective haloes whose power spectrum
mimics the true one, even if these haloes differ from those measured
directly in simulations. The hope is that we can trade off inaccura-
cies in e.g. halo concentration against issues that are neglected in
the standard halo model (asphericity, substructures, scatter in halo
profiles), such that the two-point predictions are improved.

Nevertheless, we wish to retain the large amount of tested the-
oretical input that goes into the halo model. For example: changes
in cosmological parameters alter the linear power spectrum, which
in turn affects the mass function through the variance and the halo
density profiles through the concentration and size relations. In ad-
dition, the linear growth rate will change, which also affects the
concentration relations directly as well as the amplitude of the
linear power spectrum. Since all of these ingredients have been
tested against simulations, there are grounds for hoping that a small
amount of parameter readjustment may allow the halo model to
produce robust predictions for the non-linear power spectrum that
are of useful accuracy for a wide range of cosmological parameters.
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Table 2. Halo-model parameter descriptions and values before and after fitting.

Parameter Description Original value Fitted value Equation in text

!v Virialized halo overdensity 200 418 × "−0.352
m (z) 13

δc Linear collapse threshold 1.686 1.59 + 0.0314 ln σ 8(z) 17
η Halo bloating parameter 0 0.603 − 0.3 σ 8(z) 26
f Linear spectrum transition damping factor 0 0.188 × σ 4.29

8 (z) 23
k∗ One-halo damping wavenumber 0 0.584 × σ−1

v (z) 24
A Minimum halo concentration 4 3.13 14
α Quasi-linear one- to two-halo term softening 1 2.93 × 1.77neff 27

k = 0.1h Mpc−1 corresponding to physical scales of the order of
tens of Mpc. On these scales, contributions to the density field will
include, but are not limited to, large structure at the turn-around
radius, sheets, filaments and voids. It would be rather surprising
if the complexity of non-linear evolution on these scales could be
accurately modelled by a simple sum of crude one- and two-halo
terms. In testing, we noted that the halo model performed most
poorly around these transition scales and we address this problem
by modelling the transition via

!2(k) = [(!
′2
2H)α + (!

′2
1H)α]1/α , (27)

where α is the final parameter that we adjust to match simulations.
Values of α < 1 soften the transition between the two terms whereas
α > 1 sharpen it. The power at these scales is quite smooth, so fitting
the transition via α is sufficient.

4 R ESULTS

We fit the parameters introduced in the previous section to data
from all 37 nodes of COSMIC EMU at redshifts z = 0, 0.5, 1, 1.5
and 2 with equal weight given to each redshift and node and k
weighted equally in logarithmic space from 0.01 to 10h Mpc−1. We
use a least-squares method to characterize goodness of fit and use
an MCMC-like approach to fit all parameters simultaneously. Our
best-fitting parameters are given in Table 2 where there are a total of
12 parameters that are fitted to simulations, which can be compared
with 34 for the Takahashi et al. (2012) version of HALOFIT. The
cosmological dependences of each of our parameters was inferred
by some experimentation. In Table 2, we see that α depends on neff,
which is the effective spectral index of the linear power spectrum at
the collapse scale, defined in Smith et al. (2003):

3 + neff ≡ −d ln σ 2(R)
d ln R

∣∣∣∣
σ=1

. (28)

However, our neff is slightly different from that in Smith et al. (2003)
because we define σ (R) using a top-hat filter, rather than a Gaussian.

The accuracy of this model is demonstrated in the upper row of
Fig. 2, which shows a ratio of the halo model to COSMIC EMU at z = 0,
0.5, 1 and 2. One can see that our fitted halo-model predictions are
mainly accurate to within 5 per cent across all redshifts for the range
of scales shown. We call this calibrated halo model HMCODE and refer
to it thus throughout the remainder of this work. We also tested our
model at z = 3, a redshift to which it was not calibrated, and
found that errors rarely exceed 10percent. Takahashi et al. (2012)
use the framework of the original HALOFIT of Smith et al. (2003),
but obtain improved accuracy by fitting to modern simulation data
with superior resolution, extending to k = 30h Mpc−1. The authors
also focus their attention on models close to the current 'CDM
paradigm, rather than more general models (such as those with

power-law spectra or curved models). Takahashi et al. (2012) used
simulations of 16 different cosmological models around the best fits
from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite
(WMAP7 – Komatsu et al. 2011; WMAP9 – Hinshaw et al. 2013)
and include models with w ̸= −1. One can see how well Takahashi
et al. (2012) compare to COSMIC EMU in the lower row of Fig. 2
where HALOFIT can be seen to be comparable to our halo model but
there is more high-k spread at z = 0 and a systematic overprediction
of the power around k = 1h Mpc−1 that worsens with increasing
redshift. The stated accuracy of this version of HALOFIT is 5 per cent
for k < 1h Mpc−1 and 10 per cent up to 10h Mpc−1, which is
consistent with what is seen here. A similar plot for the original
Smith et al. (2003) version of HALOFIT shows large underpredictions
for k > 0.5h Mpc−1. From this point onwards, we only compare to
the revised Takahashi et al. (2012) version of HALOFIT.

In Fig. 3, we show how our model fares for cosmological pa-
rameters derived from recent data sets (see Table 3). Once again we
compare to COSMIC EMU and show results for both our calibrated halo
model and for the Takahashi et al. (2012) HALOFIT at z = 0.5. One
can see that the error from the halo-model approach rarely exceeds
2 per cent for k < 10h Mpc−1 for these cosmologies, with the worst
error being an overprediction of the amplitude of the BAO peaks
around k = 0.2h Mpc−1. This arises because we did not attempt to
model the exact non-linear damping of this feature in the power
spectrum, and so our prediction here is very close to the undamped
linear prediction. That our errors are better here than for the more
general models shown in Fig. 2 is because these models all lie close
to the centre of the COSMIC EMU parameter space (see Table 1). The
Takahashi et al. (2012) HALOFIT model works better at BAO scales,
but overpredicts the power at k > 0.5h Mpc−1 systematically at
around the 4 per cent level.

The model presented here performs similar to, but slightly better
than, the Takahashi et al. (2012) version of HALOFIT and has several
advantages. Foremost, because we retain the apparatus of the halo
model in our calculation, it means we can produce !2(k) to arbitrar-
ily high k in a physically motivated way. Even though such extreme
scales receive a small weight in lensing, they can be important if the
modelling is badly wrong in this regime (e.g. Harnois-Déraps et al.
2015). A polynomial-based fitting formula such as HALOFIT risks
generating pathological results when moving beyond the regime
constrained by simulations and it is not at all obvious how to extend
COSMIC EMU. In Fig. 4, we show a comparison of the power spectrum
predicted out to k = 100h Mpc−1 with different models, simply to
illustrate the range of behaviour at k > 10h Mpc−1. Given that no
simulations exist that could claim to accurately predict the matter
power spectrum to k = 100h Mpc−1 at z = 0, we cannot make any
quantitative statements about the accuracy of either model at these
extreme scales, although both perform comparably. The grey shaded
region in Fig. 4 delimits these extreme scales and it is interesting to
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Table 2. Halo-model parameter descriptions and values before and after fitting.

Parameter Description Original value Fitted value Equation in text

!v Virialized halo overdensity 200 418 × "−0.352
m (z) 13

δc Linear collapse threshold 1.686 1.59 + 0.0314 ln σ 8(z) 17
η Halo bloating parameter 0 0.603 − 0.3 σ 8(z) 26
f Linear spectrum transition damping factor 0 0.188 × σ 4.29

8 (z) 23
k∗ One-halo damping wavenumber 0 0.584 × σ−1

v (z) 24
A Minimum halo concentration 4 3.13 14
α Quasi-linear one- to two-halo term softening 1 2.93 × 1.77neff 27

k = 0.1h Mpc−1 corresponding to physical scales of the order of
tens of Mpc. On these scales, contributions to the density field will
include, but are not limited to, large structure at the turn-around
radius, sheets, filaments and voids. It would be rather surprising
if the complexity of non-linear evolution on these scales could be
accurately modelled by a simple sum of crude one- and two-halo
terms. In testing, we noted that the halo model performed most
poorly around these transition scales and we address this problem
by modelling the transition via

!2(k) = [(!
′2
2H)α + (!

′2
1H)α]1/α , (27)

where α is the final parameter that we adjust to match simulations.
Values of α < 1 soften the transition between the two terms whereas
α > 1 sharpen it. The power at these scales is quite smooth, so fitting
the transition via α is sufficient.

4 R ESULTS

We fit the parameters introduced in the previous section to data
from all 37 nodes of COSMIC EMU at redshifts z = 0, 0.5, 1, 1.5
and 2 with equal weight given to each redshift and node and k
weighted equally in logarithmic space from 0.01 to 10h Mpc−1. We
use a least-squares method to characterize goodness of fit and use
an MCMC-like approach to fit all parameters simultaneously. Our
best-fitting parameters are given in Table 2 where there are a total of
12 parameters that are fitted to simulations, which can be compared
with 34 for the Takahashi et al. (2012) version of HALOFIT. The
cosmological dependences of each of our parameters was inferred
by some experimentation. In Table 2, we see that α depends on neff,
which is the effective spectral index of the linear power spectrum at
the collapse scale, defined in Smith et al. (2003):

3 + neff ≡ −d ln σ 2(R)
d ln R

∣∣∣∣
σ=1

. (28)

However, our neff is slightly different from that in Smith et al. (2003)
because we define σ (R) using a top-hat filter, rather than a Gaussian.

The accuracy of this model is demonstrated in the upper row of
Fig. 2, which shows a ratio of the halo model to COSMIC EMU at z = 0,
0.5, 1 and 2. One can see that our fitted halo-model predictions are
mainly accurate to within 5 per cent across all redshifts for the range
of scales shown. We call this calibrated halo model HMCODE and refer
to it thus throughout the remainder of this work. We also tested our
model at z = 3, a redshift to which it was not calibrated, and
found that errors rarely exceed 10percent. Takahashi et al. (2012)
use the framework of the original HALOFIT of Smith et al. (2003),
but obtain improved accuracy by fitting to modern simulation data
with superior resolution, extending to k = 30h Mpc−1. The authors
also focus their attention on models close to the current 'CDM
paradigm, rather than more general models (such as those with

power-law spectra or curved models). Takahashi et al. (2012) used
simulations of 16 different cosmological models around the best fits
from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite
(WMAP7 – Komatsu et al. 2011; WMAP9 – Hinshaw et al. 2013)
and include models with w ̸= −1. One can see how well Takahashi
et al. (2012) compare to COSMIC EMU in the lower row of Fig. 2
where HALOFIT can be seen to be comparable to our halo model but
there is more high-k spread at z = 0 and a systematic overprediction
of the power around k = 1h Mpc−1 that worsens with increasing
redshift. The stated accuracy of this version of HALOFIT is 5 per cent
for k < 1h Mpc−1 and 10 per cent up to 10h Mpc−1, which is
consistent with what is seen here. A similar plot for the original
Smith et al. (2003) version of HALOFIT shows large underpredictions
for k > 0.5h Mpc−1. From this point onwards, we only compare to
the revised Takahashi et al. (2012) version of HALOFIT.

In Fig. 3, we show how our model fares for cosmological pa-
rameters derived from recent data sets (see Table 3). Once again we
compare to COSMIC EMU and show results for both our calibrated halo
model and for the Takahashi et al. (2012) HALOFIT at z = 0.5. One
can see that the error from the halo-model approach rarely exceeds
2 per cent for k < 10h Mpc−1 for these cosmologies, with the worst
error being an overprediction of the amplitude of the BAO peaks
around k = 0.2h Mpc−1. This arises because we did not attempt to
model the exact non-linear damping of this feature in the power
spectrum, and so our prediction here is very close to the undamped
linear prediction. That our errors are better here than for the more
general models shown in Fig. 2 is because these models all lie close
to the centre of the COSMIC EMU parameter space (see Table 1). The
Takahashi et al. (2012) HALOFIT model works better at BAO scales,
but overpredicts the power at k > 0.5h Mpc−1 systematically at
around the 4 per cent level.

The model presented here performs similar to, but slightly better
than, the Takahashi et al. (2012) version of HALOFIT and has several
advantages. Foremost, because we retain the apparatus of the halo
model in our calculation, it means we can produce !2(k) to arbitrar-
ily high k in a physically motivated way. Even though such extreme
scales receive a small weight in lensing, they can be important if the
modelling is badly wrong in this regime (e.g. Harnois-Déraps et al.
2015). A polynomial-based fitting formula such as HALOFIT risks
generating pathological results when moving beyond the regime
constrained by simulations and it is not at all obvious how to extend
COSMIC EMU. In Fig. 4, we show a comparison of the power spectrum
predicted out to k = 100h Mpc−1 with different models, simply to
illustrate the range of behaviour at k > 10h Mpc−1. Given that no
simulations exist that could claim to accurately predict the matter
power spectrum to k = 100h Mpc−1 at z = 0, we cannot make any
quantitative statements about the accuracy of either model at these
extreme scales, although both perform comparably. The grey shaded
region in Fig. 4 delimits these extreme scales and it is interesting to
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Table 2. Halo-model parameter descriptions and values before and after fitting.

Parameter Description Original value Fitted value Equation in text

!v Virialized halo overdensity 200 418 × "−0.352
m (z) 13

δc Linear collapse threshold 1.686 1.59 + 0.0314 ln σ 8(z) 17
η Halo bloating parameter 0 0.603 − 0.3 σ 8(z) 26
f Linear spectrum transition damping factor 0 0.188 × σ 4.29

8 (z) 23
k∗ One-halo damping wavenumber 0 0.584 × σ−1

v (z) 24
A Minimum halo concentration 4 3.13 14
α Quasi-linear one- to two-halo term softening 1 2.93 × 1.77neff 27

k = 0.1h Mpc−1 corresponding to physical scales of the order of
tens of Mpc. On these scales, contributions to the density field will
include, but are not limited to, large structure at the turn-around
radius, sheets, filaments and voids. It would be rather surprising
if the complexity of non-linear evolution on these scales could be
accurately modelled by a simple sum of crude one- and two-halo
terms. In testing, we noted that the halo model performed most
poorly around these transition scales and we address this problem
by modelling the transition via

!2(k) = [(!
′2
2H)α + (!

′2
1H)α]1/α , (27)

where α is the final parameter that we adjust to match simulations.
Values of α < 1 soften the transition between the two terms whereas
α > 1 sharpen it. The power at these scales is quite smooth, so fitting
the transition via α is sufficient.

4 R ESULTS

We fit the parameters introduced in the previous section to data
from all 37 nodes of COSMIC EMU at redshifts z = 0, 0.5, 1, 1.5
and 2 with equal weight given to each redshift and node and k
weighted equally in logarithmic space from 0.01 to 10h Mpc−1. We
use a least-squares method to characterize goodness of fit and use
an MCMC-like approach to fit all parameters simultaneously. Our
best-fitting parameters are given in Table 2 where there are a total of
12 parameters that are fitted to simulations, which can be compared
with 34 for the Takahashi et al. (2012) version of HALOFIT. The
cosmological dependences of each of our parameters was inferred
by some experimentation. In Table 2, we see that α depends on neff,
which is the effective spectral index of the linear power spectrum at
the collapse scale, defined in Smith et al. (2003):

3 + neff ≡ −d ln σ 2(R)
d ln R

∣∣∣∣
σ=1

. (28)

However, our neff is slightly different from that in Smith et al. (2003)
because we define σ (R) using a top-hat filter, rather than a Gaussian.

The accuracy of this model is demonstrated in the upper row of
Fig. 2, which shows a ratio of the halo model to COSMIC EMU at z = 0,
0.5, 1 and 2. One can see that our fitted halo-model predictions are
mainly accurate to within 5 per cent across all redshifts for the range
of scales shown. We call this calibrated halo model HMCODE and refer
to it thus throughout the remainder of this work. We also tested our
model at z = 3, a redshift to which it was not calibrated, and
found that errors rarely exceed 10percent. Takahashi et al. (2012)
use the framework of the original HALOFIT of Smith et al. (2003),
but obtain improved accuracy by fitting to modern simulation data
with superior resolution, extending to k = 30h Mpc−1. The authors
also focus their attention on models close to the current 'CDM
paradigm, rather than more general models (such as those with

power-law spectra or curved models). Takahashi et al. (2012) used
simulations of 16 different cosmological models around the best fits
from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite
(WMAP7 – Komatsu et al. 2011; WMAP9 – Hinshaw et al. 2013)
and include models with w ̸= −1. One can see how well Takahashi
et al. (2012) compare to COSMIC EMU in the lower row of Fig. 2
where HALOFIT can be seen to be comparable to our halo model but
there is more high-k spread at z = 0 and a systematic overprediction
of the power around k = 1h Mpc−1 that worsens with increasing
redshift. The stated accuracy of this version of HALOFIT is 5 per cent
for k < 1h Mpc−1 and 10 per cent up to 10h Mpc−1, which is
consistent with what is seen here. A similar plot for the original
Smith et al. (2003) version of HALOFIT shows large underpredictions
for k > 0.5h Mpc−1. From this point onwards, we only compare to
the revised Takahashi et al. (2012) version of HALOFIT.

In Fig. 3, we show how our model fares for cosmological pa-
rameters derived from recent data sets (see Table 3). Once again we
compare to COSMIC EMU and show results for both our calibrated halo
model and for the Takahashi et al. (2012) HALOFIT at z = 0.5. One
can see that the error from the halo-model approach rarely exceeds
2 per cent for k < 10h Mpc−1 for these cosmologies, with the worst
error being an overprediction of the amplitude of the BAO peaks
around k = 0.2h Mpc−1. This arises because we did not attempt to
model the exact non-linear damping of this feature in the power
spectrum, and so our prediction here is very close to the undamped
linear prediction. That our errors are better here than for the more
general models shown in Fig. 2 is because these models all lie close
to the centre of the COSMIC EMU parameter space (see Table 1). The
Takahashi et al. (2012) HALOFIT model works better at BAO scales,
but overpredicts the power at k > 0.5h Mpc−1 systematically at
around the 4 per cent level.

The model presented here performs similar to, but slightly better
than, the Takahashi et al. (2012) version of HALOFIT and has several
advantages. Foremost, because we retain the apparatus of the halo
model in our calculation, it means we can produce !2(k) to arbitrar-
ily high k in a physically motivated way. Even though such extreme
scales receive a small weight in lensing, they can be important if the
modelling is badly wrong in this regime (e.g. Harnois-Déraps et al.
2015). A polynomial-based fitting formula such as HALOFIT risks
generating pathological results when moving beyond the regime
constrained by simulations and it is not at all obvious how to extend
COSMIC EMU. In Fig. 4, we show a comparison of the power spectrum
predicted out to k = 100h Mpc−1 with different models, simply to
illustrate the range of behaviour at k > 10h Mpc−1. Given that no
simulations exist that could claim to accurately predict the matter
power spectrum to k = 100h Mpc−1 at z = 0, we cannot make any
quantitative statements about the accuracy of either model at these
extreme scales, although both perform comparably. The grey shaded
region in Fig. 4 delimits these extreme scales and it is interesting to
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Table 2. Halo-model parameter descriptions and values before and after fitting.

Parameter Description Original value Fitted value Equation in text

!v Virialized halo overdensity 200 418 × "−0.352
m (z) 13

δc Linear collapse threshold 1.686 1.59 + 0.0314 ln σ 8(z) 17
η Halo bloating parameter 0 0.603 − 0.3 σ 8(z) 26
f Linear spectrum transition damping factor 0 0.188 × σ 4.29

8 (z) 23
k∗ One-halo damping wavenumber 0 0.584 × σ−1

v (z) 24
A Minimum halo concentration 4 3.13 14
α Quasi-linear one- to two-halo term softening 1 2.93 × 1.77neff 27

k = 0.1h Mpc−1 corresponding to physical scales of the order of
tens of Mpc. On these scales, contributions to the density field will
include, but are not limited to, large structure at the turn-around
radius, sheets, filaments and voids. It would be rather surprising
if the complexity of non-linear evolution on these scales could be
accurately modelled by a simple sum of crude one- and two-halo
terms. In testing, we noted that the halo model performed most
poorly around these transition scales and we address this problem
by modelling the transition via

!2(k) = [(!
′2
2H)α + (!

′2
1H)α]1/α , (27)

where α is the final parameter that we adjust to match simulations.
Values of α < 1 soften the transition between the two terms whereas
α > 1 sharpen it. The power at these scales is quite smooth, so fitting
the transition via α is sufficient.

4 R ESULTS

We fit the parameters introduced in the previous section to data
from all 37 nodes of COSMIC EMU at redshifts z = 0, 0.5, 1, 1.5
and 2 with equal weight given to each redshift and node and k
weighted equally in logarithmic space from 0.01 to 10h Mpc−1. We
use a least-squares method to characterize goodness of fit and use
an MCMC-like approach to fit all parameters simultaneously. Our
best-fitting parameters are given in Table 2 where there are a total of
12 parameters that are fitted to simulations, which can be compared
with 34 for the Takahashi et al. (2012) version of HALOFIT. The
cosmological dependences of each of our parameters was inferred
by some experimentation. In Table 2, we see that α depends on neff,
which is the effective spectral index of the linear power spectrum at
the collapse scale, defined in Smith et al. (2003):

3 + neff ≡ −d ln σ 2(R)
d ln R

∣∣∣∣
σ=1

. (28)

However, our neff is slightly different from that in Smith et al. (2003)
because we define σ (R) using a top-hat filter, rather than a Gaussian.

The accuracy of this model is demonstrated in the upper row of
Fig. 2, which shows a ratio of the halo model to COSMIC EMU at z = 0,
0.5, 1 and 2. One can see that our fitted halo-model predictions are
mainly accurate to within 5 per cent across all redshifts for the range
of scales shown. We call this calibrated halo model HMCODE and refer
to it thus throughout the remainder of this work. We also tested our
model at z = 3, a redshift to which it was not calibrated, and
found that errors rarely exceed 10percent. Takahashi et al. (2012)
use the framework of the original HALOFIT of Smith et al. (2003),
but obtain improved accuracy by fitting to modern simulation data
with superior resolution, extending to k = 30h Mpc−1. The authors
also focus their attention on models close to the current 'CDM
paradigm, rather than more general models (such as those with

power-law spectra or curved models). Takahashi et al. (2012) used
simulations of 16 different cosmological models around the best fits
from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite
(WMAP7 – Komatsu et al. 2011; WMAP9 – Hinshaw et al. 2013)
and include models with w ̸= −1. One can see how well Takahashi
et al. (2012) compare to COSMIC EMU in the lower row of Fig. 2
where HALOFIT can be seen to be comparable to our halo model but
there is more high-k spread at z = 0 and a systematic overprediction
of the power around k = 1h Mpc−1 that worsens with increasing
redshift. The stated accuracy of this version of HALOFIT is 5 per cent
for k < 1h Mpc−1 and 10 per cent up to 10h Mpc−1, which is
consistent with what is seen here. A similar plot for the original
Smith et al. (2003) version of HALOFIT shows large underpredictions
for k > 0.5h Mpc−1. From this point onwards, we only compare to
the revised Takahashi et al. (2012) version of HALOFIT.

In Fig. 3, we show how our model fares for cosmological pa-
rameters derived from recent data sets (see Table 3). Once again we
compare to COSMIC EMU and show results for both our calibrated halo
model and for the Takahashi et al. (2012) HALOFIT at z = 0.5. One
can see that the error from the halo-model approach rarely exceeds
2 per cent for k < 10h Mpc−1 for these cosmologies, with the worst
error being an overprediction of the amplitude of the BAO peaks
around k = 0.2h Mpc−1. This arises because we did not attempt to
model the exact non-linear damping of this feature in the power
spectrum, and so our prediction here is very close to the undamped
linear prediction. That our errors are better here than for the more
general models shown in Fig. 2 is because these models all lie close
to the centre of the COSMIC EMU parameter space (see Table 1). The
Takahashi et al. (2012) HALOFIT model works better at BAO scales,
but overpredicts the power at k > 0.5h Mpc−1 systematically at
around the 4 per cent level.

The model presented here performs similar to, but slightly better
than, the Takahashi et al. (2012) version of HALOFIT and has several
advantages. Foremost, because we retain the apparatus of the halo
model in our calculation, it means we can produce !2(k) to arbitrar-
ily high k in a physically motivated way. Even though such extreme
scales receive a small weight in lensing, they can be important if the
modelling is badly wrong in this regime (e.g. Harnois-Déraps et al.
2015). A polynomial-based fitting formula such as HALOFIT risks
generating pathological results when moving beyond the regime
constrained by simulations and it is not at all obvious how to extend
COSMIC EMU. In Fig. 4, we show a comparison of the power spectrum
predicted out to k = 100h Mpc−1 with different models, simply to
illustrate the range of behaviour at k > 10h Mpc−1. Given that no
simulations exist that could claim to accurately predict the matter
power spectrum to k = 100h Mpc−1 at z = 0, we cannot make any
quantitative statements about the accuracy of either model at these
extreme scales, although both perform comparably. The grey shaded
region in Fig. 4 delimits these extreme scales and it is interesting to
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1) Smoothing the transition with a fitting parameter:



2) Formation of pancakes (adhesion model along the pair longitudinal direction):
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where the contour over y again crosses the real axis be-
tween 0< y< %% 1. As in Ref. [19], this is a ‘‘sticky
model’’ that can be seen as a very simplified version of the
full 3D adhesion model. Since we do not modify the
transverse motion, the ‘‘adhesion’’ only takes place along
the longitudinal direction, which also serves as the signal
of shell crossing. Therefore, we only include planar struc-
tures (thin pancakes). To describe filaments, we should also
include some sticking along one transverse direction, but
this would require additional ingredients and free parame-
ters (e.g., to set the relative mass between filaments and
pancakes). Hence, for simplicity we only take into account
pancakes as in Eq. (42), which fits in a natural fashion in
our framework where we have already kept track of the
longitudinal separation.

As explained above, the shell-crossing correction is
nonperturbative, and the power spectrum of Eq. (42) is
identical to the power spectrum of Eq. (35) to all orders
over PL.

We compare in Fig. 7 the three Lagrangian-space power
spectra that we have obtained, the usual Zel’dovich ap-
proximation PZ, our nonlinear ansatz Pk, and its adhesion-
like continuationPc:w:. On large scales, the nonperturbative
correction is negligible, and we recover the perturbative
power spectrum Pk, which is somewhat larger than the
Zel’dovich power spectrum because of the nonzero skew-
ness S

$k
3 that allows us to ensure consistency with standard

perturbation theory up to one-loop order. On small scales,

the nonperturbative correction becomes dominant and
gives some extra power, associated with the formation of
pancakes, with a high-k tail 'k%2 that decreases more
slowly than the Zel’dovich-like tails (that are steeper than
k%3). The nonlinear power spectrum Pc:w: is the
Lagrangian ansatz that we use in this paper to describe
the cosmic web.

IV. COMBINING THE COSMIC WEB POWER
SPECTRUM WITH THE HALO MODEL

A. The halo model from a Lagrangian point of view

Because our goal is to build a unified model for the
power spectrum that applies from linear to highly nonlinear
scales, we must combine the perturbative approach de-
scribed in the previous section (which is systematic and
accurate but only applies to large scales) with phenome-
nological models (that are not systematic and only show an
accuracy of 10% but can be applied to small scales).
Following Refs. [11,15], we consider the halo model
from a Lagrangian point of view instead of the usual
Eulerian framework [43]. This provides a convenient
framework to include our Lagrangian perturbative ap-
proach within the halo model (the latter being mostly
used to describe small, highly nonlinear scales). In par-
ticular, the transition from the perturbative large scales,
driven by bulk flows, to the inner halo regions, driven by
virialization, takes place in a gradual fashion while satisfy-
ing matter conservation (i.e., without double counting).
Following Ref. [11], we split the average in Eq. (6) over

two terms, P1H and P2H, associated with pairs fq1;q2g that
belong either to a single halo or to two different halos,

PðkÞ ¼ P1HðkÞ þ P2HðkÞ; (43)

with

P1HðkÞ ¼
Z d!q

ð2!Þ3 F1Hð!qÞheik(!x % eik(!qi1H (44)

and

P2HðkÞ ¼
Z d!q

ð2!Þ3 F2Hð!qÞheik(!x % eik(!qi2H: (45)

Here the averages h( ( (i1H and h( ( (i2H are the conditional
averages, knowing that the pair of length !q belongs to a
single halo or to two halos, while F1H and F2H are the
associated probabilities. The approximation of spherical
halos in Lagrangian space gives, for the probability that the
pair belongs to a single halo [11],

F1Hð!qÞ¼
Z 1

&!q=2

d&

&
fð&Þ ð2qM%!qÞ2ð4qMþ!qÞ

16q3M
; (46)

where qM is the Lagrangian radius associated with the
mass M, M ¼ 4! "'q3M=3, and fð&Þ is the scaling function
that defines the halo mass function,
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FIG. 7 (color online). Matter density power spectrum at z ¼
0:35, as in Figs. 1 and 4. We show the results from N-body
simulations (data points), the nonlinear Zel’dovich power spec-
trum PZ [Eq. (16)], the nonlinear ansatz Pk [Eq. (35)], and the
adhesion-like continuation Pc:w: [Eq. (42)] for the cosmic web.
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or directly from the N-body simulations. In particular, shot
noise certainly explains part of the rise of the power spectrum
measured in the N-body simulations at z ¼ 3 for k >
20h Mpc"1 above our predictions (lower-right panel in
Fig. 8). This is clearly seen from the comparison with the
panels in the lower row obtained at lower redshift, which
probe deeper into the nonlinear regime before being affected
by shot noise, where we can see that the logarithmic power
spectrum follows the shape predicted from the halomodel. In
particular, at z ¼ 0:35we clearly see the slowing downof the
growth of!2ðkÞ ¼ 4!k3PðkÞ in the highly nonlinear regime,
and we would expect a similar behavior at z ¼ 3. (Actually,
wewould expect a slightly faster slowdown because the local
slope n of the linear power spectrum is redder.) Therefore, in
this regime it seems that semianalytical approaches like ours,
based on the halo model, are competitive with direct N-body
simulations. (At very high k, the semianalytic approaches are
expected to remain reasonable, because they are based on a
physically reasonable ansatz and/or assumption, whereas the
direct results from simulations suffer from shot noise.)

We show in Figs. 9 and 10 the relative deviation between
the power spectrum predicted by our model and the N-
body measurements. We obtain an accuracy of about 2%
up to k% 0:3h Mpc"1, and 5% up to k% 3h Mpc"1, for
z & 0:35. The small underestimation of the power spec-
trum on the transition scales (k% 0:5h Mpc"1 at z ' 1)
may be due to the fact that filaments are not explicitly
included in our model of the cosmic web. The accuracy
degrades rapidly in the highly nonlinear regime, because of
the uncertainty of the halo model and of the N-body
simulations themselves (in particular, because of shot noise
at very high k). Fortunately, as shown in Fig. 9, the
uncertainties of the halo model (i.e., the parameters of
halo profiles) do not contaminate the predictions for the

power spectrum on large scales, k < 1h Mpc"1. Therefore,
these large scales remain a robust probe of cosmology. This
is also one interest of such analytical approaches that are
complementary to numerical simulations: they allow us to
estimate the impact of different processes on the final
power spectrum and to estimate the range of wave numbers
that are not affected by small-scale uncertainties and can be
safely used to constrain cosmology up to a good accuracy.

2. Two-point correlation function

We show in Fig. 11 our results for the matter density
two-point correlation "ðxÞ, given by

"ðxÞ ¼ 4!
Z 1

0
dkk2PðkÞ sin ðkxÞ

kx
: (56)

As in previous works [11,15,65,66], we can see that using a
well-behaved perturbative contribution that includes one-
loop contributions provides a good accuracy on baryon
acoustic oscillation (BAO) scales. In particular, we repro-
duce the well-known damping of the baryonic peak at
%105h"1 Mpc as compared with linear theory. We can
see in the lower panel the transition between the two-halo
and one-halo contributions, at x% 1h"1 Mpc. As for the
power spectrum, we obtain a significant improvement over
previous studies [11,15], as we no longer underestimate the
two-point correlation on these transition scales. In particu-
lar, we recover the shape of the two-point correlation from
linear to highly nonlinear scales. Again, the two-halo con-
tribution becomes significantly greater than the linear cor-
relation (or the linear power spectrum in Fig. 8) on small
scales because of the adhesion-like continuation explained
in Sec. III C. This is more important at higher redshift
because the local slope of the linear power spectrum on
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FIG. 10 (color online). Relative deviation between the density
power spectrum predicted by our model and the result from
numerical simulations, at z ¼ 0:35 (squares), 1 (circles), and 3
(triangles). The solid lines are estimates of the effect of the
shot noise in numerical simulations (smaller impact at lower
redshift).
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FIG. 9 (color online). Relative deviation between the density
power spectrum predicted by our model and the result from
numerical simulations, at z ¼ 0:35 (black squares), 1 (red
circles), and 3 (blue triangles). We show the results (which
almost coincide) obtained using the mass-concentration relation
[Eq. (55)] and the ones from Refs. [63,64].
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perturbative Lagrangian 
approach

pancakes (longitudinal 
adhesion model)

stochastic and given by linear theory, and !Z loses its
initial convexity as !L grows with time, while in the
adhesion model we take its convex hull, convð!ZÞ, which
prevents shell crossing but gives rise to shocks [31–33]].
Then, convexity of !ðq; tÞ implies that "xk # 0 (i.e., the
longitudinal Eulerian separation does not change sign, for
any pair of particles) [40,41]. Then we can choose"xk < 0
as a criterion of shell crossing [19]. This is obvious in one
dimension and provides the adequate generalization to
higher dimensions for potential mappings. In the case of
the gravitational dynamics, the mapping is only potential
up to the second order of perturbation theory [42], but we
can still expect that it gives a useful criterion for the
formation of the first large-scale structures.

Therefore, we modify the ‘‘perturbative’’ longitudinal
probability distribution [Eq. (34)] by setting"xk ¼ 0 to all
pairs that had "xk < 0. More precisely, we define the
adhesion-like longitudinal probability distribution as

P ad
k ð"kÞ ¼ a1#ð"k > 0ÞP kð"kÞ þ a0#Dð"kÞ; (38)

where #ð"k > 0Þ is the Heaviside function (1 for "k > 0
and 0 for "k < 0). The parameters a0 and a1 are set by the
constraints h1i ¼ 1 (i.e., the probability distribution is
normalized to unity) and h"ki ¼ 1. From the expression
Eq. (34) we obtain

a1 ¼ ð1þ A1Þ&1 and a0 ¼ 1& a1 þ a1A0; (39)

where we introduce

An ¼
Z 0þþi1

0þ&i1

dy

2$i%2
"k

!%2
"k

y

"
nþ1

e
&’kðyÞ=%2

"k ; (40)

where the contour over y runs to the right of the pole at the
origin and to the left of the branch cut at ys ¼ && 1.
The coefficients An are nonperturbative and scale as

e
&ð&&1Þ=ð&%2

"k Þ, which gives

ða1 & 1Þ ' a0 ' e
&ð&&1Þ=ð&%2

"k Þ: (41)

Therefore, the ‘‘perturbative’’ distribution P k obtained
in Eq. (34) in Sec. III B 3 and its adhesion-like modification
[Eq. (38)] are identical to all orders of perturbation
theory.

We show in Fig. 6 the skewness S
"k
3 defined by this new

probability distribution [Eq. (38)], using either the pertur-
bative skewness [Eq. (25)] or the effective value [Eq. (27)]
for the perturbative part P k. On large scales, we recover
the skewness associated with the regular distribution
[Eq. (34)], with a very fast convergence because the de-
viation decays as 'e&ð"qÞ2=%2

v . On small scales, the skew-
ness increases and becomes positive in a fashion similar to
the behavior measured in the simulations. As for the nega-
tive sign in the perturbative regime that we explained in

Sec. III B, this can be understood from the dynamics.
Indeed, because of the sticking of particle pairs at "xk ¼
0, in the nonlinear regime (i.e., on small scales), which
becomes sensitive to this modification, the low-"k tail
becomes very sharp (it is zero for "k < 0), whereas the
high-"k tail still extends to infinity, albeit with an
exponential-like decay. Therefore, the global shape of the
probability distribution now shows a broader right tail, in
contrast with the perturbative regime shown in Fig. 5,
which now leads to a positive skewness. In the actual
gravitational case, there is no such exact sticking to
"xk ¼ 0, but there is a trapping within small virialized
halos. Thus, collapsed pairs remain boundwith a separation
set by the typical size xhalo of virialized halos. This plays the
role of the left-tail cutoff, which is no longer sharp at"xk ¼
0 but decays on a scale of order xhalo, whereas the right tail
still extends to infinity and is not strongly affected by
smaller-scale virialization (it corresponds to rare voids).
Of course, we cannot expect the simple model of Eq. (38)
to provide an accurate prediction for S

"k
3 , even when we use

the correct perturbative limit [Eq. (25)] on large scales.
However, we can check in Fig. 6 that it already provides a
good qualitative description. In particular, it captures the
dependence on redshift of the upturn of S

"k
3 , due to these

nonperturbative effects that occur after shell crossing.
Then, we modify the perturbative power spectrum

[Eq. (35)] by replacing the perturbative probability distri-
bution [Eq. (34)] with its adhesion-like extension
[Eq. (38)]. Substituting into Eq. (19) gives the cosmic
web power spectrum
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FIG. 6 (color online). Skewness S
"k
3 given by low-order per-

turbation theory [Eq. (25), upper dashed line] and by the effec-
tive value [Eq. (27), lower dashed line]. The solid lines that arise
from these two large-scale asymptotes are the predictions at
redshifts z ¼ 0:35, 1, 2 and 3 (from right to left) obtained from
the nonperturbative adhesion-like probability distribution
[Eq. (38)], determined by the corresponding perturbative part
P k. The points are the results from N-body simulations at z ¼
0:35 (squares), z ¼ 1 (diamonds), z ¼ 2 (triangles), and z ¼ 3
(circles).
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bLh (M)⇠Lmm(r) and ⇠2Vvm(r|M) = bLv (M)⇠Lmm(r). Here, once more, it is vital to include an
exclusion term that kills the 2H, 2V and HV terms inside halos and voids (see section 3.3).

Notice that ⇠hm(r|M) and ⇠vm(r|M) can be interpreted as the observed halo and void
profiles. The first term in eq. (2.41) models the inner part of the profile (e.g. NFW for the
halos), while the other terms are additional contributions that improve the profile prediction
in the outer regions.

In Fourier space, the halo-matter and void-matter power spectra gain additional con-
tributions. For instance, eq. (2.19) becomes

Phm(k|M) = P 2H
hm (k|M) + P 1H

hm (k|M) + PHV
hm (k|M) , (2.47)

and for voids
Pvm(k|M) = P 2V

vm(k|M) + P 1V
vm(k|M) + PHV

vm (k|M) , (2.48)

with

PHV
hm (k|M) =

Z
d lnM1

M1

⇢̄m

dnv

d lnM1
uv(k|M1)Phv(k|M1,M) , (2.49)

PHV
vm (k|M) =

Z
d lnM1

M1

⇢̄m

dnh

d lnM1
uh(k|M1)Phv(k|M1,M) , (2.50)

P 1V
vm(k|M) =

M

⇢̄m
uv(k|M) , (2.51)

P 2V
vm(k|M) =

Z
d lnM1

M1

⇢̄m

dnv

d lnM1
uv(k|M1)Pvv(k|M1,M) . (2.52)

2.3 The Halo Void Dust Model

We now consider a variation of the HVM: in addition to halos and voids, we consider that in
the space between these structures there is a significant fraction of matter that follows the
linear regime. We refer to this underlying linear matter field as ‘dust’ and modify eq. (2.25)
into

⇢(x) =
halosX

i

⇢h(x� xi|Mi) +
voidsX

j

⇢v(x� xj |Mj) + ⇢d(x) , (2.53)

where ⇢d(x), the dust density, is the residual matter that follows linear theory and is not
inside any structure (halos or voids).

Matter-matter auto-correlation. In this case, the matter two-point correlation function
will be given by

⇠mm(r) =
1

⇢̄2m

⇥h⇢(x)⇢(x+ r)i � ⇢̄2m
⇤

= ⇠1Hmm + ⇠2Hmm + ⇠1Vmm + ⇠2Vmm + 2⇠HV
mm + 2⇠HD

mm + 2⇠V D
mm + ⇠2Dmm , (2.54)

where terms involving dust are given by

⇠HD
mm(r) =

Z
d lnM

M

⇢̄m

dnh

d lnM

Z
d3y uh(y|M)⇠hd(y+ r|M) , (2.55)

⇠V D
mm(r) =

Z
d lnM

M

⇢̄m

dnv

d lnM

Z
d3y uv(y|M)⇠vd(y+ r|M) , (2.56)

⇠2Dmm(r) = ⇠dd(r) . (2.57)
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The new terms above quantify contributions to the matter-matter correlation function coming
from the following pairs of points: one in a halo and one at a dust point (⇠HD

mm); one in a
void and one at a dust point (⇠V D

mm); and at two di↵erent dust points (⇠2Dmm). Since dust is
considered to be structureless, we have ⇠1Dmm(r) = 0.

As mentioned above, we consider the matter in dust to be distributed in the Universe
following linear perturbations. As a result, correlation functions including dust are given by

⇠hd(x|M) = b̄dmbLh (M)⇠Lmm(x) , (2.58)

⇠vd(x|M) = b̄dmbLv (M)⇠Lmm(x) , (2.59)

⇠dd(x|M) =
⇣
b̄dm

⌘2
⇠Lmm(x) , (2.60)

where b̄dm is the mean bias of the matter in dust, defined as

b̄dm ⌘ 1� b̄hm � b̄vm , (2.61)

to guarantee that the total matter is not biased with respect to itself. The mean matter
density is now given by

⇢̄m = ⇢̄hm + ⇢̄vm + ⇢̄dm , (2.62)

such that this expression naturally defines the matter density in dust ⇢̄dm.
The matter power spectrum in the HVDM is given by

Pmm(k) = P 1H
mm(k) + P 2H

mm(k) + P 1V
mm(k) + P 2V

mm(k)

+2PHV
mm (k) + 2PHD

mm (k) + 2P V D
mm(k) + P 2D

mm(k) , (2.63)

where new terms with dust are given by

PHD
mm (k) = b̄dm

Z
d lnM

M

⇢̄m

dnh

d lnM
uh(k|M)bLh (M)PL

mm(k) , (2.64)

P V D
mm(k) = b̄dm

Z
d lnM

M

⇢̄m

dnv

d lnM
uv(k|M)bLv (M)PL

mm(k) , (2.65)

P 2D
mm(k) =

⇣
b̄dm

⌘2
PL
mm(k) . (2.66)

Cross-correlations. The HVDM adds an extra term to the HVM prediction for the halo-
matter and void-matter spectra in eqs. (2.47) and (2.48). These are respectively:

PHD
hm (k|M) = b̄dmbLh (M)PL

mm(k) , (2.67)

P V D
vm (k|M) = b̄dmbLv (M)PL

mm(k) . (2.68)

For the cross-correlations, the corrections to eqs. (2.41) and (2.42) are

⇠HD
hm (x|M) = b̄dmbLh (M)⇠Lmm(r) , (2.69)

⇠V D
vm (x|M) = b̄dmbLv (M)⇠Lmm(r) . (2.70)

We now proceed to present and fit the ingredients of the HVM and HVDM. On top of
the halo properties (profile, abundance and linear bias), which are required in the HM, we
also need the corresponding void properties for the HVM and the HVDM.

– 11 –
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Halo. For halos, the most widely used density profile is the Navarro-Frenk-White (NFW)
profile [78]

⇢NFW(r|M) =
⇢s

c(M)r/rvir(1 + c(M)r/rvir)2
, (3.1)

where ⇢s is the characteristic density (a normalization), c is the concentration parameter [80]
and rvir is the virial radius defined as the radius of a sphere with density equal to �vir times
the matter density of the universe. �vir = 360 in this work, which is very close to the virial
overdensity computed using spherical collapse (�vir ⇡ 334). The NFW profile describes two
power laws — r�1 for r ⌧ rvir/c and r�3 for r � rvir/c. The profile’s Fourier transform,
truncated at rvir, is given by

uh(k|M) =

Z rvir

0

4⇡r2

M

sin kr

kr
⇢NFW(r|M)dr . (3.2)

See also [81] for an analytical expression.
We compare the NFW profile with the measurements from our simulation in the left

panel of figure 2. We can see that the NFW profile agrees with the data up to twice the halo
radius, so we will use it in this work to describe the matter distribution inside halos. The
matter distribution in the outer regions is under-predicted because this matter comes from
other structures. As we will show in section 4.2, the matter distribution in the outer region
is well explained by the HM as well as by the HV(D)M, which add a correction accounting
for the matter coming from nearby halos and voids.

Void. For voids, the most widely used density profile is the Hamaus-Sutter-Wandelt (HSW)
profile [79]

⇢v(r)

⇢̄m
� 1 = �c

1� (r/rs)↵

1 + (r/rv)�
, (3.3)

where rs is the radius for which ⇢v = ⇢̄m, rv is the e↵ective void radius and (↵,�, �c) are free
parameters. Notice that �c in this equation is the void central density, and not the critical
density computed in spherical collapse.

Since the void finder used in this work identifies voids with an empty center, as explained
above, we propose a new fitting function. We use a hyperbolic tangent with a single free
parameter, in such a way that its value and its first derivative vanish in the center

⇢v(r|rv)
⇢̄m

=
1

2


1 + tanh

✓
y � y0
s(rv)

◆�
, (3.4)

[Factor of �1 removed from the above equation] where y = ln (r/rv) and y0 = ln (r0/rv).
The radius r0 is fixed by requiring that the profile integral up to rv is �v = 0.2, such that we
can parameterize r0(s) (in units of Mpc/h) as a second order polynomial function: r0(s) =
0.37s2 + 0.25s + 0.89, where s is the single free parameter for this profile. The parameter
s plays a similar role of the concentration parameter in the NFW profile, as it determines
how fast the density grows as we move away from the void center. For the simulation and
specific void finder considered in this work, we have checked that this parameter depends
very weakly on the void radius, so we have fixed it to s = 0.75, which is the average value
of the best fit for all bins of void radius. Similarly to what was done for halos, we define the
Fourier transform of the void profile as

uv(k|M) =

Z r
v

0

4⇡r2

M

sin kr

kr
⇢v(r|M)dr . (3.5)
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where �c is the critical density for halo formation linearly extrapolated (�c ⇡ 1.686 for EdS),
�v is the critical density for void formation linearly extrapolated (�v ⇡ �2.7 for EdS), and
�T = |�v| + �c. Here f1SB

h is the Press-Schechter mass function [85], where the label 1SB
means one static barrier. Likewise, fTinker

h is the Tinker et al. mass function an (A, a, b, c)
are free parameters [25]. Finally, f2LDB

h is the excursion-set prediction for two linear di↵usive
barriers (2LDB) and (�h, Dh) are free parameters describing respectively the slope and the
di↵usive coe�cient of the barriers [74].

It is important to notice a special case of the 2LDB model, in which one takes �h =
Dh = 0. This describes two static barriers (2SB) [86, 87]

f2SB
h (�) = f2LDB

h (�,�h = 0, Dh = 0) . (3.12)

For that case, the excursion set realizations for sure will cross one of the two barriers, such
that the constraint in eq. (2.35) is naturally satisfied (more about this in section 3.4 and
appendix A).

We note that the f1SB
h and fTinker

h mass functions are normalized to unity whereas
f2LDB
h is not, because it already takes into account the existence of voids. In fact, f2LDB

h will
only be properly normalized when we also consider the contribution coming from voids and
correctly choose free parameters (�, D) (more about this in section 3.4).

In the left panel of figure 3, we compare the measured abundance and predictions of the
models above. We see that both the Tinker and the 2LDB models are in good agreement with
the simulation with a scatter ⇠ 10% while the PS model has a larger deviation of ⇠ 40% for
small masses. The fitted values of Dh and �h are shown in table 2. We do not display results
for the 2SB case because its mass function provides very similar results to the 1SB case in
the mass range displayed in the plots; in other words, the cloud-in-void e↵ect is negligible in
this range.

Void. For cosmic voids, the mass function is usually expressed in terms of the void radius R

dnv

d lnR
=

fv(�)

V (R)

d ln��1

d lnR
, (3.13)

Another di↵erence is that the quantity conserved from the linear to the non-linear theory
is not the number density, as is the case for halos. As discussed in Jennings et al. [87], the
correct quantity to be conserved is the volume density of voids

V (r)dn = V (rL)dnL|r
L

(r) , (3.14)

where the relation between the linear and the non-linear radius of voids is r = ��1/3
v rL ⇡

1.71rL.
In this work, we consider the following multiplicity functions for voids:

f1SB
v (�) =

✓
2

⇡

◆ 1
2 �v
�

exp
��2�2v/2�

2
�
, (3.15)

f2LDB
v (�) = 2(1 +Dv) exp


� �2

v�
2

2(1 +Dv)
� �v|�v|

1 +Dv

�

⇥
X

n

n⇡

�2T
�2 sin

✓
n⇡|�v|
�T

◆
exp


�n2⇡2(1 +Dv)

2�2T
�2

�
, (3.16)
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where �c is the critical density for halo formation linearly extrapolated (�c ⇡ 1.686 for EdS),
�v is the critical density for void formation linearly extrapolated (�v ⇡ �2.7 for EdS), and
�T = |�v| + �c. Here f1SB

h is the Press-Schechter mass function [85], where the label 1SB
means one static barrier. Likewise, fTinker

h is the Tinker et al. mass function an (A, a, b, c)
are free parameters [25]. Finally, f2LDB

h is the excursion-set prediction for two linear di↵usive
barriers (2LDB) and (�h, Dh) are free parameters describing respectively the slope and the
di↵usive coe�cient of the barriers [74].

It is important to notice a special case of the 2LDB model, in which one takes �h =
Dh = 0. This describes two static barriers (2SB) [86, 87]

f2SB
h (�) = f2LDB

h (�,�h = 0, Dh = 0) . (3.12)

For that case, the excursion set realizations for sure will cross one of the two barriers, such
that the constraint in eq. (2.35) is naturally satisfied (more about this in section 3.4 and
appendix A).

We note that the f1SB
h and fTinker

h mass functions are normalized to unity whereas
f2LDB
h is not, because it already takes into account the existence of voids. In fact, f2LDB

h will
only be properly normalized when we also consider the contribution coming from voids and
correctly choose free parameters (�, D) (more about this in section 3.4).

In the left panel of figure 3, we compare the measured abundance and predictions of the
models above. We see that both the Tinker and the 2LDB models are in good agreement with
the simulation with a scatter ⇠ 10% while the PS model has a larger deviation of ⇠ 40% for
small masses. The fitted values of Dh and �h are shown in table 2. We do not display results
for the 2SB case because its mass function provides very similar results to the 1SB case in
the mass range displayed in the plots; in other words, the cloud-in-void e↵ect is negligible in
this range.

Void. For cosmic voids, the mass function is usually expressed in terms of the void radius R

dnv

d lnR
=

fv(�)

V (R)

d ln��1

d lnR
, (3.13)

Another di↵erence is that the quantity conserved from the linear to the non-linear theory
is not the number density, as is the case for halos. As discussed in Jennings et al. [87], the
correct quantity to be conserved is the volume density of voids

V (r)dn = V (rL)dnL|r
L

(r) , (3.14)

where the relation between the linear and the non-linear radius of voids is r = ��1/3
v rL ⇡

1.71rL.
In this work, we consider the following multiplicity functions for voids:

f1SB
v (�) =
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Figure 7. Matter-matter power spectrum using the HVM prescription (left) and the HVDM pre-
scription (right). The bottom panel shows the relative deviation of these models compared to the
prediction from HaloFit. Notice that the HVM improves a few percent the HM prediction. Consider-
ing dust, the improvement is larger than 6%. At both the small and large k limit, the HV(D)M agrees
with the HM. Notice that the HM prediction changes sensibly as we consider di↵erent ingredients
(left versus right).

We must emphasize that the errors in the matter-matter spectrum could be severely
reduced using other prescriptions (e.g. using Sheth & Tormen mass function and linear bias
for halos) or using di↵erent values for the halo and void overdensities (e.g. using �h = 200 for
halos). When we choose a di↵erent combination of ingredients and values, in a manner that
is not fully self-consistent, we can reach an accuracy of about 11% for the HM and 5% for the
HVDM, showing that the 6% improvement of the HVDM remains. However, the main goal
of this work is not to obtain the best overall result, but using a framework that allow us to
compare the HM to the HV(D)M and that correctly fixes the normalization on large scales.

We also highlight that the slight overprediction in the matter power spectrum on large
scales (k . 0.2) in the HM and HV(D)M occurs because of the 1Halo (and 1Void) term(s)
that become a shot-noise-like term for small k’s. This term can be suppressed using the
formalism developed in [43] and therefore is not a relevant issue.

4.2 Halo-matter spectrum and observed halo profile

As mentioned in section 2, one of the main features of the HM is its ability to make predictions
also for cross-correlations. The HVM correction for the halo-matter power spectrum is given
by eq. (2.47) and the dust extra term by eq. (2.67).

In the left panels of figure 8, we display the di↵erence between the HM and the HVM
in the halo-matter power spectrum for two bins of mass. Void and dust contributions to
halo statistics are expected to be small compared to the self contribution of halos, which
dominate the matter component. For instance PHV

hm only gives a small contribution, and the
HVM reproduces the HM with marginal improvement. We can see that for small halo masses,
the typical 1Halo term scale is smaller, such that this term does not correct the linear power

– 25 –
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BAO damping

1) Resummations or Lagrangian approaches:

The BAO peak is rather easy to obtain from Lagrangian approaches, or resummations that 
capture the large-scale (IR) displacements (Lagrangian approach in disguise).

This is clear from the comparison between the Eulerian linear theory and the (Lagrangian linear) 
Zeldovich approximation.

damping of the oscillations in Fourier space. As shown by
Fig. 14, this effect is already captured by the Zel’dovich
power spectrum PZ [Eq. (16)], which corresponds to a
Gaussian approximation for particle displacements.
However, in agreement with the analysis in Sec. III A,
this also yields an overall damping of the power spectrum
that is too strong. Then, the perturbative approximation Pk

[Eq. (35)] increases the power by going beyond the
Gaussian approximation (taking into account the exact
one-loop contribution through the skewness of the relative
displacement, as in Fig. 5), and the nonperturbative
adhesion-like continuation of Sec. III C, which enters the
two-halo term P2H [Eq. (52)], provides a further increase

(associated with pancakes). These two nonlinear correc-
tions, which involve high-order mode couplings, do not
keep much of the initial linear oscillations, and this even
further damps the relative importance of the oscillations at
high k. Finally, the one-halo contribution, which corre-
sponds to the difference PðkÞ # P2HðkÞ, only becomes
important for k > 0:23h Mpc#1 and is also very smooth.
We show the real-space correlation function associated

with these different models in Fig. 15. We clearly see how
the damping of the oscillations found in Fig. 14 corre-
sponds to a broadening of the real-space peak, for all
nonlinear models. One striking result is that all nonlinear
correlations are very close to each other, despite the dif-

ferences seen in Fig. 14. In particular, !k, !2H, and ! cannot
be distinguished in this figure. This shows that small-scale
virial motions are largely subdominant as compared with
large-scale bulk flows, with respect to the broadening of
the acoustic peak. Moreover, the Zel’dovich approximation
!Z already provides a remarkably good description of the
broadening, even though it shows a small but noticeable
departure from the simulations. (Of course, these curves
start to show significant deviations from each other on
smaller nonlinear scales, x < 4h#1 Mpc.) This shows that
even though the baryon acoustic peak is significantly
modified from linear theory, all reasonable Lagrangian-
space-based models are able to model this nonlinear evo-
lution (see also Refs. [16,29]). This also holds for the
simplest one (i.e., the Zel’dovich approximation), although
it shows small departures from simulations, and higher-
order models (i.e., that include one-loop corrections) pro-
vide a very good match. This explains why reconstruction
techniques [71], which are inspired by the Zel’dovich
approximation, perform very well. For observational
purposes, this confirms again that the baryon acoustic
peak is a very robust probe of cosmology [70], and that the
real-space correlation may be more convenient than the
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2) Fit the damping Mead et al. (2015)

1964 A. J. Mead et al.

The dotted lines in Fig. 1 give a preview of how fruitful this ap-
proach is in providing an accurate model of the non-linear matter
power spectrum.

3.2.1 Adapting the two-halo term

The two-halo term governs power on large scales and is given in its
original form in equation (10). Linear theory slightly overpredicts
the matter power spectrum around the quasi-linear scale and does
a particularly poor job of modelling damping of the BAO peaks
at z = 0, which are damped by the quasi-linear effect of small-
scale displacements. Modelling of the minutiae of the damping of
the BAO peaks is beyond the scope of this work, but we treat the
damping around these scales based on a model for the damping pre-
dicted from perturbation theory by Crocce, Pueblas & Scoccimarro
(2006), where

!2
lin(k) → e−k2σ 2

v !2
lin(k) , (21)

and σ 2
v is the 1D linear-theory displacement variance given by

σ 2
v = 1

3

∫ ∞

0

!2
lin(k)
k3

dk . (22)

The derivation of this expression assumes that the scales of interest
are large compared to σ v, such that the damping factor cannot be
trusted when kσ v is large. We found that the best fit to numerical
data at this scale required an expression equal to equation (21) to
quadratic order, but without the extreme high-k truncation:

!
′2
2H(k) =

[
1 − f tanh2 (kσv/

√
f )

]
!2

lin(k) , (23)

where f is a free parameter in our fit. In the kσ v ≫ 1 limit, equation
(23) reduces to !2

2H = (1 − f )!2
lin.

3.2.2 Adapting the one-halo term

We add freedom to the canonical form of the one-halo term in
equation (8) in a number of ways. The first concerns the behaviour
of the one-halo term at large scales, where the Universe tends to
homogeneity faster than predicted by Poisson shot noise. At large
scales, the one-halo term in equation (8) decays as !2 ∝ k3, whereas
the linear power decays approximately ∝ k4, so it is inevitable that
the one-halo term becomes greater than linear theory on very large
scales, which is unphysical. This effect arises because haloes are
treated as randomly placed in the standard halo-model formalism,
when in fact they are clustered and distributed more smoothly than
uniform random on very large scales. It has been suggested that a
large-scale cut-off in the one-halo term can be physically explained
as ‘halo exclusion’ (Smith et al. 2007), an effect that arises because,
by definition, haloes cannot exist within each other. This is not
captured by the standard halo-model power calculation because
that calculation assumes that haloes are randomly placed, so that the
probability of haloes overlapping is non-zero. Accounting for halo
exclusion damps the halo-model power on large scales. Regardless
of the exact details of exclusion, we modify the one-halo term so
that it decays more rapidly than linear theory at large scales:

!
′2
1H = [1 − e−(k/k∗)2

]!2
1H , (24)

where !2
1H is the same as in equation (8) and k∗ is a free parameter.

Within the one-halo term, parameters that we allow to vary are
the virialized overdensity of a halo, !v, defined in equation (13),
and the linear collapse threshold, δc, defined in equation (17). Both
of these parameters derive from the spherical model (e.g. p. 488 of

Peacock 1999) and rely on a somewhat arbitrary definition of the
exact time of halo collapse. The variation of !v can be predicted
theoretically from the spherical model, and Bryan & Norman (1998)
provide a fitting formula1 for a $CDM cosmology

!v = 18π2 + 82[%m(z) − 1] − 39[%m(z) − 1]2

%m(z)
. (25)

This suggests that !v increases as the universe deviates from
%m = 1.

In standard theory, δc ≃ 1.686 but we allow this number to
be a free parameter in our fit to power-spectrum data. Note that
changing δc changes the relationship between ν and the halo mass
(equation 17). This means that the ‘effective’ mass function we
invoke to improve !2(k) predictions will not necessarily accurately
represent the mass function that might be measured in simulations.

Fitted halo relations, such as the mass function and mass–
concentration relation, depend upon how haloes are defined when
identified in simulations. Therefore, the variations of !v in our fit-
ted halo model may not follow the simple theoretical variation in
equation (25) exactly, but we assume that the trend of increased !v

as the universe deviates from %m = 1 will serve as a useful initial
guide when we explore parameter space. In addition, for flat models
with a single component of dark energy, it is expected that !v would
be a function of %m(z) only and this will be a useful principle in
parametrizing fitting formulae. Increasing !v has the effect of in-
creasing the internal density of haloes and thus decreases the virial
radius of a halo of a fixed mass, thus increasing small-scale power.
Increasing δc means the linear density field has to reach higher
values before collapse can occur [in the Press & Schechter (1974)
approach], the result of which is that the density field is dissected
into more haloes of lower mass, which will reduce the amplitude
of the shot-noise component of the one-halo term and thus reduce
power.

One further free parameter is η, which we use to alter the halo
window function via

W (k,M) → W (νηk, M) , (26)

changing the halo profile in a mass-dependent way but leaving ν = 1
haloes unaltered and the individual halo masses unchanged. For
η > 0 higher mass (ν > 1) haloes are puffed out, while lower mass
haloes are contracted, both at constant virial radius: η > 0 decreases
the power whereas η < 0 increases it. This extra ingredient was
introduced to control the curvature of the power spectrum beyond
k ∼ 1h Mpc−1, where the filtering effect from the typical haloes has a
major effect on the shape of the one-halo term. As we move to higher
k values, the properties of lower mass haloes become increasingly
important. It is difficult for the one-halo term to track to the smallest
scales, and correcting this requires an empirical perturbation of the
halo profiles. Additionally, we allow ourselves to vary the amplitude
of the concentration–mass relation: A in equation (14).

3.2.3 Full power

A well-known defect in the halo model is in the transition between
the one- and two-halo terms, the so-called quasi-linear regime. In
the standard halo model, the transition is modelled by a simple
sum of the one- and two-halo terms (equation 11), but this is ob-
viously deficient. At z = 0, this transition scale is approximately

1 Equation (25) differs slightly from that in Bryan & Norman (1998) because
we work with respect to the matter density, rather than critical density.
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shown by the nonlinear power spectrum. However, this is
only a misleading coincidence: the ‘‘true’’ perturbative
power spectrum Ppert, of which P1-loopðkÞ is only a
second-order approximation, actually shows a faster de-
crease at high k and the growth of the nonlinear power
spectrum PðkÞ is due to nonperturbative effects that are not
included in any perturbative scheme based on the single-
stream approximation. This emphasizes the danger of
comparing various perturbative approaches (or more gen-
eral analytic models) with numerical simulations, which do
not separate between the different contributions to the
power spectrum (e.g., originating from perturbative and
nonperturbative scales). Thus, a seemingly good agree-
ment between a perturbative prediction and the full
nonlinear power spectrum on transition scales is not nec-
essarily meaningful. Because a non-negligible part of the
power comes from effects that are not included in the
model, a good match is likely to be a coincidence rather
than the result of a very realistic and accurate modeling,
and it may even become a problem as one tries to improve
the model by adding these other effects.

As advocated in [8,9], it is possible to reorganize the
standard perturbation theory by factoring out a Gaussian
damping term e#k2!2

v , where !2
v ¼ hj!ij2i=3 is the vari-

ance of the linear one-point displacement along one
dimension. We denote this expansion as

PpertðkÞ ¼ e#k2!2
v

X1

n¼1

PðnÞ
!v ðkÞ with PðnÞ

!v / ðPLÞn; (11)

and from Eq. (8) each term reads as

PðnÞ
!v ðkÞ ¼

Z dq

ð2"Þ3 e
ikq#

% be#1
2k

2½#2!2
kþð1##2Þ!2

?#2!2
v(#c ð#ikq#!2

$Þ=!2
$ cðPLÞn :

(12)

The prefactor e#k2!2
v in Eq. (11) arises from the large-

distance limit of the Gaussian term in Eq. (8). Indeed, at
large separation length, q ! 1, the two particles become
uncorrelated and !2

k and !2
? converge to 2!2

v. [This also

means that for large q the Gaussian term in Eq. (12) goes to
zero, which simplifies the numerical computation.] Again,
although the explicit expression (12) derives from a
Lagrangian-space formulation, the expansion (11) is usu-
ally computed from a Eulerian-space approach and does
not require introducing a Lagrangian-space framework.

The two expansions (9) and (11) can be derived from
each other for any truncation order N. For instance, from
the definitions (9) and (11) we obtain at once

PðnÞ
SPTðkÞ ¼

Xn#1

p¼0

ð#k2!2
vÞp

p!
Pðn#pÞ
!v ðkÞ: (13)

[This is in fact how we computed the standard high-order

terms PðnÞ
SPT because the terms PðnÞ

!v are better behaved.]

We show the first seven partial series of the expansion
(12) in Fig. 2. We recover the well-known property [8,21]
that this reorganized expansion is much better behaved
than the standard expansion (9). This is partly artificial as
this is mostly due to the too strong Gaussian cutoff e#k2!2

v .
As explained for instance in [27,28], this damping only
occurs for different-time propagators or power spectra and
vanishes for equal-time statistics, which show a smoother
power-law decline at high k (as for the Zel’dovich power
spectrum [26,27,29]). Then, the series in Eq. (11) must

compensate for this too strong cutoff and behave as ek
2!2

v ,
up to power-law corrections, which gives contributions

of the form e#k2!2
vPðnÞ

!v ðkÞ ) e#k2!2
vðk!vÞ2n=n! that are

positive and well ordered, with a sharp peak around
kn )

ffiffiffi
n

p
=!v. Nevertheless, this reorganization of the per-

turbative expansion provides a very regular convergence to
the perturbative power spectrum (6), at least up to order
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FIG. 2 (color online). Upper panel: reorganized perturbative
expansion (11) of the power spectrum (6), with the Gaussian
prefactor e#k2!2

v . We show the partial series truncated at order
N ¼ 1; 2; . . . ; 7, as well as the resummed perturbative power
spectrum Ppert. Lower panel: relative deviation between these

partial series and the resummed perturbative power spectrum
Ppert of Eq. (6).

PATRICK VALAGEAS PHYSICAL REVIEW D 88, 083524 (2013)

083524-4

all PT orders are 
now positive:

In this framework, the functions ’ðyÞ and c ðyÞ depend
on the scale q, but they do not depend on redshift nor on the
amplitude of the linear power spectrum PL. Therefore, the
‘‘standard’’ perturbative expansion over powers of PL of
the power spectrum (1) can be recovered by expanding
Eq. (8) over powers of PL, that is, over powers of the linear
displacement variances !2

k, !
2
?, and !2

". We denote this

‘‘standard perturbation theory’’ expansion as

PpertðkÞ ¼
X1

n¼1

PðnÞ
SPTðkÞ with PðnÞ

SPT / ðPLÞn; (9)

and from Eq. (8) each term reads as

PðnÞ
SPTðkÞ¼

Z dq

ð2#Þ3e
ikq$

$ be%1
2k

2½$2!2
kþð1%$2Þ!2

?(%c ð%ikq$!2
"Þ=!2

" cðPLÞn ; (10)

where b. . .cðPLÞn denotes the term of order ðPLÞn of the
expression between the two delimiters. Although the ex-
plicit expression (10) derives from the Lagrangian-space
formulation (6) within our framework, the standard expan-
sion of the form (9) is usually computed from a Eulerian-
space approach. Being uniquely defined as the expansion
over powers of PL, the method of computation does not
matter and no trace of the Lagrangian-space framework
remains in this expansion, which can be fully defined
within a Eulerian-space approach.

Because of the approximations involved in the model
(6), this perturbative expansion is only exact up to second
order P2

L. However, we can expect its main features to be
correct as the power spectrum built in Ref. [17] has been
shown to provide a good quantitative match to numerical
simulations and it is based on a realistic physical modeling
[e.g., the probability distribution function P ð"Þ of relative
displacements that underlies Eq. (6) is well behaved].

We show the first seven partial series of the expansion
(9) in Fig. 1. We recover the well-known behavior of the
standard perturbation theory [8,21], which has already
been exactly computed up to two-loop order, or up to
very high order for the simpler Zel’dovich dynamics. As
seen in the upper panel, the amplitude of higher orders
grows increasingly fast at high k, so that the series (9) is
badly behaved and cannot be used to compute the real-
space correlation function because of the divergent high-k
tails. However, on quasilinear scales, k & 0:4hMpc%1 at
z ¼ 0:35, the series seems to converge, at least up to order
N ¼ 7. Nevertheless, the convergence is not very regular,
as the series truncated at orders N ¼ 2, 4, or 6 shows a
stronger deviation from the full perturbative power (8) than
the previous ordersN ¼ 1, 3, or 5 (except on the very large
scales). This faster convergence of odd-order partial series
is even more clearly seen in the lower panel. This is due to

the change of signs of the fast growing contributions PðnÞ
SPT.

The nonlinear power spectrum (in the convergence do-
main) arises from cancellations between the different terms

PðnÞ and this explains why, for some values of N going to
order N þ 1 can worsen the result on scales that have not
converged yet, because some required counterterms are
included in the subsequent order N þ 2. In particular,
while going to third order over PL (i.e., two-loop order in
terms of the usual perturbative diagrams) significantly
extends the range of validity of the prediction as compared
with the linear or second-order approximations, a better
approximation requires going to fifth order.
On the other hand, if we compare the partial series (9)

with the full nonlinear power spectrum PðkÞ measured in
numerical simulations, or given by Eq. (1), we find that the
second-order (i.e., one-loop) approximation fares best than
all other truncations on a broad range of scale. This is
because k1:5P1-loopðkÞ happens to show a slow rise beyond
quasilinear wave numbers that is similar to the growth
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FIG. 1 (color online). Upper panel: ‘‘standard’’ perturbative
expansion over powers of PL of the power spectrum (6), as in
Eq. (9). We show the partial series truncated at order N ¼
1; 2; . . . ; 7 (the case N ¼ 1 is simply the linear power spectrum
PL), as well as the resummed perturbative power spectrum Ppert,

at redshift z ¼ 0:35. Lower panel: relative deviation between
these partial series and the resummed perturbative power spec-
trum Ppert of Eq. (6).
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shown by the nonlinear power spectrum. However, this is
only a misleading coincidence: the ‘‘true’’ perturbative
power spectrum Ppert, of which P1-loopðkÞ is only a
second-order approximation, actually shows a faster de-
crease at high k and the growth of the nonlinear power
spectrum PðkÞ is due to nonperturbative effects that are not
included in any perturbative scheme based on the single-
stream approximation. This emphasizes the danger of
comparing various perturbative approaches (or more gen-
eral analytic models) with numerical simulations, which do
not separate between the different contributions to the
power spectrum (e.g., originating from perturbative and
nonperturbative scales). Thus, a seemingly good agree-
ment between a perturbative prediction and the full
nonlinear power spectrum on transition scales is not nec-
essarily meaningful. Because a non-negligible part of the
power comes from effects that are not included in the
model, a good match is likely to be a coincidence rather
than the result of a very realistic and accurate modeling,
and it may even become a problem as one tries to improve
the model by adding these other effects.

As advocated in [8,9], it is possible to reorganize the
standard perturbation theory by factoring out a Gaussian
damping term e#k2!2

v , where !2
v ¼ hj!ij2i=3 is the vari-

ance of the linear one-point displacement along one
dimension. We denote this expansion as

PpertðkÞ ¼ e#k2!2
v

X1

n¼1

PðnÞ
!v ðkÞ with PðnÞ

!v / ðPLÞn; (11)

and from Eq. (8) each term reads as

PðnÞ
!v ðkÞ ¼

Z dq

ð2"Þ3 e
ikq#

% be#1
2k

2½#2!2
kþð1##2Þ!2

?#2!2
v(#c ð#ikq#!2

$Þ=!2
$ cðPLÞn :

(12)

The prefactor e#k2!2
v in Eq. (11) arises from the large-

distance limit of the Gaussian term in Eq. (8). Indeed, at
large separation length, q ! 1, the two particles become
uncorrelated and !2

k and !2
? converge to 2!2

v. [This also

means that for large q the Gaussian term in Eq. (12) goes to
zero, which simplifies the numerical computation.] Again,
although the explicit expression (12) derives from a
Lagrangian-space formulation, the expansion (11) is usu-
ally computed from a Eulerian-space approach and does
not require introducing a Lagrangian-space framework.

The two expansions (9) and (11) can be derived from
each other for any truncation order N. For instance, from
the definitions (9) and (11) we obtain at once

PðnÞ
SPTðkÞ ¼

Xn#1

p¼0

ð#k2!2
vÞp

p!
Pðn#pÞ
!v ðkÞ: (13)

[This is in fact how we computed the standard high-order

terms PðnÞ
SPT because the terms PðnÞ

!v are better behaved.]

We show the first seven partial series of the expansion
(12) in Fig. 2. We recover the well-known property [8,21]
that this reorganized expansion is much better behaved
than the standard expansion (9). This is partly artificial as
this is mostly due to the too strong Gaussian cutoff e#k2!2

v .
As explained for instance in [27,28], this damping only
occurs for different-time propagators or power spectra and
vanishes for equal-time statistics, which show a smoother
power-law decline at high k (as for the Zel’dovich power
spectrum [26,27,29]). Then, the series in Eq. (11) must

compensate for this too strong cutoff and behave as ek
2!2

v ,
up to power-law corrections, which gives contributions

of the form e#k2!2
vPðnÞ

!v ðkÞ ) e#k2!2
vðk!vÞ2n=n! that are

positive and well ordered, with a sharp peak around
kn )

ffiffiffi
n

p
=!v. Nevertheless, this reorganization of the per-

turbative expansion provides a very regular convergence to
the perturbative power spectrum (6), at least up to order
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FIG. 2 (color online). Upper panel: reorganized perturbative
expansion (11) of the power spectrum (6), with the Gaussian
prefactor e#k2!2

v . We show the partial series truncated at order
N ¼ 1; 2; . . . ; 7, as well as the resummed perturbative power
spectrum Ppert. Lower panel: relative deviation between these

partial series and the resummed perturbative power spectrum
Ppert of Eq. (6).
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The dotted lines in Fig. 1 give a preview of how fruitful this ap-
proach is in providing an accurate model of the non-linear matter
power spectrum.

3.2.1 Adapting the two-halo term

The two-halo term governs power on large scales and is given in its
original form in equation (10). Linear theory slightly overpredicts
the matter power spectrum around the quasi-linear scale and does
a particularly poor job of modelling damping of the BAO peaks
at z = 0, which are damped by the quasi-linear effect of small-
scale displacements. Modelling of the minutiae of the damping of
the BAO peaks is beyond the scope of this work, but we treat the
damping around these scales based on a model for the damping pre-
dicted from perturbation theory by Crocce, Pueblas & Scoccimarro
(2006), where

!2
lin(k) → e−k2σ 2

v !2
lin(k) , (21)

and σ 2
v is the 1D linear-theory displacement variance given by

σ 2
v = 1

3

∫ ∞

0

!2
lin(k)
k3

dk . (22)

The derivation of this expression assumes that the scales of interest
are large compared to σ v, such that the damping factor cannot be
trusted when kσ v is large. We found that the best fit to numerical
data at this scale required an expression equal to equation (21) to
quadratic order, but without the extreme high-k truncation:

!
′2
2H(k) =

[
1 − f tanh2 (kσv/

√
f )

]
!2

lin(k) , (23)

where f is a free parameter in our fit. In the kσ v ≫ 1 limit, equation
(23) reduces to !2

2H = (1 − f )!2
lin.

3.2.2 Adapting the one-halo term

We add freedom to the canonical form of the one-halo term in
equation (8) in a number of ways. The first concerns the behaviour
of the one-halo term at large scales, where the Universe tends to
homogeneity faster than predicted by Poisson shot noise. At large
scales, the one-halo term in equation (8) decays as !2 ∝ k3, whereas
the linear power decays approximately ∝ k4, so it is inevitable that
the one-halo term becomes greater than linear theory on very large
scales, which is unphysical. This effect arises because haloes are
treated as randomly placed in the standard halo-model formalism,
when in fact they are clustered and distributed more smoothly than
uniform random on very large scales. It has been suggested that a
large-scale cut-off in the one-halo term can be physically explained
as ‘halo exclusion’ (Smith et al. 2007), an effect that arises because,
by definition, haloes cannot exist within each other. This is not
captured by the standard halo-model power calculation because
that calculation assumes that haloes are randomly placed, so that the
probability of haloes overlapping is non-zero. Accounting for halo
exclusion damps the halo-model power on large scales. Regardless
of the exact details of exclusion, we modify the one-halo term so
that it decays more rapidly than linear theory at large scales:

!
′2
1H = [1 − e−(k/k∗)2

]!2
1H , (24)

where !2
1H is the same as in equation (8) and k∗ is a free parameter.

Within the one-halo term, parameters that we allow to vary are
the virialized overdensity of a halo, !v, defined in equation (13),
and the linear collapse threshold, δc, defined in equation (17). Both
of these parameters derive from the spherical model (e.g. p. 488 of

Peacock 1999) and rely on a somewhat arbitrary definition of the
exact time of halo collapse. The variation of !v can be predicted
theoretically from the spherical model, and Bryan & Norman (1998)
provide a fitting formula1 for a $CDM cosmology

!v = 18π2 + 82[%m(z) − 1] − 39[%m(z) − 1]2

%m(z)
. (25)

This suggests that !v increases as the universe deviates from
%m = 1.

In standard theory, δc ≃ 1.686 but we allow this number to
be a free parameter in our fit to power-spectrum data. Note that
changing δc changes the relationship between ν and the halo mass
(equation 17). This means that the ‘effective’ mass function we
invoke to improve !2(k) predictions will not necessarily accurately
represent the mass function that might be measured in simulations.

Fitted halo relations, such as the mass function and mass–
concentration relation, depend upon how haloes are defined when
identified in simulations. Therefore, the variations of !v in our fit-
ted halo model may not follow the simple theoretical variation in
equation (25) exactly, but we assume that the trend of increased !v

as the universe deviates from %m = 1 will serve as a useful initial
guide when we explore parameter space. In addition, for flat models
with a single component of dark energy, it is expected that !v would
be a function of %m(z) only and this will be a useful principle in
parametrizing fitting formulae. Increasing !v has the effect of in-
creasing the internal density of haloes and thus decreases the virial
radius of a halo of a fixed mass, thus increasing small-scale power.
Increasing δc means the linear density field has to reach higher
values before collapse can occur [in the Press & Schechter (1974)
approach], the result of which is that the density field is dissected
into more haloes of lower mass, which will reduce the amplitude
of the shot-noise component of the one-halo term and thus reduce
power.

One further free parameter is η, which we use to alter the halo
window function via

W (k,M) → W (νηk, M) , (26)

changing the halo profile in a mass-dependent way but leaving ν = 1
haloes unaltered and the individual halo masses unchanged. For
η > 0 higher mass (ν > 1) haloes are puffed out, while lower mass
haloes are contracted, both at constant virial radius: η > 0 decreases
the power whereas η < 0 increases it. This extra ingredient was
introduced to control the curvature of the power spectrum beyond
k ∼ 1h Mpc−1, where the filtering effect from the typical haloes has a
major effect on the shape of the one-halo term. As we move to higher
k values, the properties of lower mass haloes become increasingly
important. It is difficult for the one-halo term to track to the smallest
scales, and correcting this requires an empirical perturbation of the
halo profiles. Additionally, we allow ourselves to vary the amplitude
of the concentration–mass relation: A in equation (14).

3.2.3 Full power

A well-known defect in the halo model is in the transition between
the one- and two-halo terms, the so-called quasi-linear regime. In
the standard halo model, the transition is modelled by a simple
sum of the one- and two-halo terms (equation 11), but this is ob-
viously deficient. At z = 0, this transition scale is approximately

1 Equation (25) differs slightly from that in Bryan & Norman (1998) because
we work with respect to the matter density, rather than critical density.
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The dotted lines in Fig. 1 give a preview of how fruitful this ap-
proach is in providing an accurate model of the non-linear matter
power spectrum.

3.2.1 Adapting the two-halo term

The two-halo term governs power on large scales and is given in its
original form in equation (10). Linear theory slightly overpredicts
the matter power spectrum around the quasi-linear scale and does
a particularly poor job of modelling damping of the BAO peaks
at z = 0, which are damped by the quasi-linear effect of small-
scale displacements. Modelling of the minutiae of the damping of
the BAO peaks is beyond the scope of this work, but we treat the
damping around these scales based on a model for the damping pre-
dicted from perturbation theory by Crocce, Pueblas & Scoccimarro
(2006), where

!2
lin(k) → e−k2σ 2

v !2
lin(k) , (21)

and σ 2
v is the 1D linear-theory displacement variance given by

σ 2
v = 1

3

∫ ∞

0

!2
lin(k)
k3

dk . (22)

The derivation of this expression assumes that the scales of interest
are large compared to σ v, such that the damping factor cannot be
trusted when kσ v is large. We found that the best fit to numerical
data at this scale required an expression equal to equation (21) to
quadratic order, but without the extreme high-k truncation:

!
′2
2H(k) =

[
1 − f tanh2 (kσv/

√
f )

]
!2

lin(k) , (23)

where f is a free parameter in our fit. In the kσ v ≫ 1 limit, equation
(23) reduces to !2

2H = (1 − f )!2
lin.

3.2.2 Adapting the one-halo term

We add freedom to the canonical form of the one-halo term in
equation (8) in a number of ways. The first concerns the behaviour
of the one-halo term at large scales, where the Universe tends to
homogeneity faster than predicted by Poisson shot noise. At large
scales, the one-halo term in equation (8) decays as !2 ∝ k3, whereas
the linear power decays approximately ∝ k4, so it is inevitable that
the one-halo term becomes greater than linear theory on very large
scales, which is unphysical. This effect arises because haloes are
treated as randomly placed in the standard halo-model formalism,
when in fact they are clustered and distributed more smoothly than
uniform random on very large scales. It has been suggested that a
large-scale cut-off in the one-halo term can be physically explained
as ‘halo exclusion’ (Smith et al. 2007), an effect that arises because,
by definition, haloes cannot exist within each other. This is not
captured by the standard halo-model power calculation because
that calculation assumes that haloes are randomly placed, so that the
probability of haloes overlapping is non-zero. Accounting for halo
exclusion damps the halo-model power on large scales. Regardless
of the exact details of exclusion, we modify the one-halo term so
that it decays more rapidly than linear theory at large scales:

!
′2
1H = [1 − e−(k/k∗)2

]!2
1H , (24)

where !2
1H is the same as in equation (8) and k∗ is a free parameter.

Within the one-halo term, parameters that we allow to vary are
the virialized overdensity of a halo, !v, defined in equation (13),
and the linear collapse threshold, δc, defined in equation (17). Both
of these parameters derive from the spherical model (e.g. p. 488 of

Peacock 1999) and rely on a somewhat arbitrary definition of the
exact time of halo collapse. The variation of !v can be predicted
theoretically from the spherical model, and Bryan & Norman (1998)
provide a fitting formula1 for a $CDM cosmology

!v = 18π2 + 82[%m(z) − 1] − 39[%m(z) − 1]2

%m(z)
. (25)

This suggests that !v increases as the universe deviates from
%m = 1.

In standard theory, δc ≃ 1.686 but we allow this number to
be a free parameter in our fit to power-spectrum data. Note that
changing δc changes the relationship between ν and the halo mass
(equation 17). This means that the ‘effective’ mass function we
invoke to improve !2(k) predictions will not necessarily accurately
represent the mass function that might be measured in simulations.

Fitted halo relations, such as the mass function and mass–
concentration relation, depend upon how haloes are defined when
identified in simulations. Therefore, the variations of !v in our fit-
ted halo model may not follow the simple theoretical variation in
equation (25) exactly, but we assume that the trend of increased !v

as the universe deviates from %m = 1 will serve as a useful initial
guide when we explore parameter space. In addition, for flat models
with a single component of dark energy, it is expected that !v would
be a function of %m(z) only and this will be a useful principle in
parametrizing fitting formulae. Increasing !v has the effect of in-
creasing the internal density of haloes and thus decreases the virial
radius of a halo of a fixed mass, thus increasing small-scale power.
Increasing δc means the linear density field has to reach higher
values before collapse can occur [in the Press & Schechter (1974)
approach], the result of which is that the density field is dissected
into more haloes of lower mass, which will reduce the amplitude
of the shot-noise component of the one-halo term and thus reduce
power.

One further free parameter is η, which we use to alter the halo
window function via

W (k,M) → W (νηk, M) , (26)

changing the halo profile in a mass-dependent way but leaving ν = 1
haloes unaltered and the individual halo masses unchanged. For
η > 0 higher mass (ν > 1) haloes are puffed out, while lower mass
haloes are contracted, both at constant virial radius: η > 0 decreases
the power whereas η < 0 increases it. This extra ingredient was
introduced to control the curvature of the power spectrum beyond
k ∼ 1h Mpc−1, where the filtering effect from the typical haloes has a
major effect on the shape of the one-halo term. As we move to higher
k values, the properties of lower mass haloes become increasingly
important. It is difficult for the one-halo term to track to the smallest
scales, and correcting this requires an empirical perturbation of the
halo profiles. Additionally, we allow ourselves to vary the amplitude
of the concentration–mass relation: A in equation (14).

3.2.3 Full power

A well-known defect in the halo model is in the transition between
the one- and two-halo terms, the so-called quasi-linear regime. In
the standard halo model, the transition is modelled by a simple
sum of the one- and two-halo terms (equation 11), but this is ob-
viously deficient. At z = 0, this transition scale is approximately

1 Equation (25) differs slightly from that in Bryan & Norman (1998) because
we work with respect to the matter density, rather than critical density.
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The dotted lines in Fig. 1 give a preview of how fruitful this ap-
proach is in providing an accurate model of the non-linear matter
power spectrum.

3.2.1 Adapting the two-halo term

The two-halo term governs power on large scales and is given in its
original form in equation (10). Linear theory slightly overpredicts
the matter power spectrum around the quasi-linear scale and does
a particularly poor job of modelling damping of the BAO peaks
at z = 0, which are damped by the quasi-linear effect of small-
scale displacements. Modelling of the minutiae of the damping of
the BAO peaks is beyond the scope of this work, but we treat the
damping around these scales based on a model for the damping pre-
dicted from perturbation theory by Crocce, Pueblas & Scoccimarro
(2006), where

!2
lin(k) → e−k2σ 2

v !2
lin(k) , (21)

and σ 2
v is the 1D linear-theory displacement variance given by

σ 2
v = 1

3

∫ ∞

0

!2
lin(k)
k3

dk . (22)

The derivation of this expression assumes that the scales of interest
are large compared to σ v, such that the damping factor cannot be
trusted when kσ v is large. We found that the best fit to numerical
data at this scale required an expression equal to equation (21) to
quadratic order, but without the extreme high-k truncation:

!
′2
2H(k) =

[
1 − f tanh2 (kσv/

√
f )

]
!2

lin(k) , (23)

where f is a free parameter in our fit. In the kσ v ≫ 1 limit, equation
(23) reduces to !2

2H = (1 − f )!2
lin.

3.2.2 Adapting the one-halo term

We add freedom to the canonical form of the one-halo term in
equation (8) in a number of ways. The first concerns the behaviour
of the one-halo term at large scales, where the Universe tends to
homogeneity faster than predicted by Poisson shot noise. At large
scales, the one-halo term in equation (8) decays as !2 ∝ k3, whereas
the linear power decays approximately ∝ k4, so it is inevitable that
the one-halo term becomes greater than linear theory on very large
scales, which is unphysical. This effect arises because haloes are
treated as randomly placed in the standard halo-model formalism,
when in fact they are clustered and distributed more smoothly than
uniform random on very large scales. It has been suggested that a
large-scale cut-off in the one-halo term can be physically explained
as ‘halo exclusion’ (Smith et al. 2007), an effect that arises because,
by definition, haloes cannot exist within each other. This is not
captured by the standard halo-model power calculation because
that calculation assumes that haloes are randomly placed, so that the
probability of haloes overlapping is non-zero. Accounting for halo
exclusion damps the halo-model power on large scales. Regardless
of the exact details of exclusion, we modify the one-halo term so
that it decays more rapidly than linear theory at large scales:

!
′2
1H = [1 − e−(k/k∗)2

]!2
1H , (24)

where !2
1H is the same as in equation (8) and k∗ is a free parameter.

Within the one-halo term, parameters that we allow to vary are
the virialized overdensity of a halo, !v, defined in equation (13),
and the linear collapse threshold, δc, defined in equation (17). Both
of these parameters derive from the spherical model (e.g. p. 488 of

Peacock 1999) and rely on a somewhat arbitrary definition of the
exact time of halo collapse. The variation of !v can be predicted
theoretically from the spherical model, and Bryan & Norman (1998)
provide a fitting formula1 for a $CDM cosmology

!v = 18π2 + 82[%m(z) − 1] − 39[%m(z) − 1]2

%m(z)
. (25)

This suggests that !v increases as the universe deviates from
%m = 1.

In standard theory, δc ≃ 1.686 but we allow this number to
be a free parameter in our fit to power-spectrum data. Note that
changing δc changes the relationship between ν and the halo mass
(equation 17). This means that the ‘effective’ mass function we
invoke to improve !2(k) predictions will not necessarily accurately
represent the mass function that might be measured in simulations.

Fitted halo relations, such as the mass function and mass–
concentration relation, depend upon how haloes are defined when
identified in simulations. Therefore, the variations of !v in our fit-
ted halo model may not follow the simple theoretical variation in
equation (25) exactly, but we assume that the trend of increased !v

as the universe deviates from %m = 1 will serve as a useful initial
guide when we explore parameter space. In addition, for flat models
with a single component of dark energy, it is expected that !v would
be a function of %m(z) only and this will be a useful principle in
parametrizing fitting formulae. Increasing !v has the effect of in-
creasing the internal density of haloes and thus decreases the virial
radius of a halo of a fixed mass, thus increasing small-scale power.
Increasing δc means the linear density field has to reach higher
values before collapse can occur [in the Press & Schechter (1974)
approach], the result of which is that the density field is dissected
into more haloes of lower mass, which will reduce the amplitude
of the shot-noise component of the one-halo term and thus reduce
power.

One further free parameter is η, which we use to alter the halo
window function via

W (k,M) → W (νηk, M) , (26)

changing the halo profile in a mass-dependent way but leaving ν = 1
haloes unaltered and the individual halo masses unchanged. For
η > 0 higher mass (ν > 1) haloes are puffed out, while lower mass
haloes are contracted, both at constant virial radius: η > 0 decreases
the power whereas η < 0 increases it. This extra ingredient was
introduced to control the curvature of the power spectrum beyond
k ∼ 1h Mpc−1, where the filtering effect from the typical haloes has a
major effect on the shape of the one-halo term. As we move to higher
k values, the properties of lower mass haloes become increasingly
important. It is difficult for the one-halo term to track to the smallest
scales, and correcting this requires an empirical perturbation of the
halo profiles. Additionally, we allow ourselves to vary the amplitude
of the concentration–mass relation: A in equation (14).

3.2.3 Full power

A well-known defect in the halo model is in the transition between
the one- and two-halo terms, the so-called quasi-linear regime. In
the standard halo model, the transition is modelled by a simple
sum of the one- and two-halo terms (equation 11), but this is ob-
viously deficient. At z = 0, this transition scale is approximately

1 Equation (25) differs slightly from that in Bryan & Norman (1998) because
we work with respect to the matter density, rather than critical density.
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spatially exclusive—so each halo is like a small hard sphere); assuming that it scales like !(r)
is a gross overestimate. Using !hh(r|m1; m2) ≈ b(m1)b(m2)!lin(r), i.e., using the linear, rather than
the non-linear correlation function, even on the smallest scales, is a crude but convenient way of
accounting for this overestimate. Although the results of [258,223] allow one to account for this more
precisely, it turns out that great accuracy is not really needed since, on small scales, the correlation
function is determined almost entirely by the one-halo term anyway. Although almost all work to
date uses this approximation, it is important to bear in mind that it’s form is motivated primarily by
convenience. For example, if volume exclusion e!ects are only important on very small scales, then
setting !(r) ≈ !1-loop(r) rather than !lin(r), i.e., using the one-loop perturbation theory approximation
rather than the simpler linear theory estimate, may provide a better approximation.
Because the model correlation function involves convolutions, it is much easier to work in Fourier

space: the convolutions of the real-space density pro"les become simple multiplications of the Fourier
transforms of the halo pro"les. Thus, we can write the dark matter power spectrum as

P(k) = P1h(k) + P2h(k); where

P1h(k) =
∫

dmn(m)
(

m
#"

)2

|u(k|m)|2

P2h(k) =
∫

dm1n(m1)
(

m1
#"

)

u(k|m1)
∫

dm2n(m2)
(

m2
#"

)

u(k|m2)Phh(k|m1; m2) : (88)

Here, u(k|m) is the Fourier transform of the dark matter distribution within a halo of mass m
(Eq. (80)) and Phh(k|m1; m2) represents the power spectrum of halos of mass m1 and m2. Following
the discussion of the halo–halo correlation function (Eq. (87)), we approximate this by

Phh(k|m1; m2) ≈
2
∏

i=1

bi(mi)Plin(k) (89)

bearing in mind that the one-loop perturbation theory estimate may be more accurate than Plin(k).

4.2. Higher-order correlations

Expressions for the higher order correlations may be derived similarly. However, they involve
multiple convolutions of halo pro"les. This is why it is much easier to work in Fourier space:
the convolutions of the real-space density pro"les become simple multiplications of the Fourier
transforms of the halo pro"les. Similarly, the three-point and four-point correlations include terms
which describe the three and four point halo power spectra. The bi- and tri-spectra of the halos are

Bhhh(k1; k2; k3;m1; m2; m3) =
3
∏

i=1

bi(mi)
[

Blin(k1; k2; k3) +
b2(m3)
b1(m3)

Plin(k1)Plin(k2)
]

;

Thhhh(k1; k2; k3; k4;m1; m2; m3; m4) =
4
∏

i=1

bi(mi)

[

T lin(k1; k2; k3; k4)

+
b2(m4)
b1(m4)

Plin(k1)Plin(k2)Plin(k3)

]

: (90)

Low-k damping of the 1-halo term

goes to constant at
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PL(k) / kn ! 0 at k ! 0

The 1-halo term would dominate on very large scales, which is not physical.

In fact, any nonlinear redistribution of matter should give rise to a contribution that decays as

- matter conservation:
<latexit sha1_base64="u565Cp8+bVQDG2ubc+mAUoUXFG4=">AAAB8nicbVDLSgMxFL3js9ZX1aWbYBFclZkq6rLoxmUF+4DpWDJppg3NJCHJCKX0M9y4UMStX+POvzFtZ6GtBwKHc+4l95xYcWas7397K6tr6xubha3i9s7u3n7p4LBpZKYJbRDJpW7H2FDOBG1YZjltK01xGnPaioe3U7/1RLVhUjzYkaJRivuCJYxg66Swo7RUVqLhY7VbKvsVfwa0TIKclCFHvVv66vQkyVIqLOHYmDDwlY3GWFtGOJ0UO5mhCpMh7tPQUYFTaqLx7OQJOnVKDyVSuycsmqm/N8Y4NWaUxm4yxXZgFr2p+J8XZja5jsZMqMxSQeYfJRlHLuQ0P+oxTYnlI0cw0czdisgAa0ysa6noSggWIy+TZrUSXFbO7y/KtZu8jgIcwwmcQQBXUIM7qEMDCEh4hld486z34r17H/PRFS/fOYI/8D5/APPhkQs=</latexit>

/ k2

- momentum conservation:
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/ k4
Peebles (1974)

Such global constraints are “forgotten” in the standard halo model.

Using a compensated filter would spoil the 2-halo term. Cooray & Sheth (2002)
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spatially exclusive—so each halo is like a small hard sphere); assuming that it scales like !(r)
is a gross overestimate. Using !hh(r|m1; m2) ≈ b(m1)b(m2)!lin(r), i.e., using the linear, rather than
the non-linear correlation function, even on the smallest scales, is a crude but convenient way of
accounting for this overestimate. Although the results of [258,223] allow one to account for this more
precisely, it turns out that great accuracy is not really needed since, on small scales, the correlation
function is determined almost entirely by the one-halo term anyway. Although almost all work to
date uses this approximation, it is important to bear in mind that it’s form is motivated primarily by
convenience. For example, if volume exclusion e!ects are only important on very small scales, then
setting !(r) ≈ !1-loop(r) rather than !lin(r), i.e., using the one-loop perturbation theory approximation
rather than the simpler linear theory estimate, may provide a better approximation.
Because the model correlation function involves convolutions, it is much easier to work in Fourier

space: the convolutions of the real-space density pro"les become simple multiplications of the Fourier
transforms of the halo pro"les. Thus, we can write the dark matter power spectrum as

P(k) = P1h(k) + P2h(k); where

P1h(k) =
∫

dmn(m)
(

m
#"

)2

|u(k|m)|2

P2h(k) =
∫

dm1n(m1)
(

m1
#"

)

u(k|m1)
∫

dm2n(m2)
(

m2
#"

)

u(k|m2)Phh(k|m1; m2) : (88)

Here, u(k|m) is the Fourier transform of the dark matter distribution within a halo of mass m
(Eq. (80)) and Phh(k|m1; m2) represents the power spectrum of halos of mass m1 and m2. Following
the discussion of the halo–halo correlation function (Eq. (87)), we approximate this by

Phh(k|m1; m2) ≈
2
∏

i=1

bi(mi)Plin(k) (89)

bearing in mind that the one-loop perturbation theory estimate may be more accurate than Plin(k).

4.2. Higher-order correlations

Expressions for the higher order correlations may be derived similarly. However, they involve
multiple convolutions of halo pro"les. This is why it is much easier to work in Fourier space:
the convolutions of the real-space density pro"les become simple multiplications of the Fourier
transforms of the halo pro"les. Similarly, the three-point and four-point correlations include terms
which describe the three and four point halo power spectra. The bi- and tri-spectra of the halos are

Bhhh(k1; k2; k3;m1; m2; m3) =
3
∏

i=1

bi(mi)
[

Blin(k1; k2; k3) +
b2(m3)
b1(m3)

Plin(k1)Plin(k2)
]

;

Thhhh(k1; k2; k3; k4;m1; m2; m3; m4) =
4
∏

i=1

bi(mi)

[

T lin(k1; k2; k3; k4)

+
b2(m4)
b1(m4)

Plin(k1)Plin(k2)Plin(k3)

]

: (90)
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by Eq. (12) (the usual Press-Schechter threshold actually cor-
responds to δL = F −1(∞), associated with full collapse to a
point). However, the relation (12) only holds for δ < δvir, which
typically gives δ < 200, as larger density contrasts are associ-
ated with inner shells where shell crossing plays a key role and
modifies Eq. (12), associated with spherical dynamics at con-
stant mass (Valageas 2009a). On the other hand, the halo mass
function satisfies the normalization

∫ ∞

0

dν
ν

f (ν) = 1, (15)

which ensures that all the mass is contained within such halos
(for linear power spectra such that σ(q) grows to infinity on
small scales). This also ensures that there is no overcounting (as
would be the case if one used a mass function with a normaliza-
tion greater than unity).

Then, in Lagrangian space, the probability dF for one par-
ticle q1 to belong to a halo of mass in the range [M,M + dM]
reads as

dF = f (ν)
dν
ν
· (16)

This is also the fraction of matter enclosed within such halos.
Next, making the approximation that each halo comes from an
initial spherical region in Lagrangian space, the probability for
a second particle q2, at distance q = |q2 − q1|, to belong to the
same halo reads as

FM(q) =

∫
V

dq1

∫
dΩq θ (q2 ∈ V)

4π
3 q3

M 4π
· (17)

Here we integrate over all positions q1 within the spherical vol-
ume V of radius qM, and we integrate over all directions Ωq of
the Lagrangian vector q = q2 − q1. The top-hat factor θ(q2 ∈ V)
is unity if q2 is located within the volume V , and zero other-
wise. By isotropy the result only depends on the length q, and
performing the integrations yields

0 ≤ q ≤ 2qM : FM(q) =
(2qM − q)2 (4qM + q)

16q3
M

, (18)

and FM(q) = 0 for q > 2qM. Therefore, combining Eqs. (16)
and (18), we obtain the probability that a pair of particles of
Lagrangian separation q belongs to the same halo of mass M as

qM >
q
2

: dFq(M) =
(2qM − q)2 (4qM + q)

16q3
M

f (ν)
dν
ν
, (19)

and dFq(M) = 0 for qM < q/2. In particular, the probability that
the pair {q1, q2} belongs to a single halo writes as

F1H(q) =
∫ ∞

νq/2

dν
ν

f (ν)
(2qM − q)2 (4qM + q)

16q3
M

, (20)

where νq/2 is defined as in Eq. (8), for the Lagrangian radius
qM = q/2. On the other hand, the probability F2H(q) that the
Lagrangian pair does not belong to a single halo (whence the
two points belong to two different halos) reads as

F2H(q) = 1 − F1H(q). (21)

Then, we split the average in Eq. (6) over two terms, P1H
and P2H, associated with pairs {0, q} that belong to a single halo
or to two different halos,

P(k) = P1H(k) + P2H(k), (22)

with

P1H(k) =
∫

dq
(2π)3 F1H(q)

〈
eik·∆x − eik·q〉

1H
(23)

and

P2H(k) =
∫

dq
(2π)3 F2H(q)

〈
eik·∆x − eik·q〉

2H
. (24)

Here the averages ⟨...⟩1H and ⟨...⟩2H are the conditional aver-
ages, knowing that the pair of length q belongs to a single halo
or to two halos. The decomposition (22) clearly corresponds to
the 1-halo and 2-halo terms of the usual halo model (Cooray &
Sheth 2002). Then, to make the connection with the distinction
between perturbative and non-perturbative terms, we note that at
a perturbative level F1H is identically zero and F2H unity,

F1H = 0 and F2H = 1,
at all orders of perturbation theory. (25)

Indeed, the large-mass tail (14) is actually a rare-event limit that
holds both in the large-mass limit, at fixed linear density power
spectrum (Valageas 2002b, 2009a), and in the quasi-linear limit
at fixed mass, where the amplitude of the linear density power
spectrum goes to zero (Valageas 2002a, 2009a). It is this sec-
ond regime which corresponds to usual perturbation theories,
where as recalled above we look for expansions over powers
of the amplitude of the linear power spectrum. Then, because
of the exponential decay of the form e−1/σ2(M) we can see that
the expansion over powers of PL of F1H(q) defined in Eq. (20),
at fixed q, is identically zero. From Eq. (21) this also yields
F2H = 1 at all orders of perturbation theory. Therefore, we can
see from Eqs. (23), (24) that the 1-halo contribution is a fully
non-perturbative term, while the 2-halo contribution is (almost)
the perturbative term multiplied by the factor F2H(q).

The factor F1H being non-perturbative is not mainly related
to shell crossing, but simply to the fact that it cannot be recov-
ered by a series expansion over powers of PL. However, for ha-
los that would be defined by a high density threshold, typically
δ > 200, the exponential falloff (14) is modified by shell cross-
ing (i.e. the factor δL is no longer given by Eq. (12), see Valageas
2009a) so that it would also be non-perturbative in this sense.
On the other hand, even for lower threshold δ, the exact form of
the factor F1H(q), and in particular the low-mass tail of the halo
mass function, depends on the behavior of the system beyond
shell crossing.

The decomposition (22), with the Lagrangian-based inter-
pretation (23)−(24), has the advantage to automatically satisfy
the conservation of matter. Thus, thanks to Eq. (21) we count
all particle pairs once. By contrast, in the Eulerian derivation of
the halo model, where we first write the density field ρ(x) as a
sum of halo profiles, we would need to pay attention to possi-
ble overlaps between halos, which arise when we use a spherical
approximation. Thus, the splitting (22) is more easily expressed
in this framework, and one can independently focus on the mod-
elization of the averages ⟨eik·∆x − eik·q⟩. The latter also offers a
closer link to the dynamics, through the mapping q '→ x. We
shall not make much use of this relationship in the following,
as we use simple approximations that allow us to recover the
usual Eulerian expressions, with the addition of simple prefac-
tors and counterterms, but this may provide a route to more ac-
curate modeling.
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2.2. “2-halo” contribution

We first consider the 2-halo contribution (24). Since the condi-
tional average involves the constraint that the pair {0, q} does not
belong to the same halo, the mean of eik·∆x is “biased” as com-
pared with a mean over all possible pairs. However, in order to
simplify the computation of this term, we note that at a pertur-
bative level F2H = 1, as seen in (25), so that we can replace the
average ⟨...⟩2H by the mean over all pairs, as given by perturba-
tion theory,

P2H(k) ≃
∫

dq
(2π)3 F2H(q)

〈
eik·∆x − eik·q〉

pert
, (26)

where the subscript “pert” denotes quantities obtained from
standard perturbation theory (or equivalently its various re-
summation schemes). Thus Eq. (26) is still exact at all or-
ders of perturbation theory. This expression is best suited for
perturbation theories developed within the Lagrangian frame-
work. Unfortunately, as we shall discuss in Sect. 6.5 below,
Lagrangian perturbation theories built so far are not as effi-
cient as their Eulerian counterparts, especially when we con-
sider available resummation schemes. Then, in order to make
contact with Eulerian perturbation theories we further approxi-
mate Eq. (26) as

P2H(k) ≃ F2H(1/k)
∫

dq
(2π)3

〈
eik·∆x − eik·q〉

pert

= F2H(1/k)Ppert(k), (27)

where we have replaced the q-dependent factor F2H(q) by its
value at a typical scale q ∼ 1/k. Again, this is legitimate at a
perturbative level, where F2H = 1, so that Eq. (27) remains exact
at all orders of perturbation theory. To obtain the second line we
simply used the exact expression (6), which implies the same
equality in terms of perturbative expansions.

Let us recall that from (25) the 1-halo contribution is zero
at all orders of perturbation theory, so that the full power spec-
trum P(k) of Eq. (22) automatically agrees with perturbation the-
ory at all orders, whether we use Eq. (26) or (27). Then, within
these approximations the only effect of non-perturbative correc-
tions to the 2-halo term is to multiply the perturbative power
spectrum Ppert(k) by the prefactor F2H(1/k).

Within the usual halo model the 2-halo term reads as (Cooray
& Sheth 2002)

Ph.m.
2H (k) =

∫
dν1dν2

ν1ν2
f (ν1) f (ν2) ũM1 (k)ũM2 (k)PM1 M2 (k)

≃ PL(k), (28)

where ũM(k) is the normalized halo density profile, defined in
Eq. (31) below, and PM1 M2 (k) is the halo power spectrum. The
second line (28) is obtained in the low-k limit, so that ũM(k)→ 1
and PM1 M2 (k) ≃ b(M1)b(M2)PL(k), with a halo bias b(M) that is
normalized to unity. It is also possible to combine perturbation
theory and nonlinear halo bias to make the expression above con-
sistent with standard perturbation theory while building a model
for the halo power spectrum itself, see Smith et al. (2007).

Of course, in order to describe the weakly nonlinear regime
one can as well replace PL(k) by Ppert(k) in Eq. (28), which gives
an expression very similar to Eq. (27). Then, we can see that
a first difference between the halo-model expression (28) and
Eq. (27) is that we did not need to introduce any halo bias to
derive Eq. (27). In fact, although the contribution (24) is as-
sociated with a 2-halo term, by making the simple approxima-
tion (26) we avoid any need to consider halo biasing, and as

explained above this does not spoil the agreement with pertur-
bation theory. The second difference is the prefactor F2H(1/k) in
Eq. (27). As seen from Eq. (6) and the splitting (22), this term
is required by self-consistency, to ensure that the two averages
F1H(q) ⟨eik·∆x⟩1H and F2H(q) ⟨eik·∆x⟩2H sum up to ⟨eik·∆x⟩, and in
particular that they sum up to unity for k → 0. Within the usual
halo model, this factor is implicitly set to unity by taking the
large-scale limit in Eq. (28) and ignoring exclusion constraints
on the halos. This is also valid within perturbation theory, as
seen in (25). However, in order to describe the weakly nonlinear
regime, where the 1-halo term is nonzero, it is best to keep the
prefactor F2H(1/k) in Eq. (27), to keep a consistent model and to
avoid any overcounting.

2.3. “1-halo” contribution

From Eqs. (20) and (23) the 1-halo contribution to the density
power spectrum reads as

P1H(k) =
∫

dq
(2π)3

∫ ∞

νq/2

dν
ν

f (ν)
(2qM − q)2 (4qM + q)

16q3
M

×
〈
eik·∆x − eik·q〉

M
. (29)

In order to compute the average in Eq. (29), within a halo of
mass M, we make the approximation of fully virialized spherical
halos. Thus, we describe the halos as spherical objects, truncated
at a radius rM such that the mean density contrast within this
radius is the nonlinear threshold δ used to define these objects,
and the enclosed mass is equal to M,

M = ρ
4π
3

q3
M = (1 + δ)ρ

4π
3

r3
M . (30)

We introduce as usual the normalized Fourier transform of this
halo radial profile,

ũM(k) =

∫
dx e−ik·xρM(x)
∫

dx ρM(x)
=

1
M

∫
dx e−ik·xρM(x), (31)

where ρM(x) is the halo density profile. Next, using the approxi-
mation of fully virialized halos, that is, that the two Lagrangian
particles “0” and “q” have lost all memory of their initial loca-
tions and are independently located at random within the halo,
we write

〈
eik·∆x

〉
M
=

1
M2

∫
dx1dx2 ρM (x1) ρM (x2) eik·(x2−x1) (32)

= ũM(k)2. (33)

Substituting into Eq. (29) and exchanging the order of integra-
tion gives

P1H(k) =
∫ ∞

0

dν
ν

f (ν)
∫ 2qM

0

dq
(2π)3

(2qM − q)2 (4qM + q)
16q3

M

×
(
ũM(k)2 − eik·q) , (34)

and the integration over q yields

P1H(k) =
∫ ∞

0

dν
ν

f (ν)
M

ρ(2π)3

(
ũM(k)2 − W̃ (kqM)2

)
. (35)

Therefore, we recover the usual 1-halo term of the halo model
(Cooray & Sheth 2002), with the addition of the new countert-
erm W̃(kqM)2, where W̃ was defined in Eq. (11).
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The bias coefficients from the Taylor series are not
independent but obey the constraint h!hðxjRÞi ¼ 0, which
leads to

b0 ¼ $ b2
2
h!2i$ b3

3!
h!3i$ % % % $ bn

n!
h!ni: (24)

Thus, in general b0 is nonvanishing and depends on the
hierarchy of moments. This allows us to rewrite Eq. (22) as

!hðxjR;MÞ ¼
X1

i¼1

biðMÞ
i!

f½!ðxjRÞ'i $ h!iðxjRÞig: (25)

Nevertheless, we may remove b0 from further considera-
tion by transforming to the Fourier domain, where it only
contributes to !ðk ¼ 0Þ.

Thus the halo-center correlation function has the form

"cent
hh;RðrÞ( h!hðxjR;MÞ!hðxþrjR;MÞi

¼b1ðM1Þb1ðM2Þ"RðrÞþ
1

6
½b1ðM1Þb3ðM2Þ

þb3ðM1Þb1ðM2Þ'h!RðxÞ!3
RðxþrÞi

þb2ðM1Þb2ðM2Þ
4

h!2
RðxÞ!2

RðxþrÞiþ%%% ; (26)

where "RðrÞ is the nonlinear matter correlation function
smoothed on scale R. Fourier transforming the above
expression we obtain the halo-center power spectrum
[53,54,56]:

Phh
centðkjM1;M2Þ ¼ b1ðM1Þb1ðM2ÞPNLðkjRÞ þOðb2; . . .Þ;

(27)

where the parameters bi are the nonlinear bias coefficients
and PNLðkjRÞ is the nonlinear matter power spectrum
smoothed on scale R. It has recently been proposed that,
for PNG, the halo bias is also a function of the local
gravitational potential [26,57]; we shall not explore this
possibility here but simply note that it should give rise to
the same scale dependence of the linear bias. Further, since
this is a first-order attempt to calculate the effects of PNG
on the matter clustering in the halo model, we shall restrict
our attention to the case of linear bias and so neglect terms
bi with i > 1, whereupon Phh

cent becomes a separable func-
tion of mass and scale. We present details of the b1ðM; fNLÞ
model in Sec. V. For PNLðk; R; fNLÞ, we make the simple
approximation

PNLðkjR; fNLÞ ¼ W2ðkRÞPhalofitðkÞ#PTðk; fNLÞ; (28)

where WðkRÞ is a smoothing function, PhalofitðkÞ is the
nonlinear matter power spectrum model of [58], valid for
Gaussian initial conditions, and #PT was defined earlier in
Eq. (14).

As was argued in [53,59,60] another essential compo-
nent of the interclustering of haloes is halo exclusion. That
is, one must remove the correlations which arise on scales
inside the sum of the virial radii of the two haloes M1 and

M2. As was shown in [53], this effect can formally be
written

"hh
centðrjM1;M2Þ ¼ $1 ðr < rvir;1 þ rvir;2Þ; (29)

where rvir is the virial radius of a halo and where "
hh is the

correlation function of dark matter halo centers, defined as
"hh
centðrjM1;M2Þ ( h!hðxjM1Þ!hðxþ rjM2Þi. The $1 in

the above is simply the value that " must obtain in order
for the joint probability of finding halo-center separations
r < rvir;1 þ rvir;2 to be zero. In the literature, various
approximate schemes have been proposed to model the
exclusion effect [59,60]; these involve placing a cutoff in
the upper limit of the mass integrals in the 2-halo term. We
shall not follow such schemes, since these approaches do
not reproduce the correct power spectrum asymptotics for
the exact calculation, which we show below. Instead we
follow [53] and evaluate the above expression exactly.
In this case the halo-center power spectrum can be written
in terms of the correlation function of halo centers as

Phh
centðkjRÞ ¼

Z
d3r"hh

centðkjM1;M2; RÞj0ðkrÞ: (30)

Inserting Eq. (29) for scales inside rvir;1 þ rvir;2 and the
relation "hh

centðkjM1;M2; RÞ ¼ bðM1ÞbðM2Þ"ðrjRÞ on larger
scales, where "ðrjRÞ is the dark matter correlation function
smoothed on the scale R, we find

Phh
centðkjRÞ¼

Z 1

rvir;1þrvir;2

d3rbðM1ÞbðM2Þ"ðrjRÞj0ðkrÞ

þ
Z rvir;1þrvir;2

0
d3rð$1Þj0ðkrÞ

¼
Z 1

0
d3rbðM1ÞbðM2Þ"ðrjRÞj0ðkrÞ

$
Z rvir;1þrvir;2

0
d3r½1þbðM1ÞbðM2Þ"ðrjRÞ'j0ðkrÞ

¼PNoExc;hh
cent ðkÞ$PExc;hh

cent ðkÞ: (31)

The first term in the last line of the above equation repre-
sents the usual expression for the clustering of halo centers,
and the second term represents the correction due to halo
exclusion:

PNoExc; hh
cent ( bðM1ÞbðM2ÞPLinðkÞ; (32)

PExc;hh
cent (

Z rvir;1þrvir;2

0
d3r½1þbðM1ÞbðM2Þ"ðrÞ'j0ðkrÞ: (33)

Taking s ( sðM1;M2Þ ( rvir;1 þ rvir;2 and y ( ks, we may

deduce the following asymptotic properties for PExc;hh
cent :

(i) Large-scale limit.—For the case k ! 0, we have that
j0ðkrÞ ! 1 and so
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Smith et al. (2011)

The bias coefficients from the Taylor series are not
independent but obey the constraint h!hðxjRÞi ¼ 0, which
leads to

b0 ¼ $ b2
2
h!2i$ b3

3!
h!3i$ % % % $ bn

n!
h!ni: (24)

Thus, in general b0 is nonvanishing and depends on the
hierarchy of moments. This allows us to rewrite Eq. (22) as

!hðxjR;MÞ ¼
X1

i¼1

biðMÞ
i!

f½!ðxjRÞ'i $ h!iðxjRÞig: (25)

Nevertheless, we may remove b0 from further considera-
tion by transforming to the Fourier domain, where it only
contributes to !ðk ¼ 0Þ.

Thus the halo-center correlation function has the form

"cent
hh;RðrÞ( h!hðxjR;MÞ!hðxþrjR;MÞi

¼b1ðM1Þb1ðM2Þ"RðrÞþ
1

6
½b1ðM1Þb3ðM2Þ

þb3ðM1Þb1ðM2Þ'h!RðxÞ!3
RðxþrÞi

þb2ðM1Þb2ðM2Þ
4

h!2
RðxÞ!2

RðxþrÞiþ%%% ; (26)

where "RðrÞ is the nonlinear matter correlation function
smoothed on scale R. Fourier transforming the above
expression we obtain the halo-center power spectrum
[53,54,56]:

Phh
centðkjM1;M2Þ ¼ b1ðM1Þb1ðM2ÞPNLðkjRÞ þOðb2; . . .Þ;

(27)

where the parameters bi are the nonlinear bias coefficients
and PNLðkjRÞ is the nonlinear matter power spectrum
smoothed on scale R. It has recently been proposed that,
for PNG, the halo bias is also a function of the local
gravitational potential [26,57]; we shall not explore this
possibility here but simply note that it should give rise to
the same scale dependence of the linear bias. Further, since
this is a first-order attempt to calculate the effects of PNG
on the matter clustering in the halo model, we shall restrict
our attention to the case of linear bias and so neglect terms
bi with i > 1, whereupon Phh

cent becomes a separable func-
tion of mass and scale. We present details of the b1ðM; fNLÞ
model in Sec. V. For PNLðk; R; fNLÞ, we make the simple
approximation

PNLðkjR; fNLÞ ¼ W2ðkRÞPhalofitðkÞ#PTðk; fNLÞ; (28)

where WðkRÞ is a smoothing function, PhalofitðkÞ is the
nonlinear matter power spectrum model of [58], valid for
Gaussian initial conditions, and #PT was defined earlier in
Eq. (14).

As was argued in [53,59,60] another essential compo-
nent of the interclustering of haloes is halo exclusion. That
is, one must remove the correlations which arise on scales
inside the sum of the virial radii of the two haloes M1 and

M2. As was shown in [53], this effect can formally be
written

"hh
centðrjM1;M2Þ ¼ $1 ðr < rvir;1 þ rvir;2Þ; (29)

where rvir is the virial radius of a halo and where "
hh is the

correlation function of dark matter halo centers, defined as
"hh
centðrjM1;M2Þ ( h!hðxjM1Þ!hðxþ rjM2Þi. The $1 in

the above is simply the value that " must obtain in order
for the joint probability of finding halo-center separations
r < rvir;1 þ rvir;2 to be zero. In the literature, various
approximate schemes have been proposed to model the
exclusion effect [59,60]; these involve placing a cutoff in
the upper limit of the mass integrals in the 2-halo term. We
shall not follow such schemes, since these approaches do
not reproduce the correct power spectrum asymptotics for
the exact calculation, which we show below. Instead we
follow [53] and evaluate the above expression exactly.
In this case the halo-center power spectrum can be written
in terms of the correlation function of halo centers as

Phh
centðkjRÞ ¼

Z
d3r"hh

centðkjM1;M2; RÞj0ðkrÞ: (30)

Inserting Eq. (29) for scales inside rvir;1 þ rvir;2 and the
relation "hh

centðkjM1;M2; RÞ ¼ bðM1ÞbðM2Þ"ðrjRÞ on larger
scales, where "ðrjRÞ is the dark matter correlation function
smoothed on the scale R, we find

Phh
centðkjRÞ¼

Z 1

rvir;1þrvir;2

d3rbðM1ÞbðM2Þ"ðrjRÞj0ðkrÞ

þ
Z rvir;1þrvir;2

0
d3rð$1Þj0ðkrÞ

¼
Z 1

0
d3rbðM1ÞbðM2Þ"ðrjRÞj0ðkrÞ

$
Z rvir;1þrvir;2

0
d3r½1þbðM1ÞbðM2Þ"ðrjRÞ'j0ðkrÞ

¼PNoExc;hh
cent ðkÞ$PExc;hh

cent ðkÞ: (31)

The first term in the last line of the above equation repre-
sents the usual expression for the clustering of halo centers,
and the second term represents the correction due to halo
exclusion:

PNoExc; hh
cent ( bðM1ÞbðM2ÞPLinðkÞ; (32)

PExc;hh
cent (

Z rvir;1þrvir;2

0
d3r½1þbðM1ÞbðM2Þ"ðrÞ'j0ðkrÞ: (33)

Taking s ( sðM1;M2Þ ( rvir;1 þ rvir;2 and y ( ks, we may

deduce the following asymptotic properties for PExc;hh
cent :

(i) Large-scale limit.—For the case k ! 0, we have that
j0ðkrÞ ! 1 and so
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The bias coefficients from the Taylor series are not
independent but obey the constraint h!hðxjRÞi ¼ 0, which
leads to

b0 ¼ $ b2
2
h!2i$ b3

3!
h!3i$ % % % $ bn

n!
h!ni: (24)

Thus, in general b0 is nonvanishing and depends on the
hierarchy of moments. This allows us to rewrite Eq. (22) as

!hðxjR;MÞ ¼
X1

i¼1

biðMÞ
i!

f½!ðxjRÞ'i $ h!iðxjRÞig: (25)

Nevertheless, we may remove b0 from further considera-
tion by transforming to the Fourier domain, where it only
contributes to !ðk ¼ 0Þ.

Thus the halo-center correlation function has the form

"cent
hh;RðrÞ( h!hðxjR;MÞ!hðxþrjR;MÞi

¼b1ðM1Þb1ðM2Þ"RðrÞþ
1

6
½b1ðM1Þb3ðM2Þ

þb3ðM1Þb1ðM2Þ'h!RðxÞ!3
RðxþrÞi

þb2ðM1Þb2ðM2Þ
4

h!2
RðxÞ!2

RðxþrÞiþ%%% ; (26)

where "RðrÞ is the nonlinear matter correlation function
smoothed on scale R. Fourier transforming the above
expression we obtain the halo-center power spectrum
[53,54,56]:

Phh
centðkjM1;M2Þ ¼ b1ðM1Þb1ðM2ÞPNLðkjRÞ þOðb2; . . .Þ;

(27)

where the parameters bi are the nonlinear bias coefficients
and PNLðkjRÞ is the nonlinear matter power spectrum
smoothed on scale R. It has recently been proposed that,
for PNG, the halo bias is also a function of the local
gravitational potential [26,57]; we shall not explore this
possibility here but simply note that it should give rise to
the same scale dependence of the linear bias. Further, since
this is a first-order attempt to calculate the effects of PNG
on the matter clustering in the halo model, we shall restrict
our attention to the case of linear bias and so neglect terms
bi with i > 1, whereupon Phh

cent becomes a separable func-
tion of mass and scale. We present details of the b1ðM; fNLÞ
model in Sec. V. For PNLðk; R; fNLÞ, we make the simple
approximation

PNLðkjR; fNLÞ ¼ W2ðkRÞPhalofitðkÞ#PTðk; fNLÞ; (28)

where WðkRÞ is a smoothing function, PhalofitðkÞ is the
nonlinear matter power spectrum model of [58], valid for
Gaussian initial conditions, and #PT was defined earlier in
Eq. (14).

As was argued in [53,59,60] another essential compo-
nent of the interclustering of haloes is halo exclusion. That
is, one must remove the correlations which arise on scales
inside the sum of the virial radii of the two haloes M1 and

M2. As was shown in [53], this effect can formally be
written

"hh
centðrjM1;M2Þ ¼ $1 ðr < rvir;1 þ rvir;2Þ; (29)

where rvir is the virial radius of a halo and where "
hh is the

correlation function of dark matter halo centers, defined as
"hh
centðrjM1;M2Þ ( h!hðxjM1Þ!hðxþ rjM2Þi. The $1 in

the above is simply the value that " must obtain in order
for the joint probability of finding halo-center separations
r < rvir;1 þ rvir;2 to be zero. In the literature, various
approximate schemes have been proposed to model the
exclusion effect [59,60]; these involve placing a cutoff in
the upper limit of the mass integrals in the 2-halo term. We
shall not follow such schemes, since these approaches do
not reproduce the correct power spectrum asymptotics for
the exact calculation, which we show below. Instead we
follow [53] and evaluate the above expression exactly.
In this case the halo-center power spectrum can be written
in terms of the correlation function of halo centers as

Phh
centðkjRÞ ¼

Z
d3r"hh

centðkjM1;M2; RÞj0ðkrÞ: (30)

Inserting Eq. (29) for scales inside rvir;1 þ rvir;2 and the
relation "hh

centðkjM1;M2; RÞ ¼ bðM1ÞbðM2Þ"ðrjRÞ on larger
scales, where "ðrjRÞ is the dark matter correlation function
smoothed on the scale R, we find

Phh
centðkjRÞ¼

Z 1

rvir;1þrvir;2

d3rbðM1ÞbðM2Þ"ðrjRÞj0ðkrÞ

þ
Z rvir;1þrvir;2

0
d3rð$1Þj0ðkrÞ

¼
Z 1

0
d3rbðM1ÞbðM2Þ"ðrjRÞj0ðkrÞ

$
Z rvir;1þrvir;2

0
d3r½1þbðM1ÞbðM2Þ"ðrjRÞ'j0ðkrÞ

¼PNoExc;hh
cent ðkÞ$PExc;hh

cent ðkÞ: (31)

The first term in the last line of the above equation repre-
sents the usual expression for the clustering of halo centers,
and the second term represents the correction due to halo
exclusion:

PNoExc; hh
cent ( bðM1ÞbðM2ÞPLinðkÞ; (32)

PExc;hh
cent (

Z rvir;1þrvir;2

0
d3r½1þbðM1ÞbðM2Þ"ðrÞ'j0ðkrÞ: (33)

Taking s ( sðM1;M2Þ ( rvir;1 þ rvir;2 and y ( ks, we may

deduce the following asymptotic properties for PExc;hh
cent :

(i) Large-scale limit.—For the case k ! 0, we have that
j0ðkrÞ ! 1 and so
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The bias coefficients from the Taylor series are not
independent but obey the constraint h!hðxjRÞi ¼ 0, which
leads to

b0 ¼ $ b2
2
h!2i$ b3

3!
h!3i$ % % % $ bn

n!
h!ni: (24)

Thus, in general b0 is nonvanishing and depends on the
hierarchy of moments. This allows us to rewrite Eq. (22) as

!hðxjR;MÞ ¼
X1

i¼1

biðMÞ
i!

f½!ðxjRÞ'i $ h!iðxjRÞig: (25)

Nevertheless, we may remove b0 from further considera-
tion by transforming to the Fourier domain, where it only
contributes to !ðk ¼ 0Þ.

Thus the halo-center correlation function has the form

"cent
hh;RðrÞ( h!hðxjR;MÞ!hðxþrjR;MÞi

¼b1ðM1Þb1ðM2Þ"RðrÞþ
1

6
½b1ðM1Þb3ðM2Þ

þb3ðM1Þb1ðM2Þ'h!RðxÞ!3
RðxþrÞi

þb2ðM1Þb2ðM2Þ
4
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RðxÞ!2
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where "RðrÞ is the nonlinear matter correlation function
smoothed on scale R. Fourier transforming the above
expression we obtain the halo-center power spectrum
[53,54,56]:

Phh
centðkjM1;M2Þ ¼ b1ðM1Þb1ðM2ÞPNLðkjRÞ þOðb2; . . .Þ;

(27)

where the parameters bi are the nonlinear bias coefficients
and PNLðkjRÞ is the nonlinear matter power spectrum
smoothed on scale R. It has recently been proposed that,
for PNG, the halo bias is also a function of the local
gravitational potential [26,57]; we shall not explore this
possibility here but simply note that it should give rise to
the same scale dependence of the linear bias. Further, since
this is a first-order attempt to calculate the effects of PNG
on the matter clustering in the halo model, we shall restrict
our attention to the case of linear bias and so neglect terms
bi with i > 1, whereupon Phh

cent becomes a separable func-
tion of mass and scale. We present details of the b1ðM; fNLÞ
model in Sec. V. For PNLðk; R; fNLÞ, we make the simple
approximation

PNLðkjR; fNLÞ ¼ W2ðkRÞPhalofitðkÞ#PTðk; fNLÞ; (28)

where WðkRÞ is a smoothing function, PhalofitðkÞ is the
nonlinear matter power spectrum model of [58], valid for
Gaussian initial conditions, and #PT was defined earlier in
Eq. (14).

As was argued in [53,59,60] another essential compo-
nent of the interclustering of haloes is halo exclusion. That
is, one must remove the correlations which arise on scales
inside the sum of the virial radii of the two haloes M1 and

M2. As was shown in [53], this effect can formally be
written

"hh
centðrjM1;M2Þ ¼ $1 ðr < rvir;1 þ rvir;2Þ; (29)

where rvir is the virial radius of a halo and where "
hh is the

correlation function of dark matter halo centers, defined as
"hh
centðrjM1;M2Þ ( h!hðxjM1Þ!hðxþ rjM2Þi. The $1 in

the above is simply the value that " must obtain in order
for the joint probability of finding halo-center separations
r < rvir;1 þ rvir;2 to be zero. In the literature, various
approximate schemes have been proposed to model the
exclusion effect [59,60]; these involve placing a cutoff in
the upper limit of the mass integrals in the 2-halo term. We
shall not follow such schemes, since these approaches do
not reproduce the correct power spectrum asymptotics for
the exact calculation, which we show below. Instead we
follow [53] and evaluate the above expression exactly.
In this case the halo-center power spectrum can be written
in terms of the correlation function of halo centers as

Phh
centðkjRÞ ¼

Z
d3r"hh

centðkjM1;M2; RÞj0ðkrÞ: (30)

Inserting Eq. (29) for scales inside rvir;1 þ rvir;2 and the
relation "hh

centðkjM1;M2; RÞ ¼ bðM1ÞbðM2Þ"ðrjRÞ on larger
scales, where "ðrjRÞ is the dark matter correlation function
smoothed on the scale R, we find

Phh
centðkjRÞ¼

Z 1

rvir;1þrvir;2

d3rbðM1ÞbðM2Þ"ðrjRÞj0ðkrÞ

þ
Z rvir;1þrvir;2

0
d3rð$1Þj0ðkrÞ

¼
Z 1

0
d3rbðM1ÞbðM2Þ"ðrjRÞj0ðkrÞ

$
Z rvir;1þrvir;2

0
d3r½1þbðM1ÞbðM2Þ"ðrjRÞ'j0ðkrÞ

¼PNoExc;hh
cent ðkÞ$PExc;hh

cent ðkÞ: (31)

The first term in the last line of the above equation repre-
sents the usual expression for the clustering of halo centers,
and the second term represents the correction due to halo
exclusion:

PNoExc; hh
cent ( bðM1ÞbðM2ÞPLinðkÞ; (32)

PExc;hh
cent (

Z rvir;1þrvir;2

0
d3r½1þbðM1ÞbðM2Þ"ðrÞ'j0ðkrÞ: (33)

Taking s ( sðM1;M2Þ ( rvir;1 þ rvir;2 and y ( ks, we may

deduce the following asymptotic properties for PExc;hh
cent :

(i) Large-scale limit.—For the case k ! 0, we have that
j0ðkrÞ ! 1 and so
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3) Redefine the halo number density field and its noise Ginzburg et al. (2017)

counter-term

limit ki → 0 unless the bispectrum is computed for three
halo fluctuation fields. How can we avoid these incon-
sistencies and simultaneously retain the halo model pre-
dictions for Pf0g

ϵ0ϵ0 or Bf0g
ϵ0ϵ0ϵ0 which, as we shall see in

Sec. VI, are in reasonably good agreement with the data?
To address this question, we begin by writing down a

perturbative expansion for both the halo and matter over-
density fields that reproduces the “original” halo model
predictions Eqs. (8), (21), and (18). In light of the bias
expansion Eq. (1), we try to following ansatz:

δiðxÞ ¼ ðbi þ ~ϵδiðxÞÞδðxÞ þ ~ϵ0iðxÞ
δmðxÞ ¼ ð1þ ~ϵδmðxÞÞδðxÞ þ ~ϵ0mðxÞ; ð29Þ

where we have ignored second- and higher-order terms.
Here, δ should be interpreted as the noise-free, nonlinear
density field, whereas ~ϵδm and ~ϵ0m are the matter equiv-
alents to the lowest order halo shot noise terms. In the halo
model, they do not vanish even in the limit mDM → 0
considered throughout our calculations. For clarity, we use
tilde in order to distinguish the halo shot noise contribu-
tions from the renormalized shot noise terms which appear
in Eq. (1).

To assess the extent to which Eq. (29) reproduces the
halo model predictions in the low-k limit, we compute the
large-scale 2-point and 3-point covariances of the noise
fields ~ϵ0i, ~ϵδi, ~ϵ0m and ~ϵ0δ using our ansatz for the halo and
matter fluctuation field δhðxÞ and δmðxÞ (which replaces
δðxÞ for this consistency check), respectively. We consider
first the 2-point covariances. The calculation of hδhδhi,
hδhδmi and hδmδmi in the limit k → 0 is straightforward.
Upon identifying our results with Eq. (8), the following
noise power spectra must satisfy:

Pf0g
~ϵ0i ~ϵ0j

¼
δKij
n̄i

; Pf0g
~ϵ0i ~ϵ0m

¼ Mi

ρ̄m
; Pf0g

~ϵ0m ~ϵ0m
¼ hn̄M2i

ρ̄2m
:

ð30Þ

Similarly, the 2-halo contribution to the various cross halo-
matter bispectra hδhδhδmi etc. in the limit ki ≪ 1, Eq. (21),
constrain another set of 2-point covariances. Namely, terms
proportional to Plinðk3Þ arise from 4-point correlators
involving two shot noise and two density fields (5-point
correlators of the form hðϵXδÞðk1ÞðϵYδÞðk2ÞϵZðk3Þi return a
loop). In the limit ki → 0, the relevant shot noise contri-
butions are

Bmmmðk1; k2; k3Þ ⊃ ½P~ϵδm ~ϵ0mðk1Þ þ P~ϵδm ~ϵ0mðk2Þ&Plinðk3Þ þ ð2 cycÞ
Bimmðk1; k2; k3Þ ⊃ bi½P~ϵδm ~ϵ0mðk2Þ þ P~ϵδm ~ϵ0mðk3Þ&Plinðk1Þ þ ½P~ϵδi ~ϵ0mðk3Þ þ P~ϵ0i ~ϵδmðk1Þ&Plinðk2Þ

þ ½P~ϵ0i ~ϵδmðk1Þ þ P~ϵδi ~ϵ0mðk2Þ&Plinðk3Þ
Bijmðk1; k2; k3Þ ⊃ bi½P~ϵ0j ~ϵδmðk2Þ þ P~ϵδj ~ϵ0mðk3Þ&Plinðk1Þ þ bj½P~ϵδi ~ϵ0mðk3Þ þ P~ϵ0i ~ϵδmðk1Þ&Plinðk2Þ

þ ½P~ϵ0i ~ϵδjðk1Þ þ P~ϵδi ~ϵ0jðk2Þ&Plinðk3Þ: ð31Þ

Identifying the above expressions with Eq. (21), the
following combination of zero-lag noise power spectra
must satisfy

Pf0g
~ϵδm ~ϵ0m

¼ hnM2b1i
2ρ̄2m

; Pf0g
~ϵδi ~ϵ0m

þ Pf0g
~ϵ0i ~ϵδm

¼ bi
Mi

ρ̄m
;

Pf0g
~ϵδi ~ϵ0j

þ Pf0g
~ϵ0i ~ϵδj

¼ bi
n̄i
δKij: ð32Þ

Finally, some of the 3-point noise covariances can be read
off from Eq. (18). We find:

Bf0g
~ϵ0i ~ϵ0j ~ϵ0k

¼ 1

n̄2i
δKijk; Bf0g

~ϵ0i ~ϵ0j ~ϵ0m
¼ Mi

n̄iρ̄m
δKij

Bf0g
~ϵ0i ~ϵ0m ~ϵ0m

¼ M2
i

ρ̄2m
; Bf0g

~ϵ0m ~ϵ0m ~ϵ0m
¼ hnM3i

ρ̄3m
: ð33Þ

In particular, Bijm exhibits a constant white noise in the
low-k because Bf0g

~ϵ0i ~ϵ0j ~ϵ0m
≠ 0. All this suggests that the

halo model indeed assumes that the halo and matter
overdensity be described by perturbative expansions of
the form Eq. (29).
In order to remedy the unphysical, large-scale behav-

ior of all the 1-halo terms involving at least one density
field, and simultaneously retain the halo model predic-
tions for Pf0g

ϵ0iϵ0j, P
f0g
ϵ0iϵδj etc., we argue that the halo model

perturbative expansion Eq. (29) should be reorganized
such that

δiðxÞ ¼ ðbi þ ~ϵδiðxÞ − bi ~ϵδmðxÞÞ δðxÞ þ ~ϵ0iðxÞ − bi ~ϵ0mðxÞ
δmðxÞ ¼ δðxÞ: ð34Þ

Here, δðxÞ is the nonlinear density field as in the
pertubative bias expansion Eq. (1). At the tree-level
considered in this paper, this ansatz clearly ensures that
any correlator involving at least one matter fluctuation
field does not exhibit a constant white noise in the limit
ki → 0 [i.e., the right-hand side of Eq. (26) now
vanishes]. In particular,
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limit ki → 0 unless the bispectrum is computed for three
halo fluctuation fields. How can we avoid these incon-
sistencies and simultaneously retain the halo model pre-
dictions for Pf0g

ϵ0ϵ0 or Bf0g
ϵ0ϵ0ϵ0 which, as we shall see in

Sec. VI, are in reasonably good agreement with the data?
To address this question, we begin by writing down a

perturbative expansion for both the halo and matter over-
density fields that reproduces the “original” halo model
predictions Eqs. (8), (21), and (18). In light of the bias
expansion Eq. (1), we try to following ansatz:

δiðxÞ ¼ ðbi þ ~ϵδiðxÞÞδðxÞ þ ~ϵ0iðxÞ
δmðxÞ ¼ ð1þ ~ϵδmðxÞÞδðxÞ þ ~ϵ0mðxÞ; ð29Þ

where we have ignored second- and higher-order terms.
Here, δ should be interpreted as the noise-free, nonlinear
density field, whereas ~ϵδm and ~ϵ0m are the matter equiv-
alents to the lowest order halo shot noise terms. In the halo
model, they do not vanish even in the limit mDM → 0
considered throughout our calculations. For clarity, we use
tilde in order to distinguish the halo shot noise contribu-
tions from the renormalized shot noise terms which appear
in Eq. (1).

To assess the extent to which Eq. (29) reproduces the
halo model predictions in the low-k limit, we compute the
large-scale 2-point and 3-point covariances of the noise
fields ~ϵ0i, ~ϵδi, ~ϵ0m and ~ϵ0δ using our ansatz for the halo and
matter fluctuation field δhðxÞ and δmðxÞ (which replaces
δðxÞ for this consistency check), respectively. We consider
first the 2-point covariances. The calculation of hδhδhi,
hδhδmi and hδmδmi in the limit k → 0 is straightforward.
Upon identifying our results with Eq. (8), the following
noise power spectra must satisfy:

Pf0g
~ϵ0i ~ϵ0j

¼
δKij
n̄i

; Pf0g
~ϵ0i ~ϵ0m

¼ Mi

ρ̄m
; Pf0g

~ϵ0m ~ϵ0m
¼ hn̄M2i

ρ̄2m
:

ð30Þ

Similarly, the 2-halo contribution to the various cross halo-
matter bispectra hδhδhδmi etc. in the limit ki ≪ 1, Eq. (21),
constrain another set of 2-point covariances. Namely, terms
proportional to Plinðk3Þ arise from 4-point correlators
involving two shot noise and two density fields (5-point
correlators of the form hðϵXδÞðk1ÞðϵYδÞðk2ÞϵZðk3Þi return a
loop). In the limit ki → 0, the relevant shot noise contri-
butions are

Bmmmðk1; k2; k3Þ ⊃ ½P~ϵδm ~ϵ0mðk1Þ þ P~ϵδm ~ϵ0mðk2Þ&Plinðk3Þ þ ð2 cycÞ
Bimmðk1; k2; k3Þ ⊃ bi½P~ϵδm ~ϵ0mðk2Þ þ P~ϵδm ~ϵ0mðk3Þ&Plinðk1Þ þ ½P~ϵδi ~ϵ0mðk3Þ þ P~ϵ0i ~ϵδmðk1Þ&Plinðk2Þ

þ ½P~ϵ0i ~ϵδmðk1Þ þ P~ϵδi ~ϵ0mðk2Þ&Plinðk3Þ
Bijmðk1; k2; k3Þ ⊃ bi½P~ϵ0j ~ϵδmðk2Þ þ P~ϵδj ~ϵ0mðk3Þ&Plinðk1Þ þ bj½P~ϵδi ~ϵ0mðk3Þ þ P~ϵ0i ~ϵδmðk1Þ&Plinðk2Þ

þ ½P~ϵ0i ~ϵδjðk1Þ þ P~ϵδi ~ϵ0jðk2Þ&Plinðk3Þ: ð31Þ

Identifying the above expressions with Eq. (21), the
following combination of zero-lag noise power spectra
must satisfy

Pf0g
~ϵδm ~ϵ0m

¼ hnM2b1i
2ρ̄2m

; Pf0g
~ϵδi ~ϵ0m

þ Pf0g
~ϵ0i ~ϵδm

¼ bi
Mi

ρ̄m
;

Pf0g
~ϵδi ~ϵ0j

þ Pf0g
~ϵ0i ~ϵδj

¼ bi
n̄i
δKij: ð32Þ

Finally, some of the 3-point noise covariances can be read
off from Eq. (18). We find:

Bf0g
~ϵ0i ~ϵ0j ~ϵ0k

¼ 1

n̄2i
δKijk; Bf0g

~ϵ0i ~ϵ0j ~ϵ0m
¼ Mi

n̄iρ̄m
δKij

Bf0g
~ϵ0i ~ϵ0m ~ϵ0m

¼ M2
i

ρ̄2m
; Bf0g

~ϵ0m ~ϵ0m ~ϵ0m
¼ hnM3i

ρ̄3m
: ð33Þ

In particular, Bijm exhibits a constant white noise in the
low-k because Bf0g

~ϵ0i ~ϵ0j ~ϵ0m
≠ 0. All this suggests that the

halo model indeed assumes that the halo and matter
overdensity be described by perturbative expansions of
the form Eq. (29).
In order to remedy the unphysical, large-scale behav-

ior of all the 1-halo terms involving at least one density
field, and simultaneously retain the halo model predic-
tions for Pf0g

ϵ0iϵ0j, P
f0g
ϵ0iϵδj etc., we argue that the halo model

perturbative expansion Eq. (29) should be reorganized
such that

δiðxÞ ¼ ðbi þ ~ϵδiðxÞ − bi ~ϵδmðxÞÞ δðxÞ þ ~ϵ0iðxÞ − bi ~ϵ0mðxÞ
δmðxÞ ¼ δðxÞ: ð34Þ

Here, δðxÞ is the nonlinear density field as in the
pertubative bias expansion Eq. (1). At the tree-level
considered in this paper, this ansatz clearly ensures that
any correlator involving at least one matter fluctuation
field does not exhibit a constant white noise in the limit
ki → 0 [i.e., the right-hand side of Eq. (26) now
vanishes]. In particular,
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The dotted lines in Fig. 1 give a preview of how fruitful this ap-
proach is in providing an accurate model of the non-linear matter
power spectrum.

3.2.1 Adapting the two-halo term

The two-halo term governs power on large scales and is given in its
original form in equation (10). Linear theory slightly overpredicts
the matter power spectrum around the quasi-linear scale and does
a particularly poor job of modelling damping of the BAO peaks
at z = 0, which are damped by the quasi-linear effect of small-
scale displacements. Modelling of the minutiae of the damping of
the BAO peaks is beyond the scope of this work, but we treat the
damping around these scales based on a model for the damping pre-
dicted from perturbation theory by Crocce, Pueblas & Scoccimarro
(2006), where

!2
lin(k) → e−k2σ 2

v !2
lin(k) , (21)

and σ 2
v is the 1D linear-theory displacement variance given by

σ 2
v = 1

3

∫ ∞

0

!2
lin(k)
k3

dk . (22)

The derivation of this expression assumes that the scales of interest
are large compared to σ v, such that the damping factor cannot be
trusted when kσ v is large. We found that the best fit to numerical
data at this scale required an expression equal to equation (21) to
quadratic order, but without the extreme high-k truncation:

!
′2
2H(k) =

[
1 − f tanh2 (kσv/

√
f )

]
!2

lin(k) , (23)

where f is a free parameter in our fit. In the kσ v ≫ 1 limit, equation
(23) reduces to !2

2H = (1 − f )!2
lin.

3.2.2 Adapting the one-halo term

We add freedom to the canonical form of the one-halo term in
equation (8) in a number of ways. The first concerns the behaviour
of the one-halo term at large scales, where the Universe tends to
homogeneity faster than predicted by Poisson shot noise. At large
scales, the one-halo term in equation (8) decays as !2 ∝ k3, whereas
the linear power decays approximately ∝ k4, so it is inevitable that
the one-halo term becomes greater than linear theory on very large
scales, which is unphysical. This effect arises because haloes are
treated as randomly placed in the standard halo-model formalism,
when in fact they are clustered and distributed more smoothly than
uniform random on very large scales. It has been suggested that a
large-scale cut-off in the one-halo term can be physically explained
as ‘halo exclusion’ (Smith et al. 2007), an effect that arises because,
by definition, haloes cannot exist within each other. This is not
captured by the standard halo-model power calculation because
that calculation assumes that haloes are randomly placed, so that the
probability of haloes overlapping is non-zero. Accounting for halo
exclusion damps the halo-model power on large scales. Regardless
of the exact details of exclusion, we modify the one-halo term so
that it decays more rapidly than linear theory at large scales:

!
′2
1H = [1 − e−(k/k∗)2

]!2
1H , (24)

where !2
1H is the same as in equation (8) and k∗ is a free parameter.

Within the one-halo term, parameters that we allow to vary are
the virialized overdensity of a halo, !v, defined in equation (13),
and the linear collapse threshold, δc, defined in equation (17). Both
of these parameters derive from the spherical model (e.g. p. 488 of

Peacock 1999) and rely on a somewhat arbitrary definition of the
exact time of halo collapse. The variation of !v can be predicted
theoretically from the spherical model, and Bryan & Norman (1998)
provide a fitting formula1 for a $CDM cosmology

!v = 18π2 + 82[%m(z) − 1] − 39[%m(z) − 1]2

%m(z)
. (25)

This suggests that !v increases as the universe deviates from
%m = 1.

In standard theory, δc ≃ 1.686 but we allow this number to
be a free parameter in our fit to power-spectrum data. Note that
changing δc changes the relationship between ν and the halo mass
(equation 17). This means that the ‘effective’ mass function we
invoke to improve !2(k) predictions will not necessarily accurately
represent the mass function that might be measured in simulations.

Fitted halo relations, such as the mass function and mass–
concentration relation, depend upon how haloes are defined when
identified in simulations. Therefore, the variations of !v in our fit-
ted halo model may not follow the simple theoretical variation in
equation (25) exactly, but we assume that the trend of increased !v

as the universe deviates from %m = 1 will serve as a useful initial
guide when we explore parameter space. In addition, for flat models
with a single component of dark energy, it is expected that !v would
be a function of %m(z) only and this will be a useful principle in
parametrizing fitting formulae. Increasing !v has the effect of in-
creasing the internal density of haloes and thus decreases the virial
radius of a halo of a fixed mass, thus increasing small-scale power.
Increasing δc means the linear density field has to reach higher
values before collapse can occur [in the Press & Schechter (1974)
approach], the result of which is that the density field is dissected
into more haloes of lower mass, which will reduce the amplitude
of the shot-noise component of the one-halo term and thus reduce
power.

One further free parameter is η, which we use to alter the halo
window function via

W (k,M) → W (νηk, M) , (26)

changing the halo profile in a mass-dependent way but leaving ν = 1
haloes unaltered and the individual halo masses unchanged. For
η > 0 higher mass (ν > 1) haloes are puffed out, while lower mass
haloes are contracted, both at constant virial radius: η > 0 decreases
the power whereas η < 0 increases it. This extra ingredient was
introduced to control the curvature of the power spectrum beyond
k ∼ 1h Mpc−1, where the filtering effect from the typical haloes has a
major effect on the shape of the one-halo term. As we move to higher
k values, the properties of lower mass haloes become increasingly
important. It is difficult for the one-halo term to track to the smallest
scales, and correcting this requires an empirical perturbation of the
halo profiles. Additionally, we allow ourselves to vary the amplitude
of the concentration–mass relation: A in equation (14).

3.2.3 Full power

A well-known defect in the halo model is in the transition between
the one- and two-halo terms, the so-called quasi-linear regime. In
the standard halo model, the transition is modelled by a simple
sum of the one- and two-halo terms (equation 11), but this is ob-
viously deficient. At z = 0, this transition scale is approximately

1 Equation (25) differs slightly from that in Bryan & Norman (1998) because
we work with respect to the matter density, rather than critical density.
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Figure 2. The ratio between the matter power spectrum at z = 0 (left) and z = 1 (right) for simulations with and without massive neutrinos (Mν = 0.6 eV).
Solid green lines show results for simulations using particles, while dashed red lines show results from Fourier-space simulations. The black dot–dashed lines
show the predicted effect from linear theory. The simulations used were L60 and S60; box sizes were 512 and 150 Mpc h−1, with parameters shown in Table 1.
For the smaller box sizes, more than one realization of structure is available, and hence we show (dotted grey lines) the one σ error due to sample variance, as
estimated numerically. Particle and Fourier-space methods use the same initial structure realizations. The Fourier-space method has more power in the largest
scale mode, probably because the phase structure of the neutrino component has been prevented from evolving, enhancing the effect of sample variance.

scales. In the numerical simulations, the flat plateau is replaced by
a minimum. The suppression increases up to k ∼ 1h Mpc−1, after
which it gradually decreases. This distinctive spoon-shaped pre-
virialization feature was also found by Brandbyge et al. (2008) and
Viel et al. (2010), and in CDM simulations by Lokas et al. (1996)
and Smith, Scoccimarro & Sheth (2007).

We can understand this shape by considering the effect of neu-
trinos on non-linear growth. The suppression caused by massive
neutrinos delays the onset of non-linear growth and increases the
wavenumber of the non-linear scale. Between the non-linear scale
for the simulation without neutrinos and the non-linear scale for
the simulation incorporating neutrinos, the suppression will be en-
hanced by the absence of non-linear growth. On the smallest scales,
the non-linear growth lost as a consequence of the massive neutrinos
becomes an ever-smaller fraction of the total, and the extra suppres-
sion decreases. Eventually non-linear growth comes to dominate
the linear effect, and the suppression is less than predicted by linear
theory.

As mentioned in Section 2.3, we performed checks for numerical
convergence. A simulation with increased resolution, S60ND (see
Table 1), had a relative matter power spectrum which differed from
the fiducial simulation, S60, by 1–2 per cent for k < 7 h Mpc−1.
Furthermore, the relative matter power spectra for our two different
box sizes, 512 and 150 Mpc h−1, were always in good agreement
on the largest scales probed by the smaller box, showing that our
smaller box size was sufficient for an accurate estimate of the sup-
pression of matter power spectrum due to the free streaming of the
neutrinos. The larger box showed a slightly increased suppression
on small scales, probably due to limited resolution. We found that
the effect of baryons was, at all redshifts, less than 1 per cent at
k < 8 h Mpc−1, gradually increasing on smaller scales, in agree-
ment with the results of e.g. Jing et al. (2006); van Daalen et al.
(2011).

Simulations S15NU and S60NU were run with a higher number
of neutrino particles, to check explicitly the effect of shot noise.
We found that, although the neutrino power spectrum is indeed
shot-noise-dominated on small scales, the power on these scales is
so small that their impact on the growth of the dark matter power
spectrum is negligible. Hence shot noise has only a minor impact

for simulations with a box size of 150 Mpc h−1, at the level of 1 per
cent at the relevant scales and redshifts.

3.1 Particle and Fourier-space implementation of neutrinos

Fig. 2 shows that particle and Fourier-space implementations of
neutrinos give similar results for the matter power spectrum, and
both agree with linear theory on large scales. The particle implemen-
tation, however, shows a smaller suppression, which scales roughly
linearly with Mν , particularly near the trough of the dip.

This discrepancy has again a simple physical explanation; struc-
ture growth in the dark matter induces structure growth in the neu-
trino component, as the less energetic neutrinos fall into the gravi-
tational wells created by the dark matter. This increases the power
in the neutrinos, drawing them closer to the non-linear dark matter
power spectrum and leading to a reduced neutrino suppression. Es-
sentially this is a back-reaction effect, where the dark matter drags
the neutrinos with it; since it results from the non-linear growth, it is
not being fully accounted for by linear theory neutrinos. Note that
structure growth in the neutrino component itself remains linear;
the effect is due to non-linear growth in the dark matter. Because
this effect is important at the accuracy we wish to achieve, our main
results (Figs 3, 4 and 5) are based on simulations with the particle
implementation of neutrinos.

3.2 Comparison to the HALOFIT model

Figs 3, 4 and 5 show the main results of this paper. Each figure shows
the suppression of the matter power spectrum caused by massive
neutrinos at four redshift snapshots (z = 0, 0.5, 1 and 2), compared
to the predicted effect from HALOFIT and linear theory. Fig. 3 shows
Mν = 0.6 eV, Fig. 4 has Mν = 0.3 eV and finally Fig. 5 has Mν =
0.15 eV.

HALOFIT clearly overpredicts the suppression of the matter power
spectrum due to massive neutrinos in the non-linear regime. The
cause is similar to that discussed in Section 3.1; HALOFIT includes
massive neutrinos only through the linear theory neutrinos suppres-
sion on the non-linear scale, and thus neglects any back-reaction

C⃝ 2011 The Authors, MNRAS 420, 2551–2561
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suppression of power due to neutrinos measured in 
numerical simulations, with or without baryons:

change on the ratio with/without baryons less than 
1% for k<8 h/Mpc.

Harnois-Deraps et al. (2015) combine the ratios:
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Figure 1. Fractional error on the dark matter only theoretical models for
shear correlation functions ξ+ (top) and ξ− (bottom). Results are compared
to the CEHF model. Squares with error bars are the weighted mean and
error across the different models (see the main text for details about the
variance on individual models). The upper (lower) thin solid lines in each
panel correspond to the effect of a 1σ upward (downward) fluctuation in
#M on the CEHF model, compared to the baseline cosmology. The open
circles (slightly shifted for clarity) represent the same weighted mean, but
the larger error bars combine in quadrature the theoretical error on the dark
matter model and the uncertainty on #M.

2.2.2 Neutrino feedback

The effect of the neutrino free-streaming on the dark matter struc-
ture has been calculated from simulations with a high level of pre-
cision and incorporated into the CAMB cosmological code (Lewis,
Challinor & Lasenby 2000; Bird, Viel & Haehnelt 2012) with less
than 10 per cent error at k = 10 h Mpc−1. With this tool, we com-
pute the mass power spectrum for our model with both dark matter
and massive neutrinos, P DM+ν

HF2 (k), assuming one massive and two
massless flavours. We explore three different total neutrino masses
Mν of 0.2, 0.4 and 0.6 eV in addition to the massless case Mν = 0.
The ratio between these and the dark matter only model provide our
four predictions of the neutrino feedback bias:

b2
Mν

(k, z) ≡ P DM+Mν (k, z)
P DM(k, z)

, (7)

where the Mν superscript specifies the total neutrino mass consid-
ered. For each model X of Table 1, we implement the neutrino feed-
back with a multiplicative bias factor, i.e. P DM+ν

X = P DM
X × b2

Mν
,

with X = (HF2, HF1b, . . . ).

2.2.3 Baryon feedback

The baryonic feedback models are obtained2 from a subset of the
hydrodynamical simulation suite ran in the context of the Over-
Whelmingly Large (OWL) Simulation Project (Schaye et al. 2010).
The dark matter density fields of these simulations were compared
to a dark matter only baseline, and discrepancies were reported
as baryonic feedback on the dark matter (van Daalen et al. 2011).
Amongst different models, we selected four models: (1) the dark
matter only (DM-ONLY), (2) the reference baryonic model (REF)
that describes prescriptions for cooling, heating, star formation and
evolution, chemical enrichment and supernovae feedback, (3) a

2 OWL simulations: http://vd11.strw.leidenuniv.nl/

model that has an additional contribution from the active galac-
tic nuclei feedback (AGN) and (4) a top-heavy stellar initial mass
function (DBLIM), but no AGN feedback (see van Daalen et al.
2011, for details about these simulations). Following van Daalen
et al. (2011) and Semboloni et al. (2011), we model the baryonic
feedback on dark matter by taking the ratio with the DM-ONLY
model, and define the baryon feedback bias as

b2
m(k, z) ≡ P

DM+b(m)
OWL (k, z)
P DM

OWL(k, z)
, (8)

where the index b(m) runs over the different baryon feedback mod-
els (AGN, REF, . . . ), and the subscript OWL specifies that these
quantities are measured from the OWL simulation suite. The lower
section of Table 1 summarizes the baryonic feedback models con-
sidered in this paper.

2.2.4 Combined feedback

In this analysis, we consider all combinations of the four neutrino
masses (three with Mν > 0, plus the massless case) with the four
baryon feedback models (three with baryonic physics, plus the no
baryon case) for a total of 16 models, all constructed from

P DM+ν+b(m)(k, z) = P DM(k, z) × b2
m(k, z) × b2

Mν
(k, z). (9)

The underlying assumption from this ‘multiplicative’ parametriza-
tion is that the baryonic feedback is independent of the neutrino
free streaming. This statement is justified since Bird et al. (2012)
found that baryons have a 1 per cent effect on the neutrinos for
k < 8 h Mpc−1 with a gradual increase at smaller scales. This is
clearly sub-dominant compared to the baryon feedback itself, justi-
fying our multiplicative feedback method.

The left-hand panels of Fig. 2 illustrate the action of different
combinations of baryons and massive neutrinos on the dark matter

Figure 2. Left: combined feedback from baryons and massive neutrinos
on the dark matter power spectrum, measured at z = 0. Each panel shows
the dark matter only model as the thick horizontal line, and the dark mat-
ter + baryons as the thin solid line. Top to bottom are AGN, REF, DBLIM
and DM-ONLY baryon models, respectively. Also shown is the impact of
neutrinos on each model, shown as thin dashed lines (0.2 eV), dotted lines
(0.4 eV) and thick dash–dotted lines (0.6 eV). Right: same as the left-hand
panel, but for the weak lensing power spectra, assuming the source redshift
distribution given by equation (11).
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Figure 1. Fractional error on the dark matter only theoretical models for
shear correlation functions ξ+ (top) and ξ− (bottom). Results are compared
to the CEHF model. Squares with error bars are the weighted mean and
error across the different models (see the main text for details about the
variance on individual models). The upper (lower) thin solid lines in each
panel correspond to the effect of a 1σ upward (downward) fluctuation in
#M on the CEHF model, compared to the baseline cosmology. The open
circles (slightly shifted for clarity) represent the same weighted mean, but
the larger error bars combine in quadrature the theoretical error on the dark
matter model and the uncertainty on #M.

2.2.2 Neutrino feedback

The effect of the neutrino free-streaming on the dark matter struc-
ture has been calculated from simulations with a high level of pre-
cision and incorporated into the CAMB cosmological code (Lewis,
Challinor & Lasenby 2000; Bird, Viel & Haehnelt 2012) with less
than 10 per cent error at k = 10 h Mpc−1. With this tool, we com-
pute the mass power spectrum for our model with both dark matter
and massive neutrinos, P DM+ν

HF2 (k), assuming one massive and two
massless flavours. We explore three different total neutrino masses
Mν of 0.2, 0.4 and 0.6 eV in addition to the massless case Mν = 0.
The ratio between these and the dark matter only model provide our
four predictions of the neutrino feedback bias:

b2
Mν

(k, z) ≡ P DM+Mν (k, z)
P DM(k, z)

, (7)

where the Mν superscript specifies the total neutrino mass consid-
ered. For each model X of Table 1, we implement the neutrino feed-
back with a multiplicative bias factor, i.e. P DM+ν

X = P DM
X × b2

Mν
,

with X = (HF2, HF1b, . . . ).

2.2.3 Baryon feedback

The baryonic feedback models are obtained2 from a subset of the
hydrodynamical simulation suite ran in the context of the Over-
Whelmingly Large (OWL) Simulation Project (Schaye et al. 2010).
The dark matter density fields of these simulations were compared
to a dark matter only baseline, and discrepancies were reported
as baryonic feedback on the dark matter (van Daalen et al. 2011).
Amongst different models, we selected four models: (1) the dark
matter only (DM-ONLY), (2) the reference baryonic model (REF)
that describes prescriptions for cooling, heating, star formation and
evolution, chemical enrichment and supernovae feedback, (3) a

2 OWL simulations: http://vd11.strw.leidenuniv.nl/

model that has an additional contribution from the active galac-
tic nuclei feedback (AGN) and (4) a top-heavy stellar initial mass
function (DBLIM), but no AGN feedback (see van Daalen et al.
2011, for details about these simulations). Following van Daalen
et al. (2011) and Semboloni et al. (2011), we model the baryonic
feedback on dark matter by taking the ratio with the DM-ONLY
model, and define the baryon feedback bias as

b2
m(k, z) ≡ P

DM+b(m)
OWL (k, z)
P DM

OWL(k, z)
, (8)

where the index b(m) runs over the different baryon feedback mod-
els (AGN, REF, . . . ), and the subscript OWL specifies that these
quantities are measured from the OWL simulation suite. The lower
section of Table 1 summarizes the baryonic feedback models con-
sidered in this paper.

2.2.4 Combined feedback

In this analysis, we consider all combinations of the four neutrino
masses (three with Mν > 0, plus the massless case) with the four
baryon feedback models (three with baryonic physics, plus the no
baryon case) for a total of 16 models, all constructed from

P DM+ν+b(m)(k, z) = P DM(k, z) × b2
m(k, z) × b2

Mν
(k, z). (9)

The underlying assumption from this ‘multiplicative’ parametriza-
tion is that the baryonic feedback is independent of the neutrino
free streaming. This statement is justified since Bird et al. (2012)
found that baryons have a 1 per cent effect on the neutrinos for
k < 8 h Mpc−1 with a gradual increase at smaller scales. This is
clearly sub-dominant compared to the baryon feedback itself, justi-
fying our multiplicative feedback method.

The left-hand panels of Fig. 2 illustrate the action of different
combinations of baryons and massive neutrinos on the dark matter

Figure 2. Left: combined feedback from baryons and massive neutrinos
on the dark matter power spectrum, measured at z = 0. Each panel shows
the dark matter only model as the thick horizontal line, and the dark mat-
ter + baryons as the thin solid line. Top to bottom are AGN, REF, DBLIM
and DM-ONLY baryon models, respectively. Also shown is the impact of
neutrinos on each model, shown as thin dashed lines (0.2 eV), dotted lines
(0.4 eV) and thick dash–dotted lines (0.6 eV). Right: same as the left-hand
panel, but for the weak lensing power spectra, assuming the source redshift
distribution given by equation (11).
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Figure 1. Fractional error on the dark matter only theoretical models for
shear correlation functions ξ+ (top) and ξ− (bottom). Results are compared
to the CEHF model. Squares with error bars are the weighted mean and
error across the different models (see the main text for details about the
variance on individual models). The upper (lower) thin solid lines in each
panel correspond to the effect of a 1σ upward (downward) fluctuation in
#M on the CEHF model, compared to the baseline cosmology. The open
circles (slightly shifted for clarity) represent the same weighted mean, but
the larger error bars combine in quadrature the theoretical error on the dark
matter model and the uncertainty on #M.

2.2.2 Neutrino feedback

The effect of the neutrino free-streaming on the dark matter struc-
ture has been calculated from simulations with a high level of pre-
cision and incorporated into the CAMB cosmological code (Lewis,
Challinor & Lasenby 2000; Bird, Viel & Haehnelt 2012) with less
than 10 per cent error at k = 10 h Mpc−1. With this tool, we com-
pute the mass power spectrum for our model with both dark matter
and massive neutrinos, P DM+ν

HF2 (k), assuming one massive and two
massless flavours. We explore three different total neutrino masses
Mν of 0.2, 0.4 and 0.6 eV in addition to the massless case Mν = 0.
The ratio between these and the dark matter only model provide our
four predictions of the neutrino feedback bias:

b2
Mν

(k, z) ≡ P DM+Mν (k, z)
P DM(k, z)

, (7)

where the Mν superscript specifies the total neutrino mass consid-
ered. For each model X of Table 1, we implement the neutrino feed-
back with a multiplicative bias factor, i.e. P DM+ν

X = P DM
X × b2

Mν
,

with X = (HF2, HF1b, . . . ).

2.2.3 Baryon feedback

The baryonic feedback models are obtained2 from a subset of the
hydrodynamical simulation suite ran in the context of the Over-
Whelmingly Large (OWL) Simulation Project (Schaye et al. 2010).
The dark matter density fields of these simulations were compared
to a dark matter only baseline, and discrepancies were reported
as baryonic feedback on the dark matter (van Daalen et al. 2011).
Amongst different models, we selected four models: (1) the dark
matter only (DM-ONLY), (2) the reference baryonic model (REF)
that describes prescriptions for cooling, heating, star formation and
evolution, chemical enrichment and supernovae feedback, (3) a

2 OWL simulations: http://vd11.strw.leidenuniv.nl/

model that has an additional contribution from the active galac-
tic nuclei feedback (AGN) and (4) a top-heavy stellar initial mass
function (DBLIM), but no AGN feedback (see van Daalen et al.
2011, for details about these simulations). Following van Daalen
et al. (2011) and Semboloni et al. (2011), we model the baryonic
feedback on dark matter by taking the ratio with the DM-ONLY
model, and define the baryon feedback bias as

b2
m(k, z) ≡ P

DM+b(m)
OWL (k, z)
P DM

OWL(k, z)
, (8)

where the index b(m) runs over the different baryon feedback mod-
els (AGN, REF, . . . ), and the subscript OWL specifies that these
quantities are measured from the OWL simulation suite. The lower
section of Table 1 summarizes the baryonic feedback models con-
sidered in this paper.

2.2.4 Combined feedback

In this analysis, we consider all combinations of the four neutrino
masses (three with Mν > 0, plus the massless case) with the four
baryon feedback models (three with baryonic physics, plus the no
baryon case) for a total of 16 models, all constructed from

P DM+ν+b(m)(k, z) = P DM(k, z) × b2
m(k, z) × b2

Mν
(k, z). (9)

The underlying assumption from this ‘multiplicative’ parametriza-
tion is that the baryonic feedback is independent of the neutrino
free streaming. This statement is justified since Bird et al. (2012)
found that baryons have a 1 per cent effect on the neutrinos for
k < 8 h Mpc−1 with a gradual increase at smaller scales. This is
clearly sub-dominant compared to the baryon feedback itself, justi-
fying our multiplicative feedback method.

The left-hand panels of Fig. 2 illustrate the action of different
combinations of baryons and massive neutrinos on the dark matter

Figure 2. Left: combined feedback from baryons and massive neutrinos
on the dark matter power spectrum, measured at z = 0. Each panel shows
the dark matter only model as the thick horizontal line, and the dark mat-
ter + baryons as the thin solid line. Top to bottom are AGN, REF, DBLIM
and DM-ONLY baryon models, respectively. Also shown is the impact of
neutrinos on each model, shown as thin dashed lines (0.2 eV), dotted lines
(0.4 eV) and thick dash–dotted lines (0.6 eV). Right: same as the left-hand
panel, but for the weak lensing power spectra, assuming the source redshift
distribution given by equation (11).
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Motohashi, Starobinsky & Yokoyama 2009; Brax et al. 2011; Li &
Hu 2011; Li, Zhao & Koyama 2012; Linares & Mota 2013; Brax
& Valageas 2013; Taddei, Catena & Pietroni 2014). In this paper,
we focus on the matter density power spectrum P(k; z), or more
precisely, on the weak lensing convergence power spectrum Cκ

ℓ ,
which can be computed from P(k; z) through the modified Poisson
equations that relate the metric gravitational potentials to the matter
density fluctuations.

Therefore, before computing weak lensing statistics, we first need
to describe gravitational clustering and the 3D matter density power
spectrum for all cosmological scenarios that we investigate. We use
the approach first developed in Valageas, Nishimichi & Taruya
(2013) for the #CDM cosmology, generalized afterwards to vari-
ous modified-gravity scenarios in Brax & Valageas (2013, 2014b).
This is an analytical approach that combines perturbation theory up
to one-loop order (i.e. up to order P 2

L , where PL is the linear mat-
ter density power spectrum) with a phenomenological halo model.
Namely, we are splitting the matter power spectrum as

P (k) = P2H(k) + P1H(k), (42)

where P2H(k) is the ‘two-halo’ term associated with pairs of par-
ticles that are enclosed in two different haloes, whereas P1H(k) is
the ‘one-halo’ term associated with pairs enclosed in the same halo.
This construction allows us to obtain predictions for the non-linear
matter power spectrum covering the linear, quasi-linear and highly
non-linear scales. We refer the reader to the work cited above for
complete details and validations of equation (42), but nevertheless
provide an overview of the method in Appendix A for quick ref-
erence. We note that other prescriptions exist for modelling P(k)
in modified gravity scenarios, i.e. Zhao (2014) for the f(R) model.
However the modelling we adopt here applies also to f(R) with n
̸= 1 gravity, to Dilaton gravity, and in fact to any modified gravity
model expressed in the tomographic parametrization, which makes
it general and accurate at the same time.

In analogy with equations (40) and (41), we define the modified
gravity bias:

b2
MG(α)(k, z) ≡ P

MG(α)
VNT (k, z)
P DM

VNT(k, z)
, (43)

where MG(α) refers to the gravity model, with α = 0 corresponding
to GR, α = [1, 2, 3,. . . ,15] specifying dilation models [A1, A2,
A3,. . . , E4], α = [16, 17, 18] specifying f(R) models with n = 1
and |fR0 | = 10−4, 10−5, 10−6, and finally α = [19, 20, 21] the f(R)
models with n = 2 and the same |fR0 | values. The subscript ‘VNT’
indicates quantities that are computed in the framework of Valageas
et al. (2013), i.e. with equation (42).

Bringing all the pieces together, we construct the matter power
spectrum for any combination of baryon feedback, neutrino mass
and modified gravity by multiplying the DM-ONLY model by the
corresponding biases:

P DM+ν+b(m)+MG = P DM × b2
Mν

× b2
m × b2

MG(α). (44)

We have removed the dependences on scale and redshift for each of
these terms to clarify the notation. This modelling assumes that the
effect of modified gravity on the baryon and neutrino feedbacks can
be neglected, allowing for the convenient factorization presented
in equation (44). This seems to be a valid approximation for some
models, as it was shown in Hammami et al. (2015) that the mod-
ified gravity bias measured in DM-ONLY matched to better than
5 per cent the same measurement done in full hydrodynamical sim-
ulations, for f(R) models with n = 1 and |fR0 | ∈ [10−4 to 10−6].
However, the same group also observed larger deviations in many

Figure 4. Combined effect from baryon feedback and massive neutrinos on
the matter power spectrum P(k) assuming different modified gravity models,
again evaluated at z = 1. Results are shown with respect to the DM-ONLY
non-linear predictions (thick horizontal solid line). From top to bottom at k
= 0.2 h Mpc−1, the solid lines represent Dilaton models B4, A3, E3, D1 and
C1, respectively. The thick red dashed lines correspond to f(R) gravity with
n = 1. Top to bottom are for |fR0 | = 10−4, 10−5 and 10−6, respectively.
We do not show the n = 2 results to avoid overcrowding the figure, but they
are qualitatively similar in shape to the n = 1 case, albeit with a smaller
departure from #CDM. Different panels show different combinations of
massive neutrinos and baryon feedback on these same models, all computed
with equation (44).

symmetron models, up to 20 per cent by k = 10 h Mpc−1 in some
cases. This places a limit on the accuracy of equation (44), and calls
for more hydrodynamical simulation runs where bm and bMG(α) are
merged into one term, bm, MG(α), measured for each combination of
{α, m}. This is unfortunately not available at the moment, hence
equation (44) is currently our best shot at this joint measurement.
On the neutrino sector, results by Baldi et al. (2014) are further
encouraging: they looked at joint simulations of modified gravity
and massive neutrinos and came to the conclusion that one could
consider the effect of each almost independently, supporting the
validity of equation (44).

For each combination, we compute predictions for the weak lens-
ing quantity with equations (37) and (34). We report our results on
P(k) and Cκ

ℓ in Figs 4 and 5, respectively. Whereas modified gravity
is generally boosting the clustering compared to a #CDM uni-
verse, the inclusion of massive neutrinos and/or baryonic feedback
is working in the opposite direction. It becomes clear that a pre-
cise distinction between these three feedback contributions poses a
challenge to clustering and weak lensing experiments.

3.3 Data

Our measurement of the shear correlation functions ξ± is based on
the public release of the CFHTLenS.16 The CFHTLenS covers a
total area of 154 deg2, which is reduced to 128 deg2 after mask-
ing bright stars, foreground moving objects and faulty CCD rows.
Full details about the data reduction pipeline are provided in Er-
ben et al. (2013). Source redshifts are obtained from the five bands
u′griz photometric observations (Hildebrandt et al. 2012) and were

16 CFHTLenS: www.cfhtlens.org
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Hu 2011; Li, Zhao & Koyama 2012; Linares & Mota 2013; Brax
& Valageas 2013; Taddei, Catena & Pietroni 2014). In this paper,
we focus on the matter density power spectrum P(k; z), or more
precisely, on the weak lensing convergence power spectrum Cκ

ℓ ,
which can be computed from P(k; z) through the modified Poisson
equations that relate the metric gravitational potentials to the matter
density fluctuations.

Therefore, before computing weak lensing statistics, we first need
to describe gravitational clustering and the 3D matter density power
spectrum for all cosmological scenarios that we investigate. We use
the approach first developed in Valageas, Nishimichi & Taruya
(2013) for the #CDM cosmology, generalized afterwards to vari-
ous modified-gravity scenarios in Brax & Valageas (2013, 2014b).
This is an analytical approach that combines perturbation theory up
to one-loop order (i.e. up to order P 2

L , where PL is the linear mat-
ter density power spectrum) with a phenomenological halo model.
Namely, we are splitting the matter power spectrum as

P (k) = P2H(k) + P1H(k), (42)

where P2H(k) is the ‘two-halo’ term associated with pairs of par-
ticles that are enclosed in two different haloes, whereas P1H(k) is
the ‘one-halo’ term associated with pairs enclosed in the same halo.
This construction allows us to obtain predictions for the non-linear
matter power spectrum covering the linear, quasi-linear and highly
non-linear scales. We refer the reader to the work cited above for
complete details and validations of equation (42), but nevertheless
provide an overview of the method in Appendix A for quick ref-
erence. We note that other prescriptions exist for modelling P(k)
in modified gravity scenarios, i.e. Zhao (2014) for the f(R) model.
However the modelling we adopt here applies also to f(R) with n
̸= 1 gravity, to Dilaton gravity, and in fact to any modified gravity
model expressed in the tomographic parametrization, which makes
it general and accurate at the same time.

In analogy with equations (40) and (41), we define the modified
gravity bias:

b2
MG(α)(k, z) ≡ P

MG(α)
VNT (k, z)
P DM

VNT(k, z)
, (43)

where MG(α) refers to the gravity model, with α = 0 corresponding
to GR, α = [1, 2, 3,. . . ,15] specifying dilation models [A1, A2,
A3,. . . , E4], α = [16, 17, 18] specifying f(R) models with n = 1
and |fR0 | = 10−4, 10−5, 10−6, and finally α = [19, 20, 21] the f(R)
models with n = 2 and the same |fR0 | values. The subscript ‘VNT’
indicates quantities that are computed in the framework of Valageas
et al. (2013), i.e. with equation (42).

Bringing all the pieces together, we construct the matter power
spectrum for any combination of baryon feedback, neutrino mass
and modified gravity by multiplying the DM-ONLY model by the
corresponding biases:

P DM+ν+b(m)+MG = P DM × b2
Mν

× b2
m × b2

MG(α). (44)

We have removed the dependences on scale and redshift for each of
these terms to clarify the notation. This modelling assumes that the
effect of modified gravity on the baryon and neutrino feedbacks can
be neglected, allowing for the convenient factorization presented
in equation (44). This seems to be a valid approximation for some
models, as it was shown in Hammami et al. (2015) that the mod-
ified gravity bias measured in DM-ONLY matched to better than
5 per cent the same measurement done in full hydrodynamical sim-
ulations, for f(R) models with n = 1 and |fR0 | ∈ [10−4 to 10−6].
However, the same group also observed larger deviations in many

Figure 4. Combined effect from baryon feedback and massive neutrinos on
the matter power spectrum P(k) assuming different modified gravity models,
again evaluated at z = 1. Results are shown with respect to the DM-ONLY
non-linear predictions (thick horizontal solid line). From top to bottom at k
= 0.2 h Mpc−1, the solid lines represent Dilaton models B4, A3, E3, D1 and
C1, respectively. The thick red dashed lines correspond to f(R) gravity with
n = 1. Top to bottom are for |fR0 | = 10−4, 10−5 and 10−6, respectively.
We do not show the n = 2 results to avoid overcrowding the figure, but they
are qualitatively similar in shape to the n = 1 case, albeit with a smaller
departure from #CDM. Different panels show different combinations of
massive neutrinos and baryon feedback on these same models, all computed
with equation (44).

symmetron models, up to 20 per cent by k = 10 h Mpc−1 in some
cases. This places a limit on the accuracy of equation (44), and calls
for more hydrodynamical simulation runs where bm and bMG(α) are
merged into one term, bm, MG(α), measured for each combination of
{α, m}. This is unfortunately not available at the moment, hence
equation (44) is currently our best shot at this joint measurement.
On the neutrino sector, results by Baldi et al. (2014) are further
encouraging: they looked at joint simulations of modified gravity
and massive neutrinos and came to the conclusion that one could
consider the effect of each almost independently, supporting the
validity of equation (44).

For each combination, we compute predictions for the weak lens-
ing quantity with equations (37) and (34). We report our results on
P(k) and Cκ

ℓ in Figs 4 and 5, respectively. Whereas modified gravity
is generally boosting the clustering compared to a #CDM uni-
verse, the inclusion of massive neutrinos and/or baryonic feedback
is working in the opposite direction. It becomes clear that a pre-
cise distinction between these three feedback contributions poses a
challenge to clustering and weak lensing experiments.

3.3 Data

Our measurement of the shear correlation functions ξ± is based on
the public release of the CFHTLenS.16 The CFHTLenS covers a
total area of 154 deg2, which is reduced to 128 deg2 after mask-
ing bright stars, foreground moving objects and faulty CCD rows.
Full details about the data reduction pipeline are provided in Er-
ben et al. (2013). Source redshifts are obtained from the five bands
u′griz photometric observations (Hildebrandt et al. 2012) and were

16 CFHTLenS: www.cfhtlens.org
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effect on the neutrinos bias for k < 8 h Mpc−1 (Bird, Viel & Haehnelt
2012).

We compute the neutrino feedback bias term b2
Mν

with the CAMB

cosmological code (Lewis, Challinor & Lasenby 2000), which is
reported to be accurate to better than 10 per cent at k = 10 h Mpc−1

(Bird et al. 2012). We assume one massive neutrino flavour, and
fix the cosmology at high redshift – i.e. we keep the primordial
amplitude As fixed but let σ 8 vary. We justify this choice from
the fact that the former quantity is measured very accurately by
CMB observations, whereas our estimation of the latter quantity is
much less accurate due to galactic and cluster bias. We construct
the neutrino bias as

b2
Mν

(k, z) ≡ P DM+Mν
CAMB (k, z)
P DM

CAMB(k, z)
, (40)

where the Mν (=0.0, 0.2, 0.4 or 0.6 eV) superscript specifies the
total neutrino mass considered, and the subscript ‘CAMB’ specifies
that both quantities are measured from this cosmological numerical
code.

The baryonic feedback bias is estimated from two hydrodynam-
ical simulations ran in the context of the OverWhelmingly Large
(OWL) Simulation Project (Schaye et al. 2010). The DM-ONLY run
is a purely collisionless N-body calculation and acts as the baseline
for this baryon feedback measurement only. The active galactic
nucleus (AGN) simulation run contains gas dynamics with physi-
cal prescriptions for cooling, heating, star formation and evolution,
chemical enrichment, supernovae feedback andAGN feedback (see
van Daalen et al. 2011 for details about these simulations). Fol-
lowing van Daalen et al. (2011) and Semboloni et al. (2011), we
measure the baryonic feedback bias by taking the ratio between the
AGN and the DM-ONLY models15:

b2
m(k, z) ≡ P

DM+b(m)
OWL (k, z)
P DM

OWL(k, z)
, (41)

where the index b(m) refers to either DM-ONLY or AGN, and
the subscript ‘OWL’ specifies that these quantities were measured
specifically from the OWL simulation suite.

Fig. 1 shows the impact of different combinations of baryons and
massive neutrinos on the matter power spectrum. Figs 2 and 3 show
the equivalent effects on the weak lensing power spectrum Cκ

ℓ and on
the shear two-point correlation function ξ±(θ ), respectively. We can
see from the three figures that all models converge to DM-ONLY at
large scales (low k, low ℓ and high θ ), and that the combined effect
can suppress more than 50 per cent of the power, depending on
the models and neutrino mass. Also, it becomes clear that surveys
probing small patches (restricted to ℓ > 500 for example) would
have difficulties to distinguish between the two feedback processes.
This degeneracy can only be broken with the inclusion of lower ℓ

multipoles, where baryon feedback is minimal but massive neutrinos
still leave a signature (Natarajan et al. 2014).

3.2.3 Combined feedback with modified gravity

The evolution of perturbations in the context of large-scale struc-
tures has been carefully studied in f(R) and scalar–tensor theo-
ries’ gravity (Koivisto 2006; Zhang 2006; Bean et al. 2007; Hu &
Sawicki 2007; Song et al. 2007a,b; Carloni, Dunsby & Troisi 2008;
Pogosian & Silvestri 2008; Koyama, Taruya & Hiramatsu 2009;

15 The power spectrum measurements from the OWL simulation suite are
publicly available at http://vd11.strw.leidenuniv.nl

Figure 1. Combined effect from baryon feedback and massive neutrinos on
the matter power spectrum P(k), evaluated at z = 1. Results are shown with
respect to the DM-ONLY non-linear predictions (thick solid line). From top
to bottom, the (blue) dashed lines represent the effect of massive neutrinos
with Mν = 0.2, 0.4 and 0.6 eV, respectively. The combinations of massive
neutrinos with baryon feedback are shown with the thin (red) solid lines.

Figure 2. Combined effect from baryon feedback and massive neutrinos on
the weak lensing power spectrum, assuming the source redshift distribution
given by equation (45) and the baseline WMAP9 cosmology. As for Fig. 1,
results of different combinations are shown with respect to the DM-ONLY
non-linear predictions (thick solid line), and the sum of neutrino masses
shown are, from top to bottom, Mν = 0.2, 0.4 and 0.6 eV.

Figure 3. Left: combined effect from baryon feedback and massive neu-
trinos on the weak lensing two-point correlation function ξ+. The open
symbols represent our measurements from CFHTLenS data, shown with
1σ error bars. Right: same as the left-hand panel, but for the ξ− estimator.
We used the same y-axis range for both panels to emphasize on the differ-
ences across the models, hence the leftmost point falls outside the frame, at
ξ−/ξDM

− = −3.8.
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2) Include in the halo model parameters

Include baryonic effects through the concentration parameter A and the halo profile extent

Accurate halo-model power spectra 1961

been set and the halo mass measured, the virial radius is no longer
an independent parameter, and in order to conserve mass

rv =
(

3M

4π!vρ̄

)1/3

. (13)

Note that this means that in general the rv given by equation (13) will
be different from the halo radius one may independently measure
from halo particles in a simulation. The normalization, ρN, is set by
the requirement that the spherical integral of equation (12) gives the
halo mass. The only free parameter in a fit to simulations is then rs,
or equivalently the halo concentration c ≡ rv/rs. An implication of
this is that the value of c measured for simulated haloes depends on
the halo definition used – particularly the !v criterion, the algorithm
used to identify haloes and the scheme used for breaking up spurious
haloes or unbinding particles (e.g. Knebe et al. 2011).

Since the genesis of the NFW profile a large number of relations
between the concentration and mass of haloes have been developed.
The general trend is that haloes of higher mass are less concentrated
than those of lower mass, attributed to the fact that larger haloes
formed in the more recent past and that the central density of a halo
retains a memory of the cosmological density at its formation time.
The original c(M) relation proposed by Navarro et al. (1997) was
shown to produce an incorrect redshift evolution by Bullock et al.
(2001), who provided an updated relation based around the concept
of halo formation time. Around the same time a similar model by
Eke, Navarro & Steinmetz (2001) was introduced, which was in-
tended to predict the correct c(M) relation in the case of models
with the same background cosmological parameters but different
linear spectra, for example warm dark matter models compared to a
cold dark matter (CDM) model. Lately focus has shifted to produce
extremely accurate concentration–mass relations for the standard
#CDM cosmological model (e.g. Neto et al. 2007; Gao et al. 2008)
but these relations do not allow for general variations in cosmology.
More recently, Prada et al. (2012) and Klypin et al. (2014) have sug-
gested c(M) relations that are ‘universal’, in that they do not depend
on cosmology other than via the function σ (M) (equation 6). These
relations predict that models with identical linear spectra should
share a c(M) relation, at odds with results from the concentration
emulator of Kwan et al. (2013), which produces a different relation
for models with identical linear spectra but different growth histo-
ries (e.g. a #CDM model compared to a wCDM model at z = 0
with identical σ 8).

We choose to use the relations of Bullock et al. (2001) because it
was derived by fitting to a wide variety of cosmologies and also be-
cause their haloes were defined with a cosmology-dependent over-
density criterion, and therefore naturally adapt to the changes that
we plan to make to the halo model in Section 3. The c(M) for-
mula relates the concentration of a halo, identified at redshift z, to
a formation redshift, zf, via

c(M, z) = A
1 + zf

1 + z
, (14)

where the parameter A is deduced by fitting to simulated haloes.
The formation redshift is calculated by finding the redshift at which
a fraction (f, also derived from simulated haloes) of the eventual
halo mass has collapsed into objects, using the Press & Schechter
(1974) theory:

g(zf )
g(z)

σ (f M, z) = δc , (15)

where g(z) is the linear-theory growth function normalized such
that g(z = 0) = 1, σ 2 is the variance of the linear density field

filtered on the scale of a sphere containing a mass M (equation 6; M
is the mass enclosed in a sphere with radius R in the homogeneous
universe) and δc is the linear-theory collapse threshold. The value
of δc is calculated from the spherical collapse model: δc ≃ 1.686
for &m = 1, with a very weak dependence on cosmology (see Eke,
Cole & Frenk 1996 for flat models with # and Lacey & Cole 1993
for matter-dominated open models). In Bullock et al. (2001), the
parameters A = 4 and f = 0.01 were found from fitting the c(M)
relation to halo profiles over a range of masses and cosmologies.

For very massive haloes, equation (15) can assign a formation
redshift that is less than the redshift under consideration, suggesting
that the halo formed in the future. In our calculations, we remedy
this by setting c = A if zf < z, although it makes very little practical
difference to our power-spectrum calculations.

It was shown in Dolag et al. (2004) and Bartelmann et al. (2005)
that the c(M) relations proposed in Navarro et al. (1997), Bullock
et al. (2001) or Eke et al. (2001) failed to reproduce the exact vari-
ations in concentration seen in models with identical linear-theory
power spectra but different models of dark energy. Differences in
concentration arise because haloes form at different times in these
models, despite having matched linear theory at z = 0, and the
exact form of this hysteresis was not being captured by existing
relations [although the general trend is captured by Bullock et al.
(2001)]. Dolag et al. (2004) proposed a simple correction scheme
that augments the #CDM concentration for a model by the ratio of
asymptotic (z → ∞) growth factors of the dark-energy cosmology
to the standard #CDM one:

cDE = c#

gDE(z → ∞)
g#(z → ∞)

, (16)

and we implement this correction in our incarnation of the halo
model. The effect of dark energy on halo concentrations can be
seen at the level of the power spectrum in McDonald et al. (2006),
in fig. 10 of Heitmann et al. (2014) and also in our Fig. A1. It
can be seen at the level of measured halo concentrations using the
c(M) emulator or Kwan et al. (2013). Because halo concentration
affects small-scale power (equation 8), a corollary of this is that
the full non-linear spectrum will be different at small scales in
different dark-energy models, even if they share an identical linear
spectrum. Any scheme in which the calculation of the non-linear
power depends solely on the linear power will thus fail to capture
this detail.

The mass function of haloes (the fraction of haloes in the mass
range M to M + dM) has been measured from simulations (e.g.
Sheth & Tormen 1999; Jenkins et al. 2001) and has been shown
to have a near-universal form, almost independent of cosmology,
when expressed in terms of the variable

ν ≡ δc

σ (M)
. (17)

The mass function can be expressed as a universal function in f(ν),
which is related to F(M) that appears in equation (8) via

M

ρ̄
F (M) dM = f (ν) dν . (18)

This universality was predicted in an approach pioneered by Press
& Schechter (1974) whereby the mass function was calculated ex-
plicitly by considering what fraction of the density field, when
smoothed on a given mass scale, is above the critical threshold for
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The dotted lines in Fig. 1 give a preview of how fruitful this ap-
proach is in providing an accurate model of the non-linear matter
power spectrum.

3.2.1 Adapting the two-halo term

The two-halo term governs power on large scales and is given in its
original form in equation (10). Linear theory slightly overpredicts
the matter power spectrum around the quasi-linear scale and does
a particularly poor job of modelling damping of the BAO peaks
at z = 0, which are damped by the quasi-linear effect of small-
scale displacements. Modelling of the minutiae of the damping of
the BAO peaks is beyond the scope of this work, but we treat the
damping around these scales based on a model for the damping pre-
dicted from perturbation theory by Crocce, Pueblas & Scoccimarro
(2006), where

!2
lin(k) → e−k2σ 2

v !2
lin(k) , (21)

and σ 2
v is the 1D linear-theory displacement variance given by

σ 2
v = 1

3

∫ ∞

0

!2
lin(k)
k3

dk . (22)

The derivation of this expression assumes that the scales of interest
are large compared to σ v, such that the damping factor cannot be
trusted when kσ v is large. We found that the best fit to numerical
data at this scale required an expression equal to equation (21) to
quadratic order, but without the extreme high-k truncation:

!
′2
2H(k) =

[
1 − f tanh2 (kσv/

√
f )

]
!2

lin(k) , (23)

where f is a free parameter in our fit. In the kσ v ≫ 1 limit, equation
(23) reduces to !2

2H = (1 − f )!2
lin.

3.2.2 Adapting the one-halo term

We add freedom to the canonical form of the one-halo term in
equation (8) in a number of ways. The first concerns the behaviour
of the one-halo term at large scales, where the Universe tends to
homogeneity faster than predicted by Poisson shot noise. At large
scales, the one-halo term in equation (8) decays as !2 ∝ k3, whereas
the linear power decays approximately ∝ k4, so it is inevitable that
the one-halo term becomes greater than linear theory on very large
scales, which is unphysical. This effect arises because haloes are
treated as randomly placed in the standard halo-model formalism,
when in fact they are clustered and distributed more smoothly than
uniform random on very large scales. It has been suggested that a
large-scale cut-off in the one-halo term can be physically explained
as ‘halo exclusion’ (Smith et al. 2007), an effect that arises because,
by definition, haloes cannot exist within each other. This is not
captured by the standard halo-model power calculation because
that calculation assumes that haloes are randomly placed, so that the
probability of haloes overlapping is non-zero. Accounting for halo
exclusion damps the halo-model power on large scales. Regardless
of the exact details of exclusion, we modify the one-halo term so
that it decays more rapidly than linear theory at large scales:

!
′2
1H = [1 − e−(k/k∗)2

]!2
1H , (24)

where !2
1H is the same as in equation (8) and k∗ is a free parameter.

Within the one-halo term, parameters that we allow to vary are
the virialized overdensity of a halo, !v, defined in equation (13),
and the linear collapse threshold, δc, defined in equation (17). Both
of these parameters derive from the spherical model (e.g. p. 488 of

Peacock 1999) and rely on a somewhat arbitrary definition of the
exact time of halo collapse. The variation of !v can be predicted
theoretically from the spherical model, and Bryan & Norman (1998)
provide a fitting formula1 for a $CDM cosmology

!v = 18π2 + 82[%m(z) − 1] − 39[%m(z) − 1]2

%m(z)
. (25)

This suggests that !v increases as the universe deviates from
%m = 1.

In standard theory, δc ≃ 1.686 but we allow this number to
be a free parameter in our fit to power-spectrum data. Note that
changing δc changes the relationship between ν and the halo mass
(equation 17). This means that the ‘effective’ mass function we
invoke to improve !2(k) predictions will not necessarily accurately
represent the mass function that might be measured in simulations.

Fitted halo relations, such as the mass function and mass–
concentration relation, depend upon how haloes are defined when
identified in simulations. Therefore, the variations of !v in our fit-
ted halo model may not follow the simple theoretical variation in
equation (25) exactly, but we assume that the trend of increased !v

as the universe deviates from %m = 1 will serve as a useful initial
guide when we explore parameter space. In addition, for flat models
with a single component of dark energy, it is expected that !v would
be a function of %m(z) only and this will be a useful principle in
parametrizing fitting formulae. Increasing !v has the effect of in-
creasing the internal density of haloes and thus decreases the virial
radius of a halo of a fixed mass, thus increasing small-scale power.
Increasing δc means the linear density field has to reach higher
values before collapse can occur [in the Press & Schechter (1974)
approach], the result of which is that the density field is dissected
into more haloes of lower mass, which will reduce the amplitude
of the shot-noise component of the one-halo term and thus reduce
power.

One further free parameter is η, which we use to alter the halo
window function via

W (k,M) → W (νηk, M) , (26)

changing the halo profile in a mass-dependent way but leaving ν = 1
haloes unaltered and the individual halo masses unchanged. For
η > 0 higher mass (ν > 1) haloes are puffed out, while lower mass
haloes are contracted, both at constant virial radius: η > 0 decreases
the power whereas η < 0 increases it. This extra ingredient was
introduced to control the curvature of the power spectrum beyond
k ∼ 1h Mpc−1, where the filtering effect from the typical haloes has a
major effect on the shape of the one-halo term. As we move to higher
k values, the properties of lower mass haloes become increasingly
important. It is difficult for the one-halo term to track to the smallest
scales, and correcting this requires an empirical perturbation of the
halo profiles. Additionally, we allow ourselves to vary the amplitude
of the concentration–mass relation: A in equation (14).

3.2.3 Full power

A well-known defect in the halo model is in the transition between
the one- and two-halo terms, the so-called quasi-linear regime. In
the standard halo model, the transition is modelled by a simple
sum of the one- and two-halo terms (equation 11), but this is ob-
viously deficient. At z = 0, this transition scale is approximately

1 Equation (25) differs slightly from that in Bryan & Norman (1998) because
we work with respect to the matter density, rather than critical density.
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Figure 7. The ratio of power compared to a fiducial !CDM model
for cosmological models with combinations of massive neutrinos
(
∑

νmν = 0.3 eV), baryonic feedback (an AGN model) and MG
(fR0 = −10−5 and n = 1). We show combinations of two of the three
effects where the ratio is computed both by assuming the effects act inde-
pendently (dashed line) and via the full halo-model calculation (solid line)
where the effects are treated in tandem. Differences between each pair of
dashed and solid lines indicate the extent to which the effects can be treated
independently. We see that this is a good approximation in the case of the
combination of baryonic feedback with either MG or massive neutrinos.
However, the approximation degrades when one considers MG and massive
neutrinos together; the non-linear neutrino suppression effect is weaker in
f(R) compared to standard gravity.

4 D E G E N E R AC Y

The modelling developed in the previous section allows us to in-
vestigate degeneracies in the matter power spectrum between ex-
tensions to the standard cosmological paradigm. Simulations that
investigate these degeneracies are rare due to their complexity and
expense, but notable exceptions are presented in Puchwein et al.
(2013), Arnold, Puchwein & Springel (2014), Baldi et al. (2014)
and Arnold, Puchwein & Springel (2015). However, we may use
the halo model to compute the power spectrum for combinations of
extensions, and we may also include the effects of baryons using
the method presented in Mead et al. (2015b). Our results are pre-
sented in Fig. 7 where we show power spectra for combinations of
massive neutrinos (Mν = 0.3 eV from the modelling in Section 3.3),
baryonic feedback (the AGN halo model from Mead et al. 2015b;
obtained by altering parameters within the halo model that govern
halo internal structure so as to match power spectra from the OWLS
simulations of Schaye et al. 2010; van Daalen et al. 2011) and MG
(an f(R) model with fR0 = −10−5 and n = 1 from Section 3.4). For
each pair of extensions, the solid line show the result of a full halo-
model calculation, with the combined effects, whereas the dashed
line shows the result of using the halo model, but assuming that the
extensions to the standard paradigm can be treated independently.
The difference between each pair of lines for the different combi-
nations indicate how good an approximation it is to treat the effects
independently. Recent work (e.g. Harnois-Déraps et al. 2015a,b)
looking at cosmological constraints from all three effects in tandem
has been forced to assume they act independently, due to the lack of
theoretical models, but with the work presented in this paper we are
now in a position to model these effects simultaneously. The linear
spectrum for the ‘f(R) and massive neutrino’ case is calculated using
MG-CAMB (Hojjati et al. 2011a; Hojjati, Pogosian & Zhao 2011b), but
we find that the approximation of treating the two effects separately

and then combining them is almost perfect for the linear spectra
(within a per cent for k < 10 h Mpc−1). For this model, we compute
δc and $v by multiplying the deviations from equations (25) and
(43). This is justified because the origin of the deviation is the same
in each case being due to either an increased or a decreased effective
G, and is small in any case. Since the spherical model calculation
is non-linear, it may seem preferable to repeat it for each combined
model. However, we do not do this since we found that the spheri-
cal model calculations did not provide accurate halo-model power
spectra.

From Fig. 7, we see that the halo model predicts that baryonic
feedback should act quite independently from either massive neutri-
nos or MG. Physically, this can be understood as feedback affecting
halo internal structure only, but not altering the mass function or
large-scale clustering to the same extent (e.g. van Daalen et al.
2014). Thus, the power spectrum response predicted by consid-
ering feedback in isolation is a fairly good approximation to the
response in more general models. This is in qualitative agreement
with results presented by Puchwein et al. (2013) and may be good
news considering the relative uncertainty and expense of simula-
tions that contain hydrodynamics and baryonic feedback; it may be
sufficient to run detailed hydrodynamic simulations with feedback
for standard !CDM models and then to translate these effects into
extensions of the standard model. In contrast, from Fig. 7 we see
much larger differences when considering massive neutrinos and
MG in tandem. Baldi et al. (2014) investigate N-body simulations
that include both massive neutrinos and Hu & Sawicki (2007b) f(R)
gravity (their fig. 4) and come to a similar conclusion. Our results
are in qualitative agreement with those from the full simulations, in
that we see that the suppression of power caused by massive neu-
trinos is less in the f(R) models compared to standard gravity. This
is despite the multiplication of ratios being a very good approxi-
mation to create the linear spectrum for these models. Physically
this may be because both mechanisms effect the linear growth of
perturbations, and this translates into the non-linear density field in
a non-linear way. For example, both mechanisms affect the mass
function, but not in such a way that the induced power spectrum
change is well approximated by considering each separately. The
level of this non-linear coupling is not sufficient to have affected
the results of Harnois-Déraps et al. (2015a,b) and will probably
not need to be modelled for near-term lensing surveys. However,
lensing surveys that will be active in the next decade have stringent,
per cent level accuracy requirements on the theoretical modelling
of the power spectrum in order to provide forecasted constraints.
Our results indicate that it will not be sufficient to consider these
extensions to the cosmological paradigm in isolation.

5 SU M M A RY A N D D I S C U S S I O N

We have demonstrated that it is possible to use the halo model to
provide accurate matter power spectrum predictions for a variety
of extensions to the standard cosmological paradigm. Starting from
the accurate halo model of Mead et al. (2015b), we investigated
both minimally and non-minimally coupled DE models, massive
neutrinos and MG forces. In each case, we compared predictions
from the halo model to simulations of each extension at the level of
the power spectrum response; a measure of deviation from a fiducial
model.

We demonstrated that models of DE parametrized via
w(a) = w0 + (1 − a)wa could be matched at the few per cent
level for k < 10 h Mpc−1 with no modifications to the Mead et al.
(2015b) halo model and we noted that our predictions are more
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Figure 7. The ratio of power compared to a fiducial !CDM model
for cosmological models with combinations of massive neutrinos
(
∑

νmν = 0.3 eV), baryonic feedback (an AGN model) and MG
(fR0 = −10−5 and n = 1). We show combinations of two of the three
effects where the ratio is computed both by assuming the effects act inde-
pendently (dashed line) and via the full halo-model calculation (solid line)
where the effects are treated in tandem. Differences between each pair of
dashed and solid lines indicate the extent to which the effects can be treated
independently. We see that this is a good approximation in the case of the
combination of baryonic feedback with either MG or massive neutrinos.
However, the approximation degrades when one considers MG and massive
neutrinos together; the non-linear neutrino suppression effect is weaker in
f(R) compared to standard gravity.

4 D E G E N E R AC Y

The modelling developed in the previous section allows us to in-
vestigate degeneracies in the matter power spectrum between ex-
tensions to the standard cosmological paradigm. Simulations that
investigate these degeneracies are rare due to their complexity and
expense, but notable exceptions are presented in Puchwein et al.
(2013), Arnold, Puchwein & Springel (2014), Baldi et al. (2014)
and Arnold, Puchwein & Springel (2015). However, we may use
the halo model to compute the power spectrum for combinations of
extensions, and we may also include the effects of baryons using
the method presented in Mead et al. (2015b). Our results are pre-
sented in Fig. 7 where we show power spectra for combinations of
massive neutrinos (Mν = 0.3 eV from the modelling in Section 3.3),
baryonic feedback (the AGN halo model from Mead et al. 2015b;
obtained by altering parameters within the halo model that govern
halo internal structure so as to match power spectra from the OWLS
simulations of Schaye et al. 2010; van Daalen et al. 2011) and MG
(an f(R) model with fR0 = −10−5 and n = 1 from Section 3.4). For
each pair of extensions, the solid line show the result of a full halo-
model calculation, with the combined effects, whereas the dashed
line shows the result of using the halo model, but assuming that the
extensions to the standard paradigm can be treated independently.
The difference between each pair of lines for the different combi-
nations indicate how good an approximation it is to treat the effects
independently. Recent work (e.g. Harnois-Déraps et al. 2015a,b)
looking at cosmological constraints from all three effects in tandem
has been forced to assume they act independently, due to the lack of
theoretical models, but with the work presented in this paper we are
now in a position to model these effects simultaneously. The linear
spectrum for the ‘f(R) and massive neutrino’ case is calculated using
MG-CAMB (Hojjati et al. 2011a; Hojjati, Pogosian & Zhao 2011b), but
we find that the approximation of treating the two effects separately

and then combining them is almost perfect for the linear spectra
(within a per cent for k < 10 h Mpc−1). For this model, we compute
δc and $v by multiplying the deviations from equations (25) and
(43). This is justified because the origin of the deviation is the same
in each case being due to either an increased or a decreased effective
G, and is small in any case. Since the spherical model calculation
is non-linear, it may seem preferable to repeat it for each combined
model. However, we do not do this since we found that the spheri-
cal model calculations did not provide accurate halo-model power
spectra.

From Fig. 7, we see that the halo model predicts that baryonic
feedback should act quite independently from either massive neutri-
nos or MG. Physically, this can be understood as feedback affecting
halo internal structure only, but not altering the mass function or
large-scale clustering to the same extent (e.g. van Daalen et al.
2014). Thus, the power spectrum response predicted by consid-
ering feedback in isolation is a fairly good approximation to the
response in more general models. This is in qualitative agreement
with results presented by Puchwein et al. (2013) and may be good
news considering the relative uncertainty and expense of simula-
tions that contain hydrodynamics and baryonic feedback; it may be
sufficient to run detailed hydrodynamic simulations with feedback
for standard !CDM models and then to translate these effects into
extensions of the standard model. In contrast, from Fig. 7 we see
much larger differences when considering massive neutrinos and
MG in tandem. Baldi et al. (2014) investigate N-body simulations
that include both massive neutrinos and Hu & Sawicki (2007b) f(R)
gravity (their fig. 4) and come to a similar conclusion. Our results
are in qualitative agreement with those from the full simulations, in
that we see that the suppression of power caused by massive neu-
trinos is less in the f(R) models compared to standard gravity. This
is despite the multiplication of ratios being a very good approxi-
mation to create the linear spectrum for these models. Physically
this may be because both mechanisms effect the linear growth of
perturbations, and this translates into the non-linear density field in
a non-linear way. For example, both mechanisms affect the mass
function, but not in such a way that the induced power spectrum
change is well approximated by considering each separately. The
level of this non-linear coupling is not sufficient to have affected
the results of Harnois-Déraps et al. (2015a,b) and will probably
not need to be modelled for near-term lensing surveys. However,
lensing surveys that will be active in the next decade have stringent,
per cent level accuracy requirements on the theoretical modelling
of the power spectrum in order to provide forecasted constraints.
Our results indicate that it will not be sufficient to consider these
extensions to the cosmological paradigm in isolation.

5 SU M M A RY A N D D I S C U S S I O N

We have demonstrated that it is possible to use the halo model to
provide accurate matter power spectrum predictions for a variety
of extensions to the standard cosmological paradigm. Starting from
the accurate halo model of Mead et al. (2015b), we investigated
both minimally and non-minimally coupled DE models, massive
neutrinos and MG forces. In each case, we compared predictions
from the halo model to simulations of each extension at the level of
the power spectrum response; a measure of deviation from a fiducial
model.

We demonstrated that models of DE parametrized via
w(a) = w0 + (1 − a)wa could be matched at the few per cent
level for k < 10 h Mpc−1 with no modifications to the Mead et al.
(2015b) halo model and we noted that our predictions are more
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Figure 5. Best-fitting halo-model power to the power spectra of the
OWLS simulations for the DMONLY (black; solid), AGN (purple; long-dashed),
REF (green; medium-dashed) and DBLIM (red; short-dashed) models up to
k = 10h Mpc−1 at z = 0.5. These are obtained by fitting both A and η0
(equations 14 and 26) to each model at this redshift. In the top panel we
show "2, while in the middle panel we show the ratio of each spectrum to
the emulator DMONLY case (black crosses in the top panel); one can see that
the freedom introduced by allowing these parameters to vary is able to cap-
ture both the up- and down-turn in power that feedback introduces relative
to the dark-matter-only case. Any residual differences for k !1h Mpc−1 are
due to residual errors in our fitting across a range of cosmologies that can
be seen in Fig. 2. Our accuracy is best appreciated in the lower panel, in
which we show the ratio of each halo-model prediction to the corresponding
simulation.

and the parameter η0, where η is defined in equation (26) and η0 is
the first parameter in the full expression for η in Table 2, explicitly

η = η0 − 0.3 σ8(z) . (29)

All other parameters are fixed to their values in Table 2, and the
redshift evolution in the second half of the expression for η is pre-
served from the best fit to the COSMIC EMU nodes. We vary η0 and
A to best fit the OWLS data from simulations DMONLY, AGN, REF

and DBLIM. We construct these power spectra by taking ratios of
the publicly available OWLS baryon models to the DMONLY mod-
els (which produces a smooth curve because the simulations have
matched initial conditions) and then multiplying this ratio by the
COSMIC EMU prediction for the baseline WMAP3 cosmology used for
the OWLS simulations. We do this because the OWLS simulations
are small in volume and the power spectrum would be too noisy
to use in its raw form. The best fits to OWLS power spectra are
shown in Fig. 5 where it can be observed that the freedom permitted
by fitting A and η0 allows the power spectrum of HMCODE to trace
the residual displayed by the OWLS simulations accurately over
the range of scales shown. Particularly, note that the variation is
able to reproduce both the up-turn due to gas cooling, enhancing
clustering around k = 10h Mpc−1, and the down-turn due to mass
being expelled from the halo, which can impact the relatively large
scale of k = 0.3h Mpc−1.

Figure 6. Best matches to the power spectrum from the OWLS simulations
found by varying halo structure via A and η0 (equations 14, 26 and 29)
from z = 0 to 1. The contours enclose regions of parameter space that
match the power spectra with an average error of 2.5 per cent (inner) and
5 per cent (outer) from k = 0.01 to 10h Mpc−1 and the crosses mark the best-
fitting point. We show contours for the DMONLY (black; solid), AGN (purple;
long-dashed), REF (green; medium-dashed) and DBLIM (red; short-dashed)
cases. These ranges can be used to place a prior on the range of η0 and
A to be explored in a cosmological analysis as they encompass the range
of behaviour expected from plausible feedback models. The dashed line
(equation 30) shows a relation between η0 and A that could be used to
provide a single-parameter fit to all models. The grey cross is the best-fitting
value to all the COSMIC EMU simulations, whereas the black cross is the best
match to the specific cosmology used in the DMONLY model.

Table 4. Parameter combinations of η0 and A that best fit
OWLS data from z = 0 to 1 via the halo-model approach
described in the text. These parameters are those at the
centres of the ellipses in Fig. 6. The OWLS simulations
can be matched at the 5 per cent level over the redshift
range. That the values of η0 and A differ in the case
of ‘all COSMIC EMU simulations’ compared to DMONLY is
because a slightly improved fit is possible in the case of
dealing with a specific cosmology, which in the case of
OWLS is the slightly outdated WMAP3 ($m = 0.238,
$b = 0.0418, σ 8 = 0.74, ns = 0.951, h = 0.73).

Model η0 A

All COSMIC EMU simulations 0.60 3.13
DMONLY (WMAP3 from OWLS) 0.64 3.43
AGN 0.76 2.32
REF 0.68 3.91
DBLIM 0.70 3.01

In Fig. 6, we show how the goodness of fit varies as parameters
A and η are varied for the various feedback recipes. The contours
enclose regions of parameter space in which the average error is
2.5 per cent (inner) and 5 per cent (outer), where the average is
taken over all scales between k = 0.01 and 10h Mpc−1, binned
logarithmically. One can see that these parameters distinguish well
between the simulated AGN model and the other models, DBLIM is
marginally distinguished, but parameters that fitted DMONLY and REF

best are nearly identical. The distinguishability is directly related
to the magnitude of the effect that each model has on the power
spectrum (for k < 10h Mpc−1), which can be seen in the middle
panel of Fig. 5. Our best-fitting parameters for each model are
given in Table 4. The AGN model clearly favours less concentrated
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The dotted lines in Fig. 1 give a preview of how fruitful this ap-
proach is in providing an accurate model of the non-linear matter
power spectrum.

3.2.1 Adapting the two-halo term

The two-halo term governs power on large scales and is given in its
original form in equation (10). Linear theory slightly overpredicts
the matter power spectrum around the quasi-linear scale and does
a particularly poor job of modelling damping of the BAO peaks
at z = 0, which are damped by the quasi-linear effect of small-
scale displacements. Modelling of the minutiae of the damping of
the BAO peaks is beyond the scope of this work, but we treat the
damping around these scales based on a model for the damping pre-
dicted from perturbation theory by Crocce, Pueblas & Scoccimarro
(2006), where

!2
lin(k) → e−k2σ 2

v !2
lin(k) , (21)

and σ 2
v is the 1D linear-theory displacement variance given by

σ 2
v = 1

3

∫ ∞

0

!2
lin(k)
k3

dk . (22)

The derivation of this expression assumes that the scales of interest
are large compared to σ v, such that the damping factor cannot be
trusted when kσ v is large. We found that the best fit to numerical
data at this scale required an expression equal to equation (21) to
quadratic order, but without the extreme high-k truncation:

!
′2
2H(k) =

[
1 − f tanh2 (kσv/

√
f )

]
!2

lin(k) , (23)

where f is a free parameter in our fit. In the kσ v ≫ 1 limit, equation
(23) reduces to !2

2H = (1 − f )!2
lin.

3.2.2 Adapting the one-halo term

We add freedom to the canonical form of the one-halo term in
equation (8) in a number of ways. The first concerns the behaviour
of the one-halo term at large scales, where the Universe tends to
homogeneity faster than predicted by Poisson shot noise. At large
scales, the one-halo term in equation (8) decays as !2 ∝ k3, whereas
the linear power decays approximately ∝ k4, so it is inevitable that
the one-halo term becomes greater than linear theory on very large
scales, which is unphysical. This effect arises because haloes are
treated as randomly placed in the standard halo-model formalism,
when in fact they are clustered and distributed more smoothly than
uniform random on very large scales. It has been suggested that a
large-scale cut-off in the one-halo term can be physically explained
as ‘halo exclusion’ (Smith et al. 2007), an effect that arises because,
by definition, haloes cannot exist within each other. This is not
captured by the standard halo-model power calculation because
that calculation assumes that haloes are randomly placed, so that the
probability of haloes overlapping is non-zero. Accounting for halo
exclusion damps the halo-model power on large scales. Regardless
of the exact details of exclusion, we modify the one-halo term so
that it decays more rapidly than linear theory at large scales:

!
′2
1H = [1 − e−(k/k∗)2

]!2
1H , (24)

where !2
1H is the same as in equation (8) and k∗ is a free parameter.

Within the one-halo term, parameters that we allow to vary are
the virialized overdensity of a halo, !v, defined in equation (13),
and the linear collapse threshold, δc, defined in equation (17). Both
of these parameters derive from the spherical model (e.g. p. 488 of

Peacock 1999) and rely on a somewhat arbitrary definition of the
exact time of halo collapse. The variation of !v can be predicted
theoretically from the spherical model, and Bryan & Norman (1998)
provide a fitting formula1 for a $CDM cosmology

!v = 18π2 + 82[%m(z) − 1] − 39[%m(z) − 1]2

%m(z)
. (25)

This suggests that !v increases as the universe deviates from
%m = 1.

In standard theory, δc ≃ 1.686 but we allow this number to
be a free parameter in our fit to power-spectrum data. Note that
changing δc changes the relationship between ν and the halo mass
(equation 17). This means that the ‘effective’ mass function we
invoke to improve !2(k) predictions will not necessarily accurately
represent the mass function that might be measured in simulations.

Fitted halo relations, such as the mass function and mass–
concentration relation, depend upon how haloes are defined when
identified in simulations. Therefore, the variations of !v in our fit-
ted halo model may not follow the simple theoretical variation in
equation (25) exactly, but we assume that the trend of increased !v

as the universe deviates from %m = 1 will serve as a useful initial
guide when we explore parameter space. In addition, for flat models
with a single component of dark energy, it is expected that !v would
be a function of %m(z) only and this will be a useful principle in
parametrizing fitting formulae. Increasing !v has the effect of in-
creasing the internal density of haloes and thus decreases the virial
radius of a halo of a fixed mass, thus increasing small-scale power.
Increasing δc means the linear density field has to reach higher
values before collapse can occur [in the Press & Schechter (1974)
approach], the result of which is that the density field is dissected
into more haloes of lower mass, which will reduce the amplitude
of the shot-noise component of the one-halo term and thus reduce
power.

One further free parameter is η, which we use to alter the halo
window function via

W (k,M) → W (νηk, M) , (26)

changing the halo profile in a mass-dependent way but leaving ν = 1
haloes unaltered and the individual halo masses unchanged. For
η > 0 higher mass (ν > 1) haloes are puffed out, while lower mass
haloes are contracted, both at constant virial radius: η > 0 decreases
the power whereas η < 0 increases it. This extra ingredient was
introduced to control the curvature of the power spectrum beyond
k ∼ 1h Mpc−1, where the filtering effect from the typical haloes has a
major effect on the shape of the one-halo term. As we move to higher
k values, the properties of lower mass haloes become increasingly
important. It is difficult for the one-halo term to track to the smallest
scales, and correcting this requires an empirical perturbation of the
halo profiles. Additionally, we allow ourselves to vary the amplitude
of the concentration–mass relation: A in equation (14).

3.2.3 Full power

A well-known defect in the halo model is in the transition between
the one- and two-halo terms, the so-called quasi-linear regime. In
the standard halo model, the transition is modelled by a simple
sum of the one- and two-halo terms (equation 11), but this is ob-
viously deficient. At z = 0, this transition scale is approximately

1 Equation (25) differs slightly from that in Bryan & Norman (1998) because
we work with respect to the matter density, rather than critical density.
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Figure 5. Best-fitting halo-model power to the power spectra of the
OWLS simulations for the DMONLY (black; solid), AGN (purple; long-dashed),
REF (green; medium-dashed) and DBLIM (red; short-dashed) models up to
k = 10h Mpc−1 at z = 0.5. These are obtained by fitting both A and η0
(equations 14 and 26) to each model at this redshift. In the top panel we
show "2, while in the middle panel we show the ratio of each spectrum to
the emulator DMONLY case (black crosses in the top panel); one can see that
the freedom introduced by allowing these parameters to vary is able to cap-
ture both the up- and down-turn in power that feedback introduces relative
to the dark-matter-only case. Any residual differences for k !1h Mpc−1 are
due to residual errors in our fitting across a range of cosmologies that can
be seen in Fig. 2. Our accuracy is best appreciated in the lower panel, in
which we show the ratio of each halo-model prediction to the corresponding
simulation.

and the parameter η0, where η is defined in equation (26) and η0 is
the first parameter in the full expression for η in Table 2, explicitly

η = η0 − 0.3 σ8(z) . (29)

All other parameters are fixed to their values in Table 2, and the
redshift evolution in the second half of the expression for η is pre-
served from the best fit to the COSMIC EMU nodes. We vary η0 and
A to best fit the OWLS data from simulations DMONLY, AGN, REF

and DBLIM. We construct these power spectra by taking ratios of
the publicly available OWLS baryon models to the DMONLY mod-
els (which produces a smooth curve because the simulations have
matched initial conditions) and then multiplying this ratio by the
COSMIC EMU prediction for the baseline WMAP3 cosmology used for
the OWLS simulations. We do this because the OWLS simulations
are small in volume and the power spectrum would be too noisy
to use in its raw form. The best fits to OWLS power spectra are
shown in Fig. 5 where it can be observed that the freedom permitted
by fitting A and η0 allows the power spectrum of HMCODE to trace
the residual displayed by the OWLS simulations accurately over
the range of scales shown. Particularly, note that the variation is
able to reproduce both the up-turn due to gas cooling, enhancing
clustering around k = 10h Mpc−1, and the down-turn due to mass
being expelled from the halo, which can impact the relatively large
scale of k = 0.3h Mpc−1.

Figure 6. Best matches to the power spectrum from the OWLS simulations
found by varying halo structure via A and η0 (equations 14, 26 and 29)
from z = 0 to 1. The contours enclose regions of parameter space that
match the power spectra with an average error of 2.5 per cent (inner) and
5 per cent (outer) from k = 0.01 to 10h Mpc−1 and the crosses mark the best-
fitting point. We show contours for the DMONLY (black; solid), AGN (purple;
long-dashed), REF (green; medium-dashed) and DBLIM (red; short-dashed)
cases. These ranges can be used to place a prior on the range of η0 and
A to be explored in a cosmological analysis as they encompass the range
of behaviour expected from plausible feedback models. The dashed line
(equation 30) shows a relation between η0 and A that could be used to
provide a single-parameter fit to all models. The grey cross is the best-fitting
value to all the COSMIC EMU simulations, whereas the black cross is the best
match to the specific cosmology used in the DMONLY model.

Table 4. Parameter combinations of η0 and A that best fit
OWLS data from z = 0 to 1 via the halo-model approach
described in the text. These parameters are those at the
centres of the ellipses in Fig. 6. The OWLS simulations
can be matched at the 5 per cent level over the redshift
range. That the values of η0 and A differ in the case
of ‘all COSMIC EMU simulations’ compared to DMONLY is
because a slightly improved fit is possible in the case of
dealing with a specific cosmology, which in the case of
OWLS is the slightly outdated WMAP3 ($m = 0.238,
$b = 0.0418, σ 8 = 0.74, ns = 0.951, h = 0.73).

Model η0 A

All COSMIC EMU simulations 0.60 3.13
DMONLY (WMAP3 from OWLS) 0.64 3.43
AGN 0.76 2.32
REF 0.68 3.91
DBLIM 0.70 3.01

In Fig. 6, we show how the goodness of fit varies as parameters
A and η are varied for the various feedback recipes. The contours
enclose regions of parameter space in which the average error is
2.5 per cent (inner) and 5 per cent (outer), where the average is
taken over all scales between k = 0.01 and 10h Mpc−1, binned
logarithmically. One can see that these parameters distinguish well
between the simulated AGN model and the other models, DBLIM is
marginally distinguished, but parameters that fitted DMONLY and REF

best are nearly identical. The distinguishability is directly related
to the magnitude of the effect that each model has on the power
spectrum (for k < 10h Mpc−1), which can be seen in the middle
panel of Fig. 5. Our best-fitting parameters for each model are
given in Table 4. The AGN model clearly favours less concentrated
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Some results

1) Lagrangian approach: SPT+adhesion+1-halo term

Valageas et al. (2013)

or directly from the N-body simulations. In particular, shot
noise certainly explains part of the rise of the power spectrum
measured in the N-body simulations at z ¼ 3 for k >
20h Mpc"1 above our predictions (lower-right panel in
Fig. 8). This is clearly seen from the comparison with the
panels in the lower row obtained at lower redshift, which
probe deeper into the nonlinear regime before being affected
by shot noise, where we can see that the logarithmic power
spectrum follows the shape predicted from the halomodel. In
particular, at z ¼ 0:35we clearly see the slowing downof the
growth of!2ðkÞ ¼ 4!k3PðkÞ in the highly nonlinear regime,
and we would expect a similar behavior at z ¼ 3. (Actually,
wewould expect a slightly faster slowdown because the local
slope n of the linear power spectrum is redder.) Therefore, in
this regime it seems that semianalytical approaches like ours,
based on the halo model, are competitive with direct N-body
simulations. (At very high k, the semianalytic approaches are
expected to remain reasonable, because they are based on a
physically reasonable ansatz and/or assumption, whereas the
direct results from simulations suffer from shot noise.)

We show in Figs. 9 and 10 the relative deviation between
the power spectrum predicted by our model and the N-
body measurements. We obtain an accuracy of about 2%
up to k% 0:3h Mpc"1, and 5% up to k% 3h Mpc"1, for
z & 0:35. The small underestimation of the power spec-
trum on the transition scales (k% 0:5h Mpc"1 at z ' 1)
may be due to the fact that filaments are not explicitly
included in our model of the cosmic web. The accuracy
degrades rapidly in the highly nonlinear regime, because of
the uncertainty of the halo model and of the N-body
simulations themselves (in particular, because of shot noise
at very high k). Fortunately, as shown in Fig. 9, the
uncertainties of the halo model (i.e., the parameters of
halo profiles) do not contaminate the predictions for the

power spectrum on large scales, k < 1h Mpc"1. Therefore,
these large scales remain a robust probe of cosmology. This
is also one interest of such analytical approaches that are
complementary to numerical simulations: they allow us to
estimate the impact of different processes on the final
power spectrum and to estimate the range of wave numbers
that are not affected by small-scale uncertainties and can be
safely used to constrain cosmology up to a good accuracy.

2. Two-point correlation function

We show in Fig. 11 our results for the matter density
two-point correlation "ðxÞ, given by

"ðxÞ ¼ 4!
Z 1

0
dkk2PðkÞ sin ðkxÞ

kx
: (56)

As in previous works [11,15,65,66], we can see that using a
well-behaved perturbative contribution that includes one-
loop contributions provides a good accuracy on baryon
acoustic oscillation (BAO) scales. In particular, we repro-
duce the well-known damping of the baryonic peak at
%105h"1 Mpc as compared with linear theory. We can
see in the lower panel the transition between the two-halo
and one-halo contributions, at x% 1h"1 Mpc. As for the
power spectrum, we obtain a significant improvement over
previous studies [11,15], as we no longer underestimate the
two-point correlation on these transition scales. In particu-
lar, we recover the shape of the two-point correlation from
linear to highly nonlinear scales. Again, the two-halo con-
tribution becomes significantly greater than the linear cor-
relation (or the linear power spectrum in Fig. 8) on small
scales because of the adhesion-like continuation explained
in Sec. III C. This is more important at higher redshift
because the local slope of the linear power spectrum on
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FIG. 10 (color online). Relative deviation between the density
power spectrum predicted by our model and the result from
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shot noise in numerical simulations (smaller impact at lower
redshift).

-0.04

-0.02

 0

 0.02

 0.04

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

[P
(k

)-
P

si
m

(k
)]

/P
si

m
(k

)

k [h Mpc-1]

z=0.35

1

3

WMAP5

FIG. 9 (color online). Relative deviation between the density
power spectrum predicted by our model and the result from
numerical simulations, at z ¼ 0:35 (black squares), 1 (red
circles), and 3 (blue triangles). We show the results (which
almost coincide) obtained using the mass-concentration relation
[Eq. (55)] and the ones from Refs. [63,64].
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include a strong AGN feedback (to cure the overcooling
problem and to reproduce x-ray data) suggest that such
effects can modify the power spectrum by 10% at k!
1h Mpc"1 at z ¼ 0 [68]. Fortunately, most of these effects
may be described through modifications to the halo model
[69] (e.g., by distinguishing the stellar, gas, and dark matter
profiles around and within virialized halos). This may
also be incorporated within our framework. In this
respect, semianalytic approaches like ours can be used to
investigate the impact of such modifications of the halo

model parameters onto integrated quantities, such as the
matter power spectrum or correlation function, and in
particular how they affect different scales.

3. Baryon acoustic oscillations

In this section, we focus on BAO scales to investigate
how the oscillations in PðkÞ and the peak in !ðrÞ depend on
the details of the model. As usual, to emphasize the baryon
acoustic oscillations, we show in Fig. 14 the ratio of the
nonlinear power spectrum PðkÞ to a reference linear power
spectrum Pno-wiggleðkÞ without baryon oscillations, at z ¼
0:35. (This is the lowest redshift of this set of simulations,
but it also corresponds to the range probed by some surveys
that use the baryon oscillations to probe cosmology
[60,61].) Because of high-order mode couplings, all non-
linear results plotted in Fig. 14 show a damping of high-k
oscillations, as compared with the linear power spectrum,
where we can still distinguish the oscillations at
k! 0:25h Mpc"1 and k! 0:31h Mpc"1. This damping
is common to most perturbative schemes that go beyond
linear order, because the contribution to the full nonlinear
power spectrum of the linear part decreases (e.g., because it
is multiplied by decaying propagators [65]), whereas the
higher-order contributions mix different wave numbers
(through high-order convolutions of the linear power)
and smooth the final power.
From a physical point of view, this damping is due to the

displacements of matter particles, through large-scale bulk
flows and small-scale virial motions [70]. This broadens
the peak in the real-space correlation function (as seen in
Fig. 15), over a width of a few Mpc set by the typical
relative displacements of particle pairs. Then, this yields a
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⇠(x)

scalar. This means that in the perturbative approach which
provides the power spectrum (91), up to one-loop order, we
only include the factor !ðk;"Þ which modifies the linear
matrixO in Eq. (68) and we neglect the new quadratic and
cubic vertices #s

2;11 and #
s
2;111. Next, in the computation of

the spherical collapse which provides the linear density
threshold $LðMÞ, we use the same linearization in $R,
which corresponds to the weak-field expression (108) for
the fifth force. In other words, the ‘‘no-chameleon’’ case
corresponds to using the linear approximation in $% for the
fifth force, i.e. truncating the expansion (52) at n ¼ 1, [but
$% itself is nonlinear, in the sense of the expansion (80)].

The ‘‘with-chameleon’’ case corresponds to keeping the
fully nonlinear constraint equation (3). In the perturbative
approach at one-loop order, this means that we include the
new quadratic and cubic vertices #s

2;11 and #s
2;111, in addi-

tion to the linear kernel !, in the equation of motion (67).
(As noticed in Sec. III C 1, the cubic vertex #s

2;111 can

actually be neglected at this order, but not the quadratic
vertex #s

2;11.) In the spherical-collapse dynamics we solve

the exact nonlinear constraint equation (106).
We can see in Fig. 13 that our approach is able to

reproduce reasonably well the deviations from the
!CDM power spectrum up to k$ 3h Mpc%1. In particu-
lar, it captures both the dependence on fR0

and the impact
of the chameleon mechanism. We do not have simulation
results on small scales, to which we may compare our
predictions, and the agreement may deteriorate at higher
k. Indeed, on small scales the power spectrum is sensitive
to the shape of the halo profiles and their mass-
concentration relation, which are expected to be modified
at some level as compared to !CDM. Then, if these
changes are large enough they cannot be neglected as in

this paper, if one is interested in small scales. On the other
hand, it may be possible to improve our modelization if one
could build a reliable model to predict such modifications
to halo profiles.
As compared with the parametrized post-friedmann ap-

proximation introduced in Ref. [53], which interpolates
between the linear regime, where the modification of grav-
ity is taken into account at the linear level without the
chameleon effect, and the nonlinear regime where one uses
the !CDM prediction, our framework does not introduce
additional interpolation parameters. Moreover, the conver-
gence to general relativity on smaller scales is obtained by
explicitly taking into account the chameleon mechanism
(at one-loop order in the perturbative regime and exactly in
the spherical dynamics used in the one-halo term).
Therefore, the rate of convergence is truly governed by
this nonlinear effect—which depends on the modified
gravity model—rather than by an independent parametri-
zation which requires some tuning (on the coefficient cnl or
the function "2ðkÞ that enter the interpolation [38,53]).
In any case, the comparison with Fig. 3 shows that our

simple approach, which combines one-loop perturbation
theory with the halo model, is already able to go signifi-
cantly beyond the perturbative regime. Indeed, the range of
the agreement with the simulations increases from k$ 0:2
to k$ 3h Mpc%1 at least, as we go from Fig. 3 to Fig. 13.
This is especially important as most of the signal occurs on
the mildly nonlinear scales k$ 1h Mpc%1. Moreover,
smaller, highly nonlinear scales suffer from other sources
of uncertainties, which already appear in the !CDM
case, due to the inaccuracy of the halo profiles and
concentrations, and to the impact of the baryon physics.

B. Scalar-tensor models

We show our results for the deviation from !CDM of
the nonlinear power spectrum for dilaton models at z ¼ 0
in Fig. 14. Although we only have results from simulations
which use the fully nonlinear Klein-Gordon equation (14),
as in Fig. 13 for the fðRÞ theories, we plot both our
‘‘no-screening’’ and ‘‘with-screening’’ predictions.
Again, the ‘‘no-screening’’ result corresponds to truncat-

ing the expansion (52) at n ¼ 1, that is, using the linear
approximation in $% of the fifth force or the linearized
Klein-Gordon equation. This approximation is used for
both the perturbative one-loop power spectrum and the
spherical-collapse threshold $LðMÞ.
The ‘‘with-screening’’ result solves the exact nonlinear

Klein-Gordon equation (113) in the spherical collapse. In
the perturbative part, we consider the results obtained
when we only include the new quadratic vertex #s

2;11 (in

addition to the linear factor !), or both the quadratic
and cubic vertices #s

2;11 and #s
2;111 (higher-order vertices

do not contribute at one-loop order). Indeed, as seen in
Sec. III C 2, in contrast with the case of fðRÞ theories, the
cubic vertex #s

2;111 is not negligible on perturbative scales.
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Modified gravity relative deviation from LCDM:  predictions and simulations

In agreement with the behaviors found in Sec. III C at
the perturbative level and in Sec. IV for the spherical
collapse, the comparison of Fig. 14 with Fig. 13 shows
that the impact of the screening effect is greater for these
dilaton models than for the fðRÞ theories. This greatly
reduces the deviation of the power spectrum from the
!CDM case. We can check that our approach is able to
recover this effect and to provide a reasonable match with
the numerical simulations. At high k we tend to under-
estimate the deviation from !CDM. This may be due to
our neglect of modifications to the halo profiles. This
discrepancy appears at a larger scale, k# 1h Mpc$1, for
the models C4, D3, and D4, which are those where our
model fares worse. However, they correspond to very small
deviations from the !CDM power spectrum—a few
percent at k# 1h Mpc$1—which is at the limit of the
accuracy of our modelization and amplifies the errors
associated with our approximations (such as keeping
NFW profiles). Nevertheless, even in these difficult cases
we recover the order of magnitude of the deviation from
!CDM and of the screening effect. In particular, we again
significantly extend the range of validity of the analytical
predictions, as compared to the one-loop perturbative

results shown in Fig. 4, from k# 0:2 to k# 1h Mpc$1

(the precise values depend somewhat on the dilaton
model). Although we can distinguish the effect of the cubic
vertex !s

2;111 on weakly nonlinear scales, its impact

remains rather small and could be neglected in view of
the overall accuracy of our modelization.
We show our results for symmetron models in Fig. 15, in

the same fashion as in Fig. 14. As in Sec. III C 2, we can see
on perturbative scales that the screening effect has not
converged yet at the one-loop order for the cases A2, A3,
and to a small extent B2. Indeed, for these cases, on large
scales, whereas including the first nonlinear (quadratic)
vertex !s

2;11 decreases the deviation from !CDM as com-

pared to the ‘‘no-screening’’ prediction, including the next
(cubic) vertex !s

2;111 over-corrects and yields a larger

deviation than the ‘‘no-screening’’ prediction. This leads
to an overestimation of the deviation from !CDM on
perturbative scales. To improve the modelization for these
difficult cases, it may be necessary to go beyond the one-
loop order in the perturbative part, and more precisely up to
the order where the screening effect is seen to converge.
In practice, this requires heavier computations, especially
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impact through: 
- linear growth factor+SPT
- halo density threshold
(spherical collapse)



2) Halo model with some more fitting parameters Mead et al. (2015)
Accurate halo-model power spectra 1965

Table 2. Halo-model parameter descriptions and values before and after fitting.

Parameter Description Original value Fitted value Equation in text

!v Virialized halo overdensity 200 418 × "−0.352
m (z) 13

δc Linear collapse threshold 1.686 1.59 + 0.0314 ln σ 8(z) 17
η Halo bloating parameter 0 0.603 − 0.3 σ 8(z) 26
f Linear spectrum transition damping factor 0 0.188 × σ 4.29

8 (z) 23
k∗ One-halo damping wavenumber 0 0.584 × σ−1

v (z) 24
A Minimum halo concentration 4 3.13 14
α Quasi-linear one- to two-halo term softening 1 2.93 × 1.77neff 27

k = 0.1h Mpc−1 corresponding to physical scales of the order of
tens of Mpc. On these scales, contributions to the density field will
include, but are not limited to, large structure at the turn-around
radius, sheets, filaments and voids. It would be rather surprising
if the complexity of non-linear evolution on these scales could be
accurately modelled by a simple sum of crude one- and two-halo
terms. In testing, we noted that the halo model performed most
poorly around these transition scales and we address this problem
by modelling the transition via

!2(k) = [(!
′2
2H)α + (!

′2
1H)α]1/α , (27)

where α is the final parameter that we adjust to match simulations.
Values of α < 1 soften the transition between the two terms whereas
α > 1 sharpen it. The power at these scales is quite smooth, so fitting
the transition via α is sufficient.

4 R ESULTS

We fit the parameters introduced in the previous section to data
from all 37 nodes of COSMIC EMU at redshifts z = 0, 0.5, 1, 1.5
and 2 with equal weight given to each redshift and node and k
weighted equally in logarithmic space from 0.01 to 10h Mpc−1. We
use a least-squares method to characterize goodness of fit and use
an MCMC-like approach to fit all parameters simultaneously. Our
best-fitting parameters are given in Table 2 where there are a total of
12 parameters that are fitted to simulations, which can be compared
with 34 for the Takahashi et al. (2012) version of HALOFIT. The
cosmological dependences of each of our parameters was inferred
by some experimentation. In Table 2, we see that α depends on neff,
which is the effective spectral index of the linear power spectrum at
the collapse scale, defined in Smith et al. (2003):

3 + neff ≡ −d ln σ 2(R)
d ln R

∣∣∣∣
σ=1

. (28)

However, our neff is slightly different from that in Smith et al. (2003)
because we define σ (R) using a top-hat filter, rather than a Gaussian.

The accuracy of this model is demonstrated in the upper row of
Fig. 2, which shows a ratio of the halo model to COSMIC EMU at z = 0,
0.5, 1 and 2. One can see that our fitted halo-model predictions are
mainly accurate to within 5 per cent across all redshifts for the range
of scales shown. We call this calibrated halo model HMCODE and refer
to it thus throughout the remainder of this work. We also tested our
model at z = 3, a redshift to which it was not calibrated, and
found that errors rarely exceed 10percent. Takahashi et al. (2012)
use the framework of the original HALOFIT of Smith et al. (2003),
but obtain improved accuracy by fitting to modern simulation data
with superior resolution, extending to k = 30h Mpc−1. The authors
also focus their attention on models close to the current 'CDM
paradigm, rather than more general models (such as those with

power-law spectra or curved models). Takahashi et al. (2012) used
simulations of 16 different cosmological models around the best fits
from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite
(WMAP7 – Komatsu et al. 2011; WMAP9 – Hinshaw et al. 2013)
and include models with w ̸= −1. One can see how well Takahashi
et al. (2012) compare to COSMIC EMU in the lower row of Fig. 2
where HALOFIT can be seen to be comparable to our halo model but
there is more high-k spread at z = 0 and a systematic overprediction
of the power around k = 1h Mpc−1 that worsens with increasing
redshift. The stated accuracy of this version of HALOFIT is 5 per cent
for k < 1h Mpc−1 and 10 per cent up to 10h Mpc−1, which is
consistent with what is seen here. A similar plot for the original
Smith et al. (2003) version of HALOFIT shows large underpredictions
for k > 0.5h Mpc−1. From this point onwards, we only compare to
the revised Takahashi et al. (2012) version of HALOFIT.

In Fig. 3, we show how our model fares for cosmological pa-
rameters derived from recent data sets (see Table 3). Once again we
compare to COSMIC EMU and show results for both our calibrated halo
model and for the Takahashi et al. (2012) HALOFIT at z = 0.5. One
can see that the error from the halo-model approach rarely exceeds
2 per cent for k < 10h Mpc−1 for these cosmologies, with the worst
error being an overprediction of the amplitude of the BAO peaks
around k = 0.2h Mpc−1. This arises because we did not attempt to
model the exact non-linear damping of this feature in the power
spectrum, and so our prediction here is very close to the undamped
linear prediction. That our errors are better here than for the more
general models shown in Fig. 2 is because these models all lie close
to the centre of the COSMIC EMU parameter space (see Table 1). The
Takahashi et al. (2012) HALOFIT model works better at BAO scales,
but overpredicts the power at k > 0.5h Mpc−1 systematically at
around the 4 per cent level.

The model presented here performs similar to, but slightly better
than, the Takahashi et al. (2012) version of HALOFIT and has several
advantages. Foremost, because we retain the apparatus of the halo
model in our calculation, it means we can produce !2(k) to arbitrar-
ily high k in a physically motivated way. Even though such extreme
scales receive a small weight in lensing, they can be important if the
modelling is badly wrong in this regime (e.g. Harnois-Déraps et al.
2015). A polynomial-based fitting formula such as HALOFIT risks
generating pathological results when moving beyond the regime
constrained by simulations and it is not at all obvious how to extend
COSMIC EMU. In Fig. 4, we show a comparison of the power spectrum
predicted out to k = 100h Mpc−1 with different models, simply to
illustrate the range of behaviour at k > 10h Mpc−1. Given that no
simulations exist that could claim to accurately predict the matter
power spectrum to k = 100h Mpc−1 at z = 0, we cannot make any
quantitative statements about the accuracy of either model at these
extreme scales, although both perform comparably. The grey shaded
region in Fig. 4 delimits these extreme scales and it is interesting to
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Figure 3. A comparison of the power spectrum at z = 0.5 of HMCODE and
HALOFIT to that of COSMIC EMU for several commonly used cosmological
models (see Table 3) that derive from recent data sets. The error for each
model is very similar because the cosmological models are all relatively
similar. The HMCODE error rarely exceeds 2 per cent, with the exception
being around the BAO peak, which stems from our not modelling the non-
linear damping of the BAO. The HALOFIT error rises to around 4 per cent for
k > 1h Mpc−1 for all models.

Table 3. Cosmological parameters inferred from various data analyses. In
all cases, we quote the best fit with w = −1 and flatness enforced.

Cosmology !b !m ns h σ 8

WMAP7 0.0457 0.275 0.969 0.701 0.810
WMAP9 0.0473 0.291 0.969 0.690 0.826
CFHTLenS 0.0437 0.255 0.967 0.717 0.794
Planck EE 0.0487 0.286 0.973 0.702 0.796
Planck All 0.0492 0.314 0.965 0.673 0.831

Figure 4. The predictions of HMCODE compared to the two commonly used
HALOFIT schemes up to k = 100h Mpc−1 for a Planck cosmology at z = 0.5.
The upper panel shows #2(k), while the lower panel shows the ratio of
HMCODE to Takahashi et al. (2012); we cannot show a comparison with
COSMIC EMU because it makes no predictions beyond k = 10h Mpc−1. The
range outside the bounds of COSMIC EMU is marked by the grey region.
The HMCODE and Takahashi et al. (2012) models make predictions within
5 per cent to k = 10h Mpc−1 but this discrepancy increases to 10 per cent
for k < 100h Mpc−1. Note that the power at these small scales is certainly
strongly influenced by baryonic physics. The general level of agreement
between these two models for a range of cosmologies can be inferred from
Fig. 2.

within a halo can be altered significantly. AGN feedback can re-
duce the baryon fraction in the centres of haloes by a factor of 2 in
the most extreme models (Duffy et al. 2010).

An advantage of the approach advocated in this work is that one
might attempt to capture the influence of baryons on the matter
power spectrum simply by varying parameters that control the in-
ternal structure of haloes. This is possible because we retain the
theoretical halo-model apparatus in HMCODE. Physically, one can re-
gard baryonic processes as altering the internal structure of haloes,
while not affecting their positions or masses to the same degree (e.g.
van Daalen et al. 2014). It has been demonstrated that the effect of
baryons can be captured by altering the halo internal structure re-
lations, using information that is measured in baryonic simulations
(Zentner et al. 2008, 2013; Duffy et al. 2010; Semboloni et al. 2013;
Mohammed et al. 2014). The general trend is that gas cooling in-
creases the central density of haloes whereas violent feedback, such
as that from AGN, decreases the concentration. How this translates
into the matter power spectrum in simulations is considered in van
Daalen et al. (2011) where it was shown that per cent level changes
in #2(k) can arise at k = 0.3h Mpc−1 as a result of strong AGN feed-
back. Semboloni et al. (2011), Eifler et al. (2014) and Mohammed
et al. (2014) all showed that failing to account for feedback would
strongly bias cosmological constraints from the weak-lensing Dark
Energy Survey if the most extreme feedback scenarios apply to our
Universe and constraints from Euclid would be severely biased for
any feasible feedback scenario. Duffy et al. (2010), Semboloni et al.
(2011) and Mohammed et al. (2014) also showed that the main ef-
fects of baryonic feedback could be captured using a halo-model
prescription, considering how feedback would alter the internal
structure of haloes.

We use power spectra from the OverWhelmingly Large Simula-
tions (OWLS; Schaye et al. 2010; spectra from van Daalen et al.
2011) of a dark-matter (DMONLY) model; a model that has prescrip-
tions for gas cooling, heating, star formation and evolution, chemical
enrichment and supernova feedback (REF); a model that is similar to
REF but with the addition of active galactic nuclei (AGN) feedback
(called AGN); and a model similar to REF but which additionally has
a top-heavy stellar initial mass function and extra supernova energy
in wind velocity (DBLIM – called DBLIMFV1618 in van Daalen et al.
2011). It was shown in van Daalen et al. (2011) that the difference
in power between the DMONLY and AGN models is particularly large.

We fit the power spectra from the OWLS simulations using our
calibrated halo-model approach with a halo profile that is altered
to reflect baryon bloating and gas cooling. Again, our new fitted
halo profiles may not match those of simulated haloes exactly but
our aim is to match the power spectrum accurately. However, we
would expect the trends observed in the profiles of simulated haloes
to be respected by any modification to halo profiles in HMCODE. For
example, if we require an enhanced concentration to fit data for
a particular model in OWLS, then haloes measured in this bary-
onic model should display enhanced concentrations relative to their
DMONLY counterparts. This approach differs from that presented in
Semboloni et al. (2013), Fedeli (2014), Fedeli et al. (2014) and
Mohammed et al. (2014) in that we do not attempt to add accurate
profiles for the gas and stars into the halo model, but instead look
for a more empirical modification that is able to match data at the
level of the power spectrum for k < 10h Mpc−1.

Given the above discussion, we might expect that two parameters
would suffice: one to capture the increased concentration as gas
cools in halo cores and one to capture the puffing up of halo profiles
due to more violent feedback. To fit the baryonic models, we allow
ourselves to vary the parameter A in the c(M) relation (equation 14)
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Figure 5. A comparison of the ratios of power spectra for f(R) models compared to an equivalent !CDM model for |fR0| = 10−4 (top), 10−5 (middle) and
10−6 (bottom) at z = 0 (left-hand column) and 1 (right-hand column). We show power from the simulations of Li et al. (2013; blue points) together that
from two versions of the halo model; that of Mead et al. (2015b, short-dashed; black) and the update advocated in this paper (solid; black). We also show the
MG-HALOFIT model of Zhao (2014; long-dashed; red) that was fitted to the same simulation data as shown (amongst others) and provides a better fit.

We note that it is theoretically feasible for the fR field may cou-
ple only to DM (if the model is couched as a scalar field with
non-universal couplings in the Einstein frame), and that this would
invalidate Solar system and Galactic constraints, meaning that the
model may only be constrained on cluster or cosmological scales. If
Solar system and baryonic constraints are excluded then a conser-
vative bound on current limits is |fR0| ! 10−5 otherwise this limit
is more like |fR0| ! 10−7. Note that all constraints quoted are 2σ

for n = 1 Hu & Sawicki (2007b) models; constraints on |fR0| are
degraded if n > 1 because these models transition to mimic !CDM
more quickly in the recent past and the linear enhancement in power
is therefore less strong because it is a cumulative effect.

One might expect the enhanced gravity to change the halo profile,
but it has been shown (e.g. Lombriser et al. 2012) that haloes in f(R)
simulations can be well described by NFW profiles with close to
standard concentration–mass relations (although there seems to be a
small transition in amplitude at low mass – fig. 4 of Shi et al. 2015).
However, as would be expected from Press & Schechter (1974)
theory, the mass function is enhanced because σ (R) is boosted due
to the enhanced growth of linear perturbations

We implement f(R) models into our halo model using the modi-
fied scale-dependent growth function (solutions to equation 36) and
we use this to calculate σ for the mass function. In Fig. 5, we com-

Table 6. Simulations of standard gravity (GR) and f(R) (F4, F5, F6) models
from Li et al. (2013) that are used in this paper. The cosmological parameters
are h = 0.73, #m = 0.24, #b = 0.042, #v = 1 − #m, ns = 0.958 and
σ 8 = 0.77. All f(R) models have n = 1 but differing values of fR0. Simulations
begin at zi = 49 in a cube of side 512 h−1 Mpc from exactly the same initial
conditions, but growth is enhanced in models with larger |fR0| values. The
inverse Compton scale (equation 35) at z = 0 is also shown for each model,
and indicates the k-scale at which the modification is active.

Simulation n fR0 σ 8(z = 0) 1/λ

GR – – 0.770 –
F6 1 −10−6 0.784 0.427 h Mpc−1

F5 1 −10−5 0.824 0.135 h Mpc−1

F4 1 −10−4 0.887 0.043 h Mpc−1

pare our results for the power spectrum response to the simulations
presented in Li et al. (2013), which are detailed in Table 6. Although
we can see that the Mead et al. (2015b) results are reasonable for
k < 1 h Mpc−1, they fail to match the subtleties of the response as
a function of fR0. We also show the HALOFIT based extended fitting
formula of Zhao (2014), which was tuned to these same simulations
and fits the data reasonably well, although we note that the fitting
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function contains 39 free parameters in addition to the 38 from
Takahashi et al. (2012).

To improve halo-model predictions, we use a simple model for
chameleon screening that derives from spherical-collapse argu-
ments. If !m = 1 and we simply take G → Geff (a constant) for
perturbations, then we find good fits to spherical model results7 of

δc ≃ 1.686 × (Geff/G)0.041 ,

#v ≃ 178 × (Geff/G)−0.763 . (38)

For Geff/G = 4/3, these results are equivalent to those in Schmidt
et al. (2009) for the deviation from a $CDM model. A simple model
for screening in haloes is as follows: a region of the Universe can
be considered screened when

f̄R(a) ≃ 2
3
%N , (39)

as the fR field is forced into the minimum of the effective potential
when the local gravitational potential is of the order of the back-
ground fR value (Schmidt 2010). This fact was used in Mead et al.
(2015a; fig. 1) to develop a simple model for Geff/G as a function of
halo mass for NFW haloes, by relating the gravitational potential of
a halo to the fR value. This toy calculation agrees well with results
of full numerical calculations of screening in idealized symmetric
haloes and N-body simulations (e.g. see fig. 3 of Schmidt 2010).

We then use a sigmoid approximation for Geff/G as a function of
halo mass:

S(x − x0, #, A, B) = A + 1
2

(B − A)
[

1 + tanh
(

x − x0

#

)]

(40)

which transitions between A for x ≪ x0 to B for x ≫ x0 with
transition width governed by #. This allows Geff/G to transition
from unscreened 4/3 enhancement at low halo masses to screened
at high mass:

Geff

G
= S

(
log10 M/Ms, #,

4
3
, 1

)
, (41)

with Ms a screening mass and a comparison of this function with
the model in Mead et al. (2015a) leads us to fix the transition via
# = 0.38 and

log10

(
Ms

h−1 M⊙

)
= 14.6 + 3

2
(5 + log10 |fR(a)|)− 1

2
log10 !m .

(42)

We then fit our model δc, #v and Ms to the simulation response,
taking the exponents in equation (38) and the amplitude of Ms in
equation (42) to be free parameters. Our best-fitting model is shown
as the solid line in Fig. 5 and is given by the relations

δc ∝ constant

#v ∝ (Geff/G)−0.5 , (43)

and

log10

(
Ms

h−1 M⊙

)
= 18.9 + 3

2
(5 + log10 |fR(a)|)− 1

2
log10 !m .

(44)

7 The fact that the powers in equation (38) are the same as the multiples
in equation (24) is not coincidental. In the limit in which we work, an
unclustered massive neutrino background has an identical effect to a drop
in G.

Note that fitting the halo model to simulation data prefers δc to have
no dependence on Geff, but that the dependence of #v is in the same
sense and of a similar magnitude to the spherical model prediction.
Also note that the leading factor in the fitted Ms expression means
that our toy model prefers all haloes to be unscreened at z = 0;
although we caution the reader against taking this too literally. This
improves accuracy to the 2 per cent level for k < 1 h Mpc−1 and
10 per cent level for k < 10 h Mpc−1, apart from for the z = 0 F4
model. The halo model is still lacking in accuracy compared to
MG-HALOFIT, but there is some indication that the accuracy of MG-
HALOFIT may degrade when away from the cosmological models
on which it was trained (Tessore et al. 2015) and we suggest that
using a halo-model approach may be preferable in general. Given
the current statistical power of weak lensing, our level of accuracy
is sufficient to test f(R) models. It may be possible to improve
our accuracy using more accurate prescriptions for spherical model
parameters. Although previous results in this paper (and others,
e.g. Schmidt 2010; Lombriser, Koyama & Li 2014) should caution
us against taking spherical model calculations as being relevant to
power spectrum prediction (i.e. one should not expect a perfect
calculation of δc or #v to translate into perfect mass function or
halo-model power predictions).

Instead of equation (38), the effect of the chameleon screening
mechanism on the collapse density can be described by adopting
a thin-shell approximation in the modified evolution equation of
a spherical top-hat overdensity (Brax, Rosenfeld & Steer 2010;
Li & Efstathiou 2012). This approach was used to compute δc

for f(R) gravity in Lombriser et al. (2013). Alternatively, Borisov,
Jain & Zhang (2012) and Kopp et al. (2013) compute δc by con-
sidering an isolated, initial overdensity profile set by peaks the-
ory and its isotropic evolution according to equations (30) and
(32).

A halo-model power spectrum based on the collapse density from
the thin-shell approximation was used in Lombriser et al. (2014) but
this overpredicts the modification in the power spectrum, although
a correction term suppressing the enhancements in the two-halo
term at quasi-linear scales can be adopted to improve the descrip-
tion. Other approaches to modelling the power spectrum in f(R)
interpolate between the modified and screened Newtonian regimes.
The interpolation can directly be modelled in the power spectrum
as has been proposed by Hu & Sawicki (2007b). This transition
was described through perturbation theory in Koyama, Taruya &
Hiramatsu (2009) and an extension of it was fitted to N-body sim-
ulations in Zhao et al. (2010). An alternative interpolation was
introduced by Li & Hu (2011) who model the chameleon transi-
tion in σ (equation 3) and fit the resulting halo mass function to
N-body simulations. They then adopt the halo model to describe the
power spectrum with an interpolation between the two- and one-
halo terms following the HALOFIT approach. Brax & Valageas (2013)
used a combination of one-loop perturbations with a one-halo term
to describe the power spectrum and Achitouv et al. (2015) incorpo-
rate the mass function model of Kopp et al. (2013) into halo-model
predictions and achieve 20 per cent level matches to simulations
for k < 3 h Mpc−1. A comparison between some of these differ-
ent approaches can be found in Lombriser (2014; figs 4 and 5).
While some of these methods provide a better description of the
f(R) power spectra than the tuned halo model in this work, when
comparing theoretical predictions to observations we are particu-
larly interested in methods that efficiently compute the non-linear
power spectrum and allow us to sample the entire available pa-
rameter space. Our halo model does not require spherical collapse
or higher order perturbation theory calculations and can therefore
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function contains 39 free parameters in addition to the 38 from
Takahashi et al. (2012).

To improve halo-model predictions, we use a simple model for
chameleon screening that derives from spherical-collapse argu-
ments. If !m = 1 and we simply take G → Geff (a constant) for
perturbations, then we find good fits to spherical model results7 of

δc ≃ 1.686 × (Geff/G)0.041 ,

#v ≃ 178 × (Geff/G)−0.763 . (38)

For Geff/G = 4/3, these results are equivalent to those in Schmidt
et al. (2009) for the deviation from a $CDM model. A simple model
for screening in haloes is as follows: a region of the Universe can
be considered screened when

f̄R(a) ≃ 2
3
%N , (39)

as the fR field is forced into the minimum of the effective potential
when the local gravitational potential is of the order of the back-
ground fR value (Schmidt 2010). This fact was used in Mead et al.
(2015a; fig. 1) to develop a simple model for Geff/G as a function of
halo mass for NFW haloes, by relating the gravitational potential of
a halo to the fR value. This toy calculation agrees well with results
of full numerical calculations of screening in idealized symmetric
haloes and N-body simulations (e.g. see fig. 3 of Schmidt 2010).

We then use a sigmoid approximation for Geff/G as a function of
halo mass:

S(x − x0, #, A, B) = A + 1
2

(B − A)
[

1 + tanh
(

x − x0

#

)]

(40)

which transitions between A for x ≪ x0 to B for x ≫ x0 with
transition width governed by #. This allows Geff/G to transition
from unscreened 4/3 enhancement at low halo masses to screened
at high mass:

Geff

G
= S

(
log10 M/Ms, #,

4
3
, 1

)
, (41)

with Ms a screening mass and a comparison of this function with
the model in Mead et al. (2015a) leads us to fix the transition via
# = 0.38 and

log10

(
Ms

h−1 M⊙

)
= 14.6 + 3

2
(5 + log10 |fR(a)|)− 1

2
log10 !m .

(42)

We then fit our model δc, #v and Ms to the simulation response,
taking the exponents in equation (38) and the amplitude of Ms in
equation (42) to be free parameters. Our best-fitting model is shown
as the solid line in Fig. 5 and is given by the relations

δc ∝ constant

#v ∝ (Geff/G)−0.5 , (43)

and

log10

(
Ms

h−1 M⊙

)
= 18.9 + 3

2
(5 + log10 |fR(a)|)− 1

2
log10 !m .

(44)

7 The fact that the powers in equation (38) are the same as the multiples
in equation (24) is not coincidental. In the limit in which we work, an
unclustered massive neutrino background has an identical effect to a drop
in G.

Note that fitting the halo model to simulation data prefers δc to have
no dependence on Geff, but that the dependence of #v is in the same
sense and of a similar magnitude to the spherical model prediction.
Also note that the leading factor in the fitted Ms expression means
that our toy model prefers all haloes to be unscreened at z = 0;
although we caution the reader against taking this too literally. This
improves accuracy to the 2 per cent level for k < 1 h Mpc−1 and
10 per cent level for k < 10 h Mpc−1, apart from for the z = 0 F4
model. The halo model is still lacking in accuracy compared to
MG-HALOFIT, but there is some indication that the accuracy of MG-
HALOFIT may degrade when away from the cosmological models
on which it was trained (Tessore et al. 2015) and we suggest that
using a halo-model approach may be preferable in general. Given
the current statistical power of weak lensing, our level of accuracy
is sufficient to test f(R) models. It may be possible to improve
our accuracy using more accurate prescriptions for spherical model
parameters. Although previous results in this paper (and others,
e.g. Schmidt 2010; Lombriser, Koyama & Li 2014) should caution
us against taking spherical model calculations as being relevant to
power spectrum prediction (i.e. one should not expect a perfect
calculation of δc or #v to translate into perfect mass function or
halo-model power predictions).

Instead of equation (38), the effect of the chameleon screening
mechanism on the collapse density can be described by adopting
a thin-shell approximation in the modified evolution equation of
a spherical top-hat overdensity (Brax, Rosenfeld & Steer 2010;
Li & Efstathiou 2012). This approach was used to compute δc

for f(R) gravity in Lombriser et al. (2013). Alternatively, Borisov,
Jain & Zhang (2012) and Kopp et al. (2013) compute δc by con-
sidering an isolated, initial overdensity profile set by peaks the-
ory and its isotropic evolution according to equations (30) and
(32).

A halo-model power spectrum based on the collapse density from
the thin-shell approximation was used in Lombriser et al. (2014) but
this overpredicts the modification in the power spectrum, although
a correction term suppressing the enhancements in the two-halo
term at quasi-linear scales can be adopted to improve the descrip-
tion. Other approaches to modelling the power spectrum in f(R)
interpolate between the modified and screened Newtonian regimes.
The interpolation can directly be modelled in the power spectrum
as has been proposed by Hu & Sawicki (2007b). This transition
was described through perturbation theory in Koyama, Taruya &
Hiramatsu (2009) and an extension of it was fitted to N-body sim-
ulations in Zhao et al. (2010). An alternative interpolation was
introduced by Li & Hu (2011) who model the chameleon transi-
tion in σ (equation 3) and fit the resulting halo mass function to
N-body simulations. They then adopt the halo model to describe the
power spectrum with an interpolation between the two- and one-
halo terms following the HALOFIT approach. Brax & Valageas (2013)
used a combination of one-loop perturbations with a one-halo term
to describe the power spectrum and Achitouv et al. (2015) incorpo-
rate the mass function model of Kopp et al. (2013) into halo-model
predictions and achieve 20 per cent level matches to simulations
for k < 3 h Mpc−1. A comparison between some of these differ-
ent approaches can be found in Lombriser (2014; figs 4 and 5).
While some of these methods provide a better description of the
f(R) power spectra than the tuned halo model in this work, when
comparing theoretical predictions to observations we are particu-
larly interested in methods that efficiently compute the non-linear
power spectrum and allow us to sample the entire available pa-
rameter space. Our halo model does not require spherical collapse
or higher order perturbation theory calculations and can therefore
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Figure 3. A comparison of the power spectrum response for massive-ν models with three degenerate neutrinos with total mass 0.15 eV (top), 0.3 eV (middle)
and 0.6 eV (bottom) compared to an equivalent "CDM model (with #m fixed between models, rather than #c) at z = 0 (left-hand column) and 1 (right-hand
column). We show the response from the simulations of Massara et al. (2014; blue points), that from the Bird et al. (2012) version of HALOFIT (long-dashed;
red) and that from the Mead et al. (2015b) halo model (short-dashed; black). We see that all models of the response are in broad agreement, but that the halo
model of Mead et al. (2015b) mispredicts the degree of quasi-linear damping. Our updated version of the halo model, with tuned parameters (solid; black),
matches the simulations at the few per cent level across the full range of scales shown, with the eventual agreement being similar to, but slightly better than,
that of Bird et al. (2012).

mν consequently decreases #c. The neutrino mass is taken to be
evenly distributed between three degenerate species, even though
this is in conflict with oscillation experiments for low mν . Using the
prescription for the halo model advocated by Massara et al. (2014,
i.e. using σ cb for clustering calculations), we present our results in
Fig. 3. We show the response from simulations together with that
from the halo model of Mead et al. (2015b) and from the fitting
formula of Bird et al. (2012), which is an update of the Smith et al.
(2003) version of HALOFIT.6 We see that all models do a reason-
able job of predicting the suppression of power that peaks around
k = 1 h Mpc−1, which is caused by the massive neutrinos suppress-
ing CDM clustering. The Bird et al. (2012) model is accurate at
the 3 per cent level, but seems to overpredict the power suppression
at k > 1 h Mpc−1, whereas Mead et al. (2015b) halo model does
well for k > 1 h Mpc−1, but underpredicts the magnitude of the
quasi-linear (k ∼ 0.1 h Mpc−1) damping.

6 Note that we show the response from the published Bird et al. (2012) ap-
pendage to the original Smith et al. (2003) HALOFIT. This is not the version
currently implemented in CAMB, which contains some unpublished correc-
tions.

To improve the halo-model predictions, we note that the mag-
nitude of quasi-linear damping is governed by f in equation (14),
which depends on σ 8(z) in Mead et al. (2015b). In massive neutrino
models, clustering is suppressed and σ 8 drops quite drastically as
the neutrino mass is increased (see Table 5), which in turn changes
f and causes the underprediction of damping. We remedy this by re-
parameterizing f in terms of σ d(R) (i.e. the standard deviation in the
linear displacement field convolved with top-hat filter of radius R,
which is less influenced by small scales than σ (R)) where we found
good matches to COSMIC EMU power spectra using R = 100 h−1 Mpc.
The updated form of f is given in Table 1. In order to maintain a
good fit to the COSMIC EMU simulations as obtained in Mead et al.
(2015b), we simultaneously refit the coefficients of f and the quasi-
linear α term in equation (15); updated values are given in Table 1.
This actually makes a small improvement to the quality of the fit
to the COSMIC EMU simulations that was presented in fig. 2 in Mead
et al. (2015b).

To further improve predictions, we use the spherical model of
non-linear structure formation to calculate values for the linear-
collapse density (δc) and virialized overdensity ('v) for an isolated
top-hat density perturbation. These values will change in massive
neutrino models because some fraction of the matter is unclustered.
The spherical model for massive-ν cosmologies has been considered
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LCDM-type halo model

also fit the halo density contrast

impact through the linear growth factor

Extended accurate halo models 1477

Figure 4. A comparison of the power spectrum response from the halo-model approach of this paper (solid lines) compared to the PKANN emulator (crosses)
of Agarwal et al. (2014) at z = 0 (left) and 1 (right). We show the response as the total neutrino mass (three degenerate species) is varied linearly between 0.05
(blue; top curve) to 0.4 eV (pink; bottom curve) while !mh2 and !bh2 are held fixed and h is adjusted to match the acoustic scale. We simultaneously vary σ 8
between 0.8 (blue) and 0.7 (pink) to keep the large-scale portion of the power spectrum similar (note well that this is not perfect). We see few per cent level
agreement across most of the range of scales up to k = 1 h Mpc−1. The larger differences around k ≃ 1 h Mpc−1 at z = 0 are consistent with the differences in
simulation scheme between the simulations used for PKANN and those to which our model was tuned.

in detail in Ichiki & Takada (2012) and LoVerde (2014) but we
consider a simpler model where we work in the limit that neutrinos
are completely unclustered, and therefore only contribute to the
background expansion. In this case, if !m = 1, we find a good
match to spherical model results with

δc ≃ 1.686 × (1 − 0.041fν),

%v ≃ 178 × (1 + 0.763fν). (24)

We also found that, when including &, the deviation from the
&CDM prediction was only weakly dependent on & (i.e. the fν
dependence in equations 24 holds). Taking these functional forms
for δc and %v as inspiration, we fit for the coefficients of the depen-
dence on fν to the simulation data of Massara et al. (2014) at z = 0
and 1 for mν = 0.15, 0.3 and 0.6 eV. The best-fitting values were
found to be

δc ∝ 1 + 0.262fν,

%v ∝ 1 + 0.916fν . (25)

We note that the best-fitting dependence on δc is opposite to, and
much stronger than, the spherical model dependence, but that of %v

is of a similar magnitude and sign. Our fitted halo model is shown
as the solid black line in Fig. 3 where we see a per cent level match
to simulations across all scales and a small improvement over the
fitting formula of Bird et al. (2012). It should be noted that this
has been achieved using only two free parameters to fit a range of
neutrino masses at two different redshifts. It is possible that some of
the fitting of δc and %v accounts for neutrino non-linearity, which we
have not accounted for explicitly in our modelling. In this future this
could be accounted for using the halo modelling of Abazajian et al.
(2005), although their results suggest that the effects of neutrino
non-linearity are around 1 per cent for the neutrino masses we
consider here. We also note that, prior to fitting δc and %v, our
model is already a rather good match to the simulation data. This is
not shown in Fig. 3, but the match is of similar accuracy to the Bird
et al. (2012) model.

In Fig. 4, we show a comparison of the response of our updated
halo model to the matter power spectrum prediction emulator of
PKANN (Agarwal et al. 2012, 2014) where we vary the neutrino mass
within the range 0–0.4 eV and simultaneously vary σ 8 from 0.8 to
0.7 to keep the large-scale power similar. The simulations that were
used to create PKANN treat the neutrinos as a linear component and
they only affect cold matter via their effects on the background.
Note that h is not a free parameter in PKANN and is set so as to match
the combined Wilkinson Microwave Anisotropy Probe 7 and BAO
acoustic scale results (Komatsu et al. 2011). Since the physical den-
sities !ch2 and !bh2 are also fixed this implies a change in !m, !c

and !b. We see a good (few per cent level) agreement for all neutrino
masses up to the smallest scale output by PKANN (k ≃ 1 h Mpc−1)
at z = 0 and 1. However, there is a slight mismatch between the
calibrated halo model and PKANN for the neutrino induced damping
around k = 1 h Mpc−1 at z = 0, which is consistent with the differ-
ing simulations schemes used by Massara et al. (2014) and Agarwal
et al. (2014). Bird et al. (2012) show that linear neutrino simula-
tions overpredict the magnitude of the neutrino-induced suppression
around k = 1 h Mpc−1 when compared to Fourier-space methods.
The linear scheme will be more accurate for lower neutrino masses
and it is here that we see the best overall agreement between PKANN

and the halo model. Note also that the simulations run for the PKANN

project incorporate some hydrodynamics, and this may conceivably
account for the poorer agreement around k = 1 h Mpc−1 at z = 0. As
we compare our results at the level of the response, not the absolute
power, hydrodynamics may well cancel out, unlike differences from
the neutrino simulation method.

3.4 Chameleon screening

In this section, we work with the Hu & Sawicki (2007a) f(R) model
that exhibits the chameleon screening mechanism. f(R) models
(Buchdahl 1970; Nojiri & Odintsov 2003; Carroll et al. 2005) are
derived from a modified Einstein–Hilbert action, in which a general
f(R) is added to the standard linear R term. In this work, we use the
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“React” approach Cataneo et al. (2019)

Instead of trying to predict the power spectrum for any cosmology, it may be easier 
to predict the deviation from a reference LCDM power spectrum.

Familiar idea, for instance to predict the halo mass function for non-Gaussian initial conditions, 
use  the ratio to LCDM predicted by a Press-Schechter-like modeling.
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Takada 2005; Eifler 2011; Hearin, Zentner & Ma 2012; Taylor,
Kitching & McEwen 2018a).

To mitigate these downsides one can add complexity to the model
at the expense of introducing new free parameters (see e.g. Seljak &
Vlah 2015), fitting the existing ones to the matter power spectrum
measured in simulations (see e.g. Mead et al. 2015b), or sensibly
increasing the computational costs by going beyond linear order in
perturbation theory (see e.g. Valageas & Nishimichi 2011). Here,
instead, we follow and extend the approach presented in Mead
(2017), which we shall refer to as halo model reactions.8

Our goal is to model the non-linear power spectrum of fairly
general extensions to the standard cosmology, a flat !CDM Uni-
verse with massless neutrinos. These cosmologies equipped with
beyond-!CDM physics are what we will call real cosmologies.
We use the halo model to determine the change (i.e. the reaction)
that this new physics induces in a reference !CDM cosmology,
for which simulations are considerably cheaper. Key to the success
of our method is how this reference cosmology is defined, which
is what we will call the pseudo cosmology. Essentially, this is
a !CDM cosmology evolved with standard gravity up to a final
redshift zf, with the additional property that its linear clustering of
matter exactly matches that of the target real cosmology of interest
at zf. In other words, the cold dark matter and the cosmological
constant determine the expansion history and growth of structure of
the pseudo cosmology, but the initial conditions (see Section 4) are
adjusted so that

P
pseudo

L (k, zf ) = P real
L (k, zf ). (51)

The reaction function is then defined as the ratio of the non-linear
matter power spectrum in the real cosmology to that in the pseudo
cosmology,

R(k, z) ≡ P real(k, z)
P pseudo(k, z)

, (52)

and our corresponding halo model prediction takes the heuristic
form9

R(k, z) = [(1 − E)e−k/k⋆ + E]P real
L (k, z) + P real

1h (k, z)

P real
L (k, z) + P

pseudo
1h (k, z)

. (53)

Here, E ∼ 1 and k⋆ > 0 are parameters introduced to improve the
accuracy of the halo model reactions in modified gravity theories.
These are not free parameters, and we shall derive them using the
halo model and standard perturbation theory (SPT) below. However,
let us first examine the general behaviour of equation (53):

(i) On large linear scales R → 1 by definition;10

8Note that in Mead (2017) this is referred to as response. We use the term
reaction to distinguish it from the quantities studied in Neyrinck & Yang
(2013), Nishimichi, Bernardeau & Taruya (2016), or Barreira & Schmidt
(2017). Our and these other definitions are all conceptually analogous, in
the sense that they describe how the non-linear power spectrum responds
to changes in some feature, which in our case is physics beyond the
vanilla !CDM cosmology, e.g. fifth forces, evolving DE, massive neutrinos,
baryons etc.
9Note that we neglect the integral factor equation (50) in our two-halo terms.
We checked that setting I2(k) = 1 for all scales has no measurable impact
on our halo model reactions.
10This is not strictly true in the traditional halo model implementation we
adopt in this work. In fact, the one-halo terms have a constant tail in the
low-k limit (see equation 54) that dominates the two-halo contributions on
very large scales. In a consistent formulation of the halo model, however,
where mass and momentum conservation are enforced, this tail disappears

(ii) On small non-linear scales R ≈ P real
1h /P

pseudo
1h ;

(iii) Quasi-linear scales 0.01 ! k Mpc h−1 ! 0.1 are well de-
scribed by perturbation theory, while intermediate scales 0.1 !
k Mpc h−1 ! 1 are primarily controlled by the halo mass function
ratio nreal

vir /npseudo
vir .

Fixing the real and pseudo linear power spectra to be identical
(as in equation 51) forces the corresponding mass functions to be
somewhat similar. Therefore, owing to (iii), reaction functions can
overcome the typical inaccuracies that plague the halo model in the
transition region between large and small scales.

To assign a value to the boost/suppression term E , it is important
to realize that we would like to preserve the smoothness in the
transition from the linear to the non-linear regime. In turn, this is
tied to the shape of the one-halo terms on scales 0.5 ! k Mpc h−1 !
1, where the two-halo contribution becomes subdominant. In this
regime the one-halo terms are well approximated by their large-
scale limit P1h(k → 0), thus suggesting that

E(z) = P real
1h (k → 0, z)

P
pseudo
1h (k → 0, z)

(54)

is a good choice, one that only depends on the ratio nreal
vir /npseudo

vir .
In equation (53), the transition rate from linear to non-linear

scales is governed by the parameter k⋆:11 for k⋆ → 0 the halo model
reaction collapses to the ratio of one-halo terms; in the opposite
case, k⋆ → ∞, the parameter E loses any role, and the reaction
reduces to its definition in Mead (2017). We determine this scale
using SPT (Koyama et al. 2009; Brax & Valageas 2013; Bose &
Koyama 2016) by solving the equation

R(k0, z|k⋆) = P real
SPT(k0, z) + P real

1h (k0, z)

P
pseudo
SPT (k0, z) + P

pseudo
1h (k0, z)

, (55)

where

PSPT(k, z) = PL(k, z) + P22(k, z) + P13(k, z) + P #
13(k, z), (56)

and we set k0 = 0.06 h Mpc−1, which we found to be the largest
wavenumber that can both ensure reliable perturbative predictions
and keep the inaccuracies induced by the exponential sensitivity
to k⋆ under control (see Appendix B and Carlson, White &
Padmanabhan 2009). Expressions for the second order corrections
P22, P13, and P #

13 to the linear power spectrum are given in
Appendix B. Note that alternative perturbation schemes can also be
used in equation (55), such as the Lagrangian perturbation theory
for modified gravity recently developed in Aviles & Cervantes-Cota
(2017).

The role of the two-halo correction factor in equation (53)
becomes clear in the limiting case k⋆ → ∞, where it goes to
unity. Mead (2017) showed that this form of the reactions matches
smooth DE simulations at per cent level or better on scales k !
1 h Mpc−1for z = 0 (see also Section 5 below). On quasi-linear
scales this remarkable agreement can be understood in terms of
SPT. Schematically, the non-linear matter power spectrum is a non-
trivial function of the linear power spectrum obtained through some

leaving only the theoretically motivated two-halo term (Schmidt 2016). For
our purposes we can simply ignore this inconsistency, and restrict the use of
the reaction function to scales k > 0.01 h Mpc−1.
11As we shall see below, k⋆ is derived from perturbation theory and is
largely independent of the one-halo contribution. However, its specific value
should be interpreted with caution, in that equally good alternatives to the
exponential function in equation (53) can provide different solutions to
equation (55).
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P real = R⇥ P pseudo

The reference cosmology is LCDM with a linear power spectrum normalized at the redshift 
we want to predict (i.e. including linear modified-gravity effects, etc...):
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Takada 2005; Eifler 2011; Hearin, Zentner & Ma 2012; Taylor,
Kitching & McEwen 2018a).

To mitigate these downsides one can add complexity to the model
at the expense of introducing new free parameters (see e.g. Seljak &
Vlah 2015), fitting the existing ones to the matter power spectrum
measured in simulations (see e.g. Mead et al. 2015b), or sensibly
increasing the computational costs by going beyond linear order in
perturbation theory (see e.g. Valageas & Nishimichi 2011). Here,
instead, we follow and extend the approach presented in Mead
(2017), which we shall refer to as halo model reactions.8

Our goal is to model the non-linear power spectrum of fairly
general extensions to the standard cosmology, a flat !CDM Uni-
verse with massless neutrinos. These cosmologies equipped with
beyond-!CDM physics are what we will call real cosmologies.
We use the halo model to determine the change (i.e. the reaction)
that this new physics induces in a reference !CDM cosmology,
for which simulations are considerably cheaper. Key to the success
of our method is how this reference cosmology is defined, which
is what we will call the pseudo cosmology. Essentially, this is
a !CDM cosmology evolved with standard gravity up to a final
redshift zf, with the additional property that its linear clustering of
matter exactly matches that of the target real cosmology of interest
at zf. In other words, the cold dark matter and the cosmological
constant determine the expansion history and growth of structure of
the pseudo cosmology, but the initial conditions (see Section 4) are
adjusted so that

P
pseudo

L (k, zf ) = P real
L (k, zf ). (51)

The reaction function is then defined as the ratio of the non-linear
matter power spectrum in the real cosmology to that in the pseudo
cosmology,

R(k, z) ≡ P real(k, z)
P pseudo(k, z)

, (52)

and our corresponding halo model prediction takes the heuristic
form9

R(k, z) = [(1 − E)e−k/k⋆ + E]P real
L (k, z) + P real

1h (k, z)

P real
L (k, z) + P

pseudo
1h (k, z)

. (53)

Here, E ∼ 1 and k⋆ > 0 are parameters introduced to improve the
accuracy of the halo model reactions in modified gravity theories.
These are not free parameters, and we shall derive them using the
halo model and standard perturbation theory (SPT) below. However,
let us first examine the general behaviour of equation (53):

(i) On large linear scales R → 1 by definition;10

8Note that in Mead (2017) this is referred to as response. We use the term
reaction to distinguish it from the quantities studied in Neyrinck & Yang
(2013), Nishimichi, Bernardeau & Taruya (2016), or Barreira & Schmidt
(2017). Our and these other definitions are all conceptually analogous, in
the sense that they describe how the non-linear power spectrum responds
to changes in some feature, which in our case is physics beyond the
vanilla !CDM cosmology, e.g. fifth forces, evolving DE, massive neutrinos,
baryons etc.
9Note that we neglect the integral factor equation (50) in our two-halo terms.
We checked that setting I2(k) = 1 for all scales has no measurable impact
on our halo model reactions.
10This is not strictly true in the traditional halo model implementation we
adopt in this work. In fact, the one-halo terms have a constant tail in the
low-k limit (see equation 54) that dominates the two-halo contributions on
very large scales. In a consistent formulation of the halo model, however,
where mass and momentum conservation are enforced, this tail disappears

(ii) On small non-linear scales R ≈ P real
1h /P

pseudo
1h ;

(iii) Quasi-linear scales 0.01 ! k Mpc h−1 ! 0.1 are well de-
scribed by perturbation theory, while intermediate scales 0.1 !
k Mpc h−1 ! 1 are primarily controlled by the halo mass function
ratio nreal

vir /npseudo
vir .

Fixing the real and pseudo linear power spectra to be identical
(as in equation 51) forces the corresponding mass functions to be
somewhat similar. Therefore, owing to (iii), reaction functions can
overcome the typical inaccuracies that plague the halo model in the
transition region between large and small scales.

To assign a value to the boost/suppression term E , it is important
to realize that we would like to preserve the smoothness in the
transition from the linear to the non-linear regime. In turn, this is
tied to the shape of the one-halo terms on scales 0.5 ! k Mpc h−1 !
1, where the two-halo contribution becomes subdominant. In this
regime the one-halo terms are well approximated by their large-
scale limit P1h(k → 0), thus suggesting that

E(z) = P real
1h (k → 0, z)

P
pseudo
1h (k → 0, z)

(54)

is a good choice, one that only depends on the ratio nreal
vir /npseudo

vir .
In equation (53), the transition rate from linear to non-linear

scales is governed by the parameter k⋆:11 for k⋆ → 0 the halo model
reaction collapses to the ratio of one-halo terms; in the opposite
case, k⋆ → ∞, the parameter E loses any role, and the reaction
reduces to its definition in Mead (2017). We determine this scale
using SPT (Koyama et al. 2009; Brax & Valageas 2013; Bose &
Koyama 2016) by solving the equation

R(k0, z|k⋆) = P real
SPT(k0, z) + P real

1h (k0, z)

P
pseudo
SPT (k0, z) + P

pseudo
1h (k0, z)

, (55)

where

PSPT(k, z) = PL(k, z) + P22(k, z) + P13(k, z) + P #
13(k, z), (56)

and we set k0 = 0.06 h Mpc−1, which we found to be the largest
wavenumber that can both ensure reliable perturbative predictions
and keep the inaccuracies induced by the exponential sensitivity
to k⋆ under control (see Appendix B and Carlson, White &
Padmanabhan 2009). Expressions for the second order corrections
P22, P13, and P #

13 to the linear power spectrum are given in
Appendix B. Note that alternative perturbation schemes can also be
used in equation (55), such as the Lagrangian perturbation theory
for modified gravity recently developed in Aviles & Cervantes-Cota
(2017).

The role of the two-halo correction factor in equation (53)
becomes clear in the limiting case k⋆ → ∞, where it goes to
unity. Mead (2017) showed that this form of the reactions matches
smooth DE simulations at per cent level or better on scales k !
1 h Mpc−1for z = 0 (see also Section 5 below). On quasi-linear
scales this remarkable agreement can be understood in terms of
SPT. Schematically, the non-linear matter power spectrum is a non-
trivial function of the linear power spectrum obtained through some

leaving only the theoretically motivated two-halo term (Schmidt 2016). For
our purposes we can simply ignore this inconsistency, and restrict the use of
the reaction function to scales k > 0.01 h Mpc−1.
11As we shall see below, k⋆ is derived from perturbation theory and is
largely independent of the one-halo contribution. However, its specific value
should be interpreted with caution, in that equally good alternatives to the
exponential function in equation (53) can provide different solutions to
equation (55).
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automatically exact for the LCDM reference and at linear order for any cosmology

We can hope to bypass the difficulties associated with a full computations, 
such as the 2-halos  __ 1-halo transition, the low-k asymptote, .... 
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Takada 2005; Eifler 2011; Hearin, Zentner & Ma 2012; Taylor,
Kitching & McEwen 2018a).

To mitigate these downsides one can add complexity to the model
at the expense of introducing new free parameters (see e.g. Seljak &
Vlah 2015), fitting the existing ones to the matter power spectrum
measured in simulations (see e.g. Mead et al. 2015b), or sensibly
increasing the computational costs by going beyond linear order in
perturbation theory (see e.g. Valageas & Nishimichi 2011). Here,
instead, we follow and extend the approach presented in Mead
(2017), which we shall refer to as halo model reactions.8

Our goal is to model the non-linear power spectrum of fairly
general extensions to the standard cosmology, a flat !CDM Uni-
verse with massless neutrinos. These cosmologies equipped with
beyond-!CDM physics are what we will call real cosmologies.
We use the halo model to determine the change (i.e. the reaction)
that this new physics induces in a reference !CDM cosmology,
for which simulations are considerably cheaper. Key to the success
of our method is how this reference cosmology is defined, which
is what we will call the pseudo cosmology. Essentially, this is
a !CDM cosmology evolved with standard gravity up to a final
redshift zf, with the additional property that its linear clustering of
matter exactly matches that of the target real cosmology of interest
at zf. In other words, the cold dark matter and the cosmological
constant determine the expansion history and growth of structure of
the pseudo cosmology, but the initial conditions (see Section 4) are
adjusted so that

P
pseudo

L (k, zf ) = P real
L (k, zf ). (51)

The reaction function is then defined as the ratio of the non-linear
matter power spectrum in the real cosmology to that in the pseudo
cosmology,

R(k, z) ≡ P real(k, z)
P pseudo(k, z)

, (52)

and our corresponding halo model prediction takes the heuristic
form9

R(k, z) = [(1 − E)e−k/k⋆ + E]P real
L (k, z) + P real

1h (k, z)

P real
L (k, z) + P

pseudo
1h (k, z)

. (53)

Here, E ∼ 1 and k⋆ > 0 are parameters introduced to improve the
accuracy of the halo model reactions in modified gravity theories.
These are not free parameters, and we shall derive them using the
halo model and standard perturbation theory (SPT) below. However,
let us first examine the general behaviour of equation (53):

(i) On large linear scales R → 1 by definition;10

8Note that in Mead (2017) this is referred to as response. We use the term
reaction to distinguish it from the quantities studied in Neyrinck & Yang
(2013), Nishimichi, Bernardeau & Taruya (2016), or Barreira & Schmidt
(2017). Our and these other definitions are all conceptually analogous, in
the sense that they describe how the non-linear power spectrum responds
to changes in some feature, which in our case is physics beyond the
vanilla !CDM cosmology, e.g. fifth forces, evolving DE, massive neutrinos,
baryons etc.
9Note that we neglect the integral factor equation (50) in our two-halo terms.
We checked that setting I2(k) = 1 for all scales has no measurable impact
on our halo model reactions.
10This is not strictly true in the traditional halo model implementation we
adopt in this work. In fact, the one-halo terms have a constant tail in the
low-k limit (see equation 54) that dominates the two-halo contributions on
very large scales. In a consistent formulation of the halo model, however,
where mass and momentum conservation are enforced, this tail disappears

(ii) On small non-linear scales R ≈ P real
1h /P

pseudo
1h ;

(iii) Quasi-linear scales 0.01 ! k Mpc h−1 ! 0.1 are well de-
scribed by perturbation theory, while intermediate scales 0.1 !
k Mpc h−1 ! 1 are primarily controlled by the halo mass function
ratio nreal

vir /npseudo
vir .

Fixing the real and pseudo linear power spectra to be identical
(as in equation 51) forces the corresponding mass functions to be
somewhat similar. Therefore, owing to (iii), reaction functions can
overcome the typical inaccuracies that plague the halo model in the
transition region between large and small scales.

To assign a value to the boost/suppression term E , it is important
to realize that we would like to preserve the smoothness in the
transition from the linear to the non-linear regime. In turn, this is
tied to the shape of the one-halo terms on scales 0.5 ! k Mpc h−1 !
1, where the two-halo contribution becomes subdominant. In this
regime the one-halo terms are well approximated by their large-
scale limit P1h(k → 0), thus suggesting that

E(z) = P real
1h (k → 0, z)

P
pseudo
1h (k → 0, z)

(54)

is a good choice, one that only depends on the ratio nreal
vir /npseudo

vir .
In equation (53), the transition rate from linear to non-linear

scales is governed by the parameter k⋆:11 for k⋆ → 0 the halo model
reaction collapses to the ratio of one-halo terms; in the opposite
case, k⋆ → ∞, the parameter E loses any role, and the reaction
reduces to its definition in Mead (2017). We determine this scale
using SPT (Koyama et al. 2009; Brax & Valageas 2013; Bose &
Koyama 2016) by solving the equation

R(k0, z|k⋆) = P real
SPT(k0, z) + P real

1h (k0, z)

P
pseudo
SPT (k0, z) + P

pseudo
1h (k0, z)

, (55)

where

PSPT(k, z) = PL(k, z) + P22(k, z) + P13(k, z) + P #
13(k, z), (56)

and we set k0 = 0.06 h Mpc−1, which we found to be the largest
wavenumber that can both ensure reliable perturbative predictions
and keep the inaccuracies induced by the exponential sensitivity
to k⋆ under control (see Appendix B and Carlson, White &
Padmanabhan 2009). Expressions for the second order corrections
P22, P13, and P #

13 to the linear power spectrum are given in
Appendix B. Note that alternative perturbation schemes can also be
used in equation (55), such as the Lagrangian perturbation theory
for modified gravity recently developed in Aviles & Cervantes-Cota
(2017).

The role of the two-halo correction factor in equation (53)
becomes clear in the limiting case k⋆ → ∞, where it goes to
unity. Mead (2017) showed that this form of the reactions matches
smooth DE simulations at per cent level or better on scales k !
1 h Mpc−1for z = 0 (see also Section 5 below). On quasi-linear
scales this remarkable agreement can be understood in terms of
SPT. Schematically, the non-linear matter power spectrum is a non-
trivial function of the linear power spectrum obtained through some

leaving only the theoretically motivated two-halo term (Schmidt 2016). For
our purposes we can simply ignore this inconsistency, and restrict the use of
the reaction function to scales k > 0.01 h Mpc−1.
11As we shall see below, k⋆ is derived from perturbation theory and is
largely independent of the one-halo contribution. However, its specific value
should be interpreted with caution, in that equally good alternatives to the
exponential function in equation (53) can provide different solutions to
equation (55).
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Takada 2005; Eifler 2011; Hearin, Zentner & Ma 2012; Taylor,
Kitching & McEwen 2018a).

To mitigate these downsides one can add complexity to the model
at the expense of introducing new free parameters (see e.g. Seljak &
Vlah 2015), fitting the existing ones to the matter power spectrum
measured in simulations (see e.g. Mead et al. 2015b), or sensibly
increasing the computational costs by going beyond linear order in
perturbation theory (see e.g. Valageas & Nishimichi 2011). Here,
instead, we follow and extend the approach presented in Mead
(2017), which we shall refer to as halo model reactions.8

Our goal is to model the non-linear power spectrum of fairly
general extensions to the standard cosmology, a flat !CDM Uni-
verse with massless neutrinos. These cosmologies equipped with
beyond-!CDM physics are what we will call real cosmologies.
We use the halo model to determine the change (i.e. the reaction)
that this new physics induces in a reference !CDM cosmology,
for which simulations are considerably cheaper. Key to the success
of our method is how this reference cosmology is defined, which
is what we will call the pseudo cosmology. Essentially, this is
a !CDM cosmology evolved with standard gravity up to a final
redshift zf, with the additional property that its linear clustering of
matter exactly matches that of the target real cosmology of interest
at zf. In other words, the cold dark matter and the cosmological
constant determine the expansion history and growth of structure of
the pseudo cosmology, but the initial conditions (see Section 4) are
adjusted so that

P
pseudo

L (k, zf ) = P real
L (k, zf ). (51)

The reaction function is then defined as the ratio of the non-linear
matter power spectrum in the real cosmology to that in the pseudo
cosmology,

R(k, z) ≡ P real(k, z)
P pseudo(k, z)

, (52)

and our corresponding halo model prediction takes the heuristic
form9

R(k, z) = [(1 − E)e−k/k⋆ + E]P real
L (k, z) + P real

1h (k, z)

P real
L (k, z) + P

pseudo
1h (k, z)

. (53)

Here, E ∼ 1 and k⋆ > 0 are parameters introduced to improve the
accuracy of the halo model reactions in modified gravity theories.
These are not free parameters, and we shall derive them using the
halo model and standard perturbation theory (SPT) below. However,
let us first examine the general behaviour of equation (53):

(i) On large linear scales R → 1 by definition;10

8Note that in Mead (2017) this is referred to as response. We use the term
reaction to distinguish it from the quantities studied in Neyrinck & Yang
(2013), Nishimichi, Bernardeau & Taruya (2016), or Barreira & Schmidt
(2017). Our and these other definitions are all conceptually analogous, in
the sense that they describe how the non-linear power spectrum responds
to changes in some feature, which in our case is physics beyond the
vanilla !CDM cosmology, e.g. fifth forces, evolving DE, massive neutrinos,
baryons etc.
9Note that we neglect the integral factor equation (50) in our two-halo terms.
We checked that setting I2(k) = 1 for all scales has no measurable impact
on our halo model reactions.
10This is not strictly true in the traditional halo model implementation we
adopt in this work. In fact, the one-halo terms have a constant tail in the
low-k limit (see equation 54) that dominates the two-halo contributions on
very large scales. In a consistent formulation of the halo model, however,
where mass and momentum conservation are enforced, this tail disappears

(ii) On small non-linear scales R ≈ P real
1h /P

pseudo
1h ;

(iii) Quasi-linear scales 0.01 ! k Mpc h−1 ! 0.1 are well de-
scribed by perturbation theory, while intermediate scales 0.1 !
k Mpc h−1 ! 1 are primarily controlled by the halo mass function
ratio nreal

vir /npseudo
vir .

Fixing the real and pseudo linear power spectra to be identical
(as in equation 51) forces the corresponding mass functions to be
somewhat similar. Therefore, owing to (iii), reaction functions can
overcome the typical inaccuracies that plague the halo model in the
transition region between large and small scales.

To assign a value to the boost/suppression term E , it is important
to realize that we would like to preserve the smoothness in the
transition from the linear to the non-linear regime. In turn, this is
tied to the shape of the one-halo terms on scales 0.5 ! k Mpc h−1 !
1, where the two-halo contribution becomes subdominant. In this
regime the one-halo terms are well approximated by their large-
scale limit P1h(k → 0), thus suggesting that

E(z) = P real
1h (k → 0, z)

P
pseudo
1h (k → 0, z)

(54)

is a good choice, one that only depends on the ratio nreal
vir /npseudo

vir .
In equation (53), the transition rate from linear to non-linear

scales is governed by the parameter k⋆:11 for k⋆ → 0 the halo model
reaction collapses to the ratio of one-halo terms; in the opposite
case, k⋆ → ∞, the parameter E loses any role, and the reaction
reduces to its definition in Mead (2017). We determine this scale
using SPT (Koyama et al. 2009; Brax & Valageas 2013; Bose &
Koyama 2016) by solving the equation

R(k0, z|k⋆) = P real
SPT(k0, z) + P real

1h (k0, z)

P
pseudo
SPT (k0, z) + P

pseudo
1h (k0, z)

, (55)

where

PSPT(k, z) = PL(k, z) + P22(k, z) + P13(k, z) + P #
13(k, z), (56)

and we set k0 = 0.06 h Mpc−1, which we found to be the largest
wavenumber that can both ensure reliable perturbative predictions
and keep the inaccuracies induced by the exponential sensitivity
to k⋆ under control (see Appendix B and Carlson, White &
Padmanabhan 2009). Expressions for the second order corrections
P22, P13, and P #

13 to the linear power spectrum are given in
Appendix B. Note that alternative perturbation schemes can also be
used in equation (55), such as the Lagrangian perturbation theory
for modified gravity recently developed in Aviles & Cervantes-Cota
(2017).

The role of the two-halo correction factor in equation (53)
becomes clear in the limiting case k⋆ → ∞, where it goes to
unity. Mead (2017) showed that this form of the reactions matches
smooth DE simulations at per cent level or better on scales k !
1 h Mpc−1for z = 0 (see also Section 5 below). On quasi-linear
scales this remarkable agreement can be understood in terms of
SPT. Schematically, the non-linear matter power spectrum is a non-
trivial function of the linear power spectrum obtained through some

leaving only the theoretically motivated two-halo term (Schmidt 2016). For
our purposes we can simply ignore this inconsistency, and restrict the use of
the reaction function to scales k > 0.01 h Mpc−1.
11As we shall see below, k⋆ is derived from perturbation theory and is
largely independent of the one-halo contribution. However, its specific value
should be interpreted with caution, in that equally good alternatives to the
exponential function in equation (53) can provide different solutions to
equation (55).
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Takada 2005; Eifler 2011; Hearin, Zentner & Ma 2012; Taylor,
Kitching & McEwen 2018a).

To mitigate these downsides one can add complexity to the model
at the expense of introducing new free parameters (see e.g. Seljak &
Vlah 2015), fitting the existing ones to the matter power spectrum
measured in simulations (see e.g. Mead et al. 2015b), or sensibly
increasing the computational costs by going beyond linear order in
perturbation theory (see e.g. Valageas & Nishimichi 2011). Here,
instead, we follow and extend the approach presented in Mead
(2017), which we shall refer to as halo model reactions.8

Our goal is to model the non-linear power spectrum of fairly
general extensions to the standard cosmology, a flat !CDM Uni-
verse with massless neutrinos. These cosmologies equipped with
beyond-!CDM physics are what we will call real cosmologies.
We use the halo model to determine the change (i.e. the reaction)
that this new physics induces in a reference !CDM cosmology,
for which simulations are considerably cheaper. Key to the success
of our method is how this reference cosmology is defined, which
is what we will call the pseudo cosmology. Essentially, this is
a !CDM cosmology evolved with standard gravity up to a final
redshift zf, with the additional property that its linear clustering of
matter exactly matches that of the target real cosmology of interest
at zf. In other words, the cold dark matter and the cosmological
constant determine the expansion history and growth of structure of
the pseudo cosmology, but the initial conditions (see Section 4) are
adjusted so that

P
pseudo

L (k, zf ) = P real
L (k, zf ). (51)

The reaction function is then defined as the ratio of the non-linear
matter power spectrum in the real cosmology to that in the pseudo
cosmology,

R(k, z) ≡ P real(k, z)
P pseudo(k, z)

, (52)

and our corresponding halo model prediction takes the heuristic
form9

R(k, z) = [(1 − E)e−k/k⋆ + E]P real
L (k, z) + P real

1h (k, z)

P real
L (k, z) + P

pseudo
1h (k, z)

. (53)

Here, E ∼ 1 and k⋆ > 0 are parameters introduced to improve the
accuracy of the halo model reactions in modified gravity theories.
These are not free parameters, and we shall derive them using the
halo model and standard perturbation theory (SPT) below. However,
let us first examine the general behaviour of equation (53):

(i) On large linear scales R → 1 by definition;10

8Note that in Mead (2017) this is referred to as response. We use the term
reaction to distinguish it from the quantities studied in Neyrinck & Yang
(2013), Nishimichi, Bernardeau & Taruya (2016), or Barreira & Schmidt
(2017). Our and these other definitions are all conceptually analogous, in
the sense that they describe how the non-linear power spectrum responds
to changes in some feature, which in our case is physics beyond the
vanilla !CDM cosmology, e.g. fifth forces, evolving DE, massive neutrinos,
baryons etc.
9Note that we neglect the integral factor equation (50) in our two-halo terms.
We checked that setting I2(k) = 1 for all scales has no measurable impact
on our halo model reactions.
10This is not strictly true in the traditional halo model implementation we
adopt in this work. In fact, the one-halo terms have a constant tail in the
low-k limit (see equation 54) that dominates the two-halo contributions on
very large scales. In a consistent formulation of the halo model, however,
where mass and momentum conservation are enforced, this tail disappears

(ii) On small non-linear scales R ≈ P real
1h /P

pseudo
1h ;

(iii) Quasi-linear scales 0.01 ! k Mpc h−1 ! 0.1 are well de-
scribed by perturbation theory, while intermediate scales 0.1 !
k Mpc h−1 ! 1 are primarily controlled by the halo mass function
ratio nreal

vir /npseudo
vir .

Fixing the real and pseudo linear power spectra to be identical
(as in equation 51) forces the corresponding mass functions to be
somewhat similar. Therefore, owing to (iii), reaction functions can
overcome the typical inaccuracies that plague the halo model in the
transition region between large and small scales.

To assign a value to the boost/suppression term E , it is important
to realize that we would like to preserve the smoothness in the
transition from the linear to the non-linear regime. In turn, this is
tied to the shape of the one-halo terms on scales 0.5 ! k Mpc h−1 !
1, where the two-halo contribution becomes subdominant. In this
regime the one-halo terms are well approximated by their large-
scale limit P1h(k → 0), thus suggesting that

E(z) = P real
1h (k → 0, z)

P
pseudo
1h (k → 0, z)

(54)

is a good choice, one that only depends on the ratio nreal
vir /npseudo

vir .
In equation (53), the transition rate from linear to non-linear

scales is governed by the parameter k⋆:11 for k⋆ → 0 the halo model
reaction collapses to the ratio of one-halo terms; in the opposite
case, k⋆ → ∞, the parameter E loses any role, and the reaction
reduces to its definition in Mead (2017). We determine this scale
using SPT (Koyama et al. 2009; Brax & Valageas 2013; Bose &
Koyama 2016) by solving the equation

R(k0, z|k⋆) = P real
SPT(k0, z) + P real

1h (k0, z)

P
pseudo
SPT (k0, z) + P

pseudo
1h (k0, z)

, (55)

where

PSPT(k, z) = PL(k, z) + P22(k, z) + P13(k, z) + P #
13(k, z), (56)

and we set k0 = 0.06 h Mpc−1, which we found to be the largest
wavenumber that can both ensure reliable perturbative predictions
and keep the inaccuracies induced by the exponential sensitivity
to k⋆ under control (see Appendix B and Carlson, White &
Padmanabhan 2009). Expressions for the second order corrections
P22, P13, and P #

13 to the linear power spectrum are given in
Appendix B. Note that alternative perturbation schemes can also be
used in equation (55), such as the Lagrangian perturbation theory
for modified gravity recently developed in Aviles & Cervantes-Cota
(2017).

The role of the two-halo correction factor in equation (53)
becomes clear in the limiting case k⋆ → ∞, where it goes to
unity. Mead (2017) showed that this form of the reactions matches
smooth DE simulations at per cent level or better on scales k !
1 h Mpc−1for z = 0 (see also Section 5 below). On quasi-linear
scales this remarkable agreement can be understood in terms of
SPT. Schematically, the non-linear matter power spectrum is a non-
trivial function of the linear power spectrum obtained through some

leaving only the theoretically motivated two-halo term (Schmidt 2016). For
our purposes we can simply ignore this inconsistency, and restrict the use of
the reaction function to scales k > 0.01 h Mpc−1.
11As we shall see below, k⋆ is derived from perturbation theory and is
largely independent of the one-halo contribution. However, its specific value
should be interpreted with caution, in that equally good alternatives to the
exponential function in equation (53) can provide different solutions to
equation (55).
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Takada 2005; Eifler 2011; Hearin, Zentner & Ma 2012; Taylor,
Kitching & McEwen 2018a).

To mitigate these downsides one can add complexity to the model
at the expense of introducing new free parameters (see e.g. Seljak &
Vlah 2015), fitting the existing ones to the matter power spectrum
measured in simulations (see e.g. Mead et al. 2015b), or sensibly
increasing the computational costs by going beyond linear order in
perturbation theory (see e.g. Valageas & Nishimichi 2011). Here,
instead, we follow and extend the approach presented in Mead
(2017), which we shall refer to as halo model reactions.8

Our goal is to model the non-linear power spectrum of fairly
general extensions to the standard cosmology, a flat !CDM Uni-
verse with massless neutrinos. These cosmologies equipped with
beyond-!CDM physics are what we will call real cosmologies.
We use the halo model to determine the change (i.e. the reaction)
that this new physics induces in a reference !CDM cosmology,
for which simulations are considerably cheaper. Key to the success
of our method is how this reference cosmology is defined, which
is what we will call the pseudo cosmology. Essentially, this is
a !CDM cosmology evolved with standard gravity up to a final
redshift zf, with the additional property that its linear clustering of
matter exactly matches that of the target real cosmology of interest
at zf. In other words, the cold dark matter and the cosmological
constant determine the expansion history and growth of structure of
the pseudo cosmology, but the initial conditions (see Section 4) are
adjusted so that

P
pseudo

L (k, zf ) = P real
L (k, zf ). (51)

The reaction function is then defined as the ratio of the non-linear
matter power spectrum in the real cosmology to that in the pseudo
cosmology,

R(k, z) ≡ P real(k, z)
P pseudo(k, z)

, (52)

and our corresponding halo model prediction takes the heuristic
form9

R(k, z) = [(1 − E)e−k/k⋆ + E]P real
L (k, z) + P real

1h (k, z)

P real
L (k, z) + P

pseudo
1h (k, z)

. (53)

Here, E ∼ 1 and k⋆ > 0 are parameters introduced to improve the
accuracy of the halo model reactions in modified gravity theories.
These are not free parameters, and we shall derive them using the
halo model and standard perturbation theory (SPT) below. However,
let us first examine the general behaviour of equation (53):

(i) On large linear scales R → 1 by definition;10

8Note that in Mead (2017) this is referred to as response. We use the term
reaction to distinguish it from the quantities studied in Neyrinck & Yang
(2013), Nishimichi, Bernardeau & Taruya (2016), or Barreira & Schmidt
(2017). Our and these other definitions are all conceptually analogous, in
the sense that they describe how the non-linear power spectrum responds
to changes in some feature, which in our case is physics beyond the
vanilla !CDM cosmology, e.g. fifth forces, evolving DE, massive neutrinos,
baryons etc.
9Note that we neglect the integral factor equation (50) in our two-halo terms.
We checked that setting I2(k) = 1 for all scales has no measurable impact
on our halo model reactions.
10This is not strictly true in the traditional halo model implementation we
adopt in this work. In fact, the one-halo terms have a constant tail in the
low-k limit (see equation 54) that dominates the two-halo contributions on
very large scales. In a consistent formulation of the halo model, however,
where mass and momentum conservation are enforced, this tail disappears

(ii) On small non-linear scales R ≈ P real
1h /P

pseudo
1h ;

(iii) Quasi-linear scales 0.01 ! k Mpc h−1 ! 0.1 are well de-
scribed by perturbation theory, while intermediate scales 0.1 !
k Mpc h−1 ! 1 are primarily controlled by the halo mass function
ratio nreal

vir /npseudo
vir .

Fixing the real and pseudo linear power spectra to be identical
(as in equation 51) forces the corresponding mass functions to be
somewhat similar. Therefore, owing to (iii), reaction functions can
overcome the typical inaccuracies that plague the halo model in the
transition region between large and small scales.

To assign a value to the boost/suppression term E , it is important
to realize that we would like to preserve the smoothness in the
transition from the linear to the non-linear regime. In turn, this is
tied to the shape of the one-halo terms on scales 0.5 ! k Mpc h−1 !
1, where the two-halo contribution becomes subdominant. In this
regime the one-halo terms are well approximated by their large-
scale limit P1h(k → 0), thus suggesting that

E(z) = P real
1h (k → 0, z)

P
pseudo
1h (k → 0, z)

(54)

is a good choice, one that only depends on the ratio nreal
vir /npseudo

vir .
In equation (53), the transition rate from linear to non-linear

scales is governed by the parameter k⋆:11 for k⋆ → 0 the halo model
reaction collapses to the ratio of one-halo terms; in the opposite
case, k⋆ → ∞, the parameter E loses any role, and the reaction
reduces to its definition in Mead (2017). We determine this scale
using SPT (Koyama et al. 2009; Brax & Valageas 2013; Bose &
Koyama 2016) by solving the equation

R(k0, z|k⋆) = P real
SPT(k0, z) + P real

1h (k0, z)

P
pseudo
SPT (k0, z) + P

pseudo
1h (k0, z)

, (55)

where

PSPT(k, z) = PL(k, z) + P22(k, z) + P13(k, z) + P #
13(k, z), (56)

and we set k0 = 0.06 h Mpc−1, which we found to be the largest
wavenumber that can both ensure reliable perturbative predictions
and keep the inaccuracies induced by the exponential sensitivity
to k⋆ under control (see Appendix B and Carlson, White &
Padmanabhan 2009). Expressions for the second order corrections
P22, P13, and P #

13 to the linear power spectrum are given in
Appendix B. Note that alternative perturbation schemes can also be
used in equation (55), such as the Lagrangian perturbation theory
for modified gravity recently developed in Aviles & Cervantes-Cota
(2017).

The role of the two-halo correction factor in equation (53)
becomes clear in the limiting case k⋆ → ∞, where it goes to
unity. Mead (2017) showed that this form of the reactions matches
smooth DE simulations at per cent level or better on scales k !
1 h Mpc−1for z = 0 (see also Section 5 below). On quasi-linear
scales this remarkable agreement can be understood in terms of
SPT. Schematically, the non-linear matter power spectrum is a non-
trivial function of the linear power spectrum obtained through some

leaving only the theoretically motivated two-halo term (Schmidt 2016). For
our purposes we can simply ignore this inconsistency, and restrict the use of
the reaction function to scales k > 0.01 h Mpc−1.
11As we shall see below, k⋆ is derived from perturbation theory and is
largely independent of the one-halo contribution. However, its specific value
should be interpreted with caution, in that equally good alternatives to the
exponential function in equation (53) can provide different solutions to
equation (55).
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Takada 2005; Eifler 2011; Hearin, Zentner & Ma 2012; Taylor,
Kitching & McEwen 2018a).

To mitigate these downsides one can add complexity to the model
at the expense of introducing new free parameters (see e.g. Seljak &
Vlah 2015), fitting the existing ones to the matter power spectrum
measured in simulations (see e.g. Mead et al. 2015b), or sensibly
increasing the computational costs by going beyond linear order in
perturbation theory (see e.g. Valageas & Nishimichi 2011). Here,
instead, we follow and extend the approach presented in Mead
(2017), which we shall refer to as halo model reactions.8

Our goal is to model the non-linear power spectrum of fairly
general extensions to the standard cosmology, a flat !CDM Uni-
verse with massless neutrinos. These cosmologies equipped with
beyond-!CDM physics are what we will call real cosmologies.
We use the halo model to determine the change (i.e. the reaction)
that this new physics induces in a reference !CDM cosmology,
for which simulations are considerably cheaper. Key to the success
of our method is how this reference cosmology is defined, which
is what we will call the pseudo cosmology. Essentially, this is
a !CDM cosmology evolved with standard gravity up to a final
redshift zf, with the additional property that its linear clustering of
matter exactly matches that of the target real cosmology of interest
at zf. In other words, the cold dark matter and the cosmological
constant determine the expansion history and growth of structure of
the pseudo cosmology, but the initial conditions (see Section 4) are
adjusted so that

P
pseudo

L (k, zf ) = P real
L (k, zf ). (51)

The reaction function is then defined as the ratio of the non-linear
matter power spectrum in the real cosmology to that in the pseudo
cosmology,

R(k, z) ≡ P real(k, z)
P pseudo(k, z)

, (52)

and our corresponding halo model prediction takes the heuristic
form9

R(k, z) = [(1 − E)e−k/k⋆ + E]P real
L (k, z) + P real

1h (k, z)

P real
L (k, z) + P

pseudo
1h (k, z)

. (53)

Here, E ∼ 1 and k⋆ > 0 are parameters introduced to improve the
accuracy of the halo model reactions in modified gravity theories.
These are not free parameters, and we shall derive them using the
halo model and standard perturbation theory (SPT) below. However,
let us first examine the general behaviour of equation (53):

(i) On large linear scales R → 1 by definition;10

8Note that in Mead (2017) this is referred to as response. We use the term
reaction to distinguish it from the quantities studied in Neyrinck & Yang
(2013), Nishimichi, Bernardeau & Taruya (2016), or Barreira & Schmidt
(2017). Our and these other definitions are all conceptually analogous, in
the sense that they describe how the non-linear power spectrum responds
to changes in some feature, which in our case is physics beyond the
vanilla !CDM cosmology, e.g. fifth forces, evolving DE, massive neutrinos,
baryons etc.
9Note that we neglect the integral factor equation (50) in our two-halo terms.
We checked that setting I2(k) = 1 for all scales has no measurable impact
on our halo model reactions.
10This is not strictly true in the traditional halo model implementation we
adopt in this work. In fact, the one-halo terms have a constant tail in the
low-k limit (see equation 54) that dominates the two-halo contributions on
very large scales. In a consistent formulation of the halo model, however,
where mass and momentum conservation are enforced, this tail disappears

(ii) On small non-linear scales R ≈ P real
1h /P

pseudo
1h ;

(iii) Quasi-linear scales 0.01 ! k Mpc h−1 ! 0.1 are well de-
scribed by perturbation theory, while intermediate scales 0.1 !
k Mpc h−1 ! 1 are primarily controlled by the halo mass function
ratio nreal

vir /npseudo
vir .

Fixing the real and pseudo linear power spectra to be identical
(as in equation 51) forces the corresponding mass functions to be
somewhat similar. Therefore, owing to (iii), reaction functions can
overcome the typical inaccuracies that plague the halo model in the
transition region between large and small scales.

To assign a value to the boost/suppression term E , it is important
to realize that we would like to preserve the smoothness in the
transition from the linear to the non-linear regime. In turn, this is
tied to the shape of the one-halo terms on scales 0.5 ! k Mpc h−1 !
1, where the two-halo contribution becomes subdominant. In this
regime the one-halo terms are well approximated by their large-
scale limit P1h(k → 0), thus suggesting that

E(z) = P real
1h (k → 0, z)

P
pseudo
1h (k → 0, z)

(54)

is a good choice, one that only depends on the ratio nreal
vir /npseudo

vir .
In equation (53), the transition rate from linear to non-linear

scales is governed by the parameter k⋆:11 for k⋆ → 0 the halo model
reaction collapses to the ratio of one-halo terms; in the opposite
case, k⋆ → ∞, the parameter E loses any role, and the reaction
reduces to its definition in Mead (2017). We determine this scale
using SPT (Koyama et al. 2009; Brax & Valageas 2013; Bose &
Koyama 2016) by solving the equation

R(k0, z|k⋆) = P real
SPT(k0, z) + P real

1h (k0, z)

P
pseudo
SPT (k0, z) + P

pseudo
1h (k0, z)

, (55)

where

PSPT(k, z) = PL(k, z) + P22(k, z) + P13(k, z) + P #
13(k, z), (56)

and we set k0 = 0.06 h Mpc−1, which we found to be the largest
wavenumber that can both ensure reliable perturbative predictions
and keep the inaccuracies induced by the exponential sensitivity
to k⋆ under control (see Appendix B and Carlson, White &
Padmanabhan 2009). Expressions for the second order corrections
P22, P13, and P #

13 to the linear power spectrum are given in
Appendix B. Note that alternative perturbation schemes can also be
used in equation (55), such as the Lagrangian perturbation theory
for modified gravity recently developed in Aviles & Cervantes-Cota
(2017).

The role of the two-halo correction factor in equation (53)
becomes clear in the limiting case k⋆ → ∞, where it goes to
unity. Mead (2017) showed that this form of the reactions matches
smooth DE simulations at per cent level or better on scales k !
1 h Mpc−1for z = 0 (see also Section 5 below). On quasi-linear
scales this remarkable agreement can be understood in terms of
SPT. Schematically, the non-linear matter power spectrum is a non-
trivial function of the linear power spectrum obtained through some

leaving only the theoretically motivated two-halo term (Schmidt 2016). For
our purposes we can simply ignore this inconsistency, and restrict the use of
the reaction function to scales k > 0.01 h Mpc−1.
11As we shall see below, k⋆ is derived from perturbation theory and is
largely independent of the one-halo contribution. However, its specific value
should be interpreted with caution, in that equally good alternatives to the
exponential function in equation (53) can provide different solutions to
equation (55).
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Takada 2005; Eifler 2011; Hearin, Zentner & Ma 2012; Taylor,
Kitching & McEwen 2018a).

To mitigate these downsides one can add complexity to the model
at the expense of introducing new free parameters (see e.g. Seljak &
Vlah 2015), fitting the existing ones to the matter power spectrum
measured in simulations (see e.g. Mead et al. 2015b), or sensibly
increasing the computational costs by going beyond linear order in
perturbation theory (see e.g. Valageas & Nishimichi 2011). Here,
instead, we follow and extend the approach presented in Mead
(2017), which we shall refer to as halo model reactions.8

Our goal is to model the non-linear power spectrum of fairly
general extensions to the standard cosmology, a flat !CDM Uni-
verse with massless neutrinos. These cosmologies equipped with
beyond-!CDM physics are what we will call real cosmologies.
We use the halo model to determine the change (i.e. the reaction)
that this new physics induces in a reference !CDM cosmology,
for which simulations are considerably cheaper. Key to the success
of our method is how this reference cosmology is defined, which
is what we will call the pseudo cosmology. Essentially, this is
a !CDM cosmology evolved with standard gravity up to a final
redshift zf, with the additional property that its linear clustering of
matter exactly matches that of the target real cosmology of interest
at zf. In other words, the cold dark matter and the cosmological
constant determine the expansion history and growth of structure of
the pseudo cosmology, but the initial conditions (see Section 4) are
adjusted so that

P
pseudo

L (k, zf ) = P real
L (k, zf ). (51)

The reaction function is then defined as the ratio of the non-linear
matter power spectrum in the real cosmology to that in the pseudo
cosmology,

R(k, z) ≡ P real(k, z)
P pseudo(k, z)

, (52)

and our corresponding halo model prediction takes the heuristic
form9

R(k, z) = [(1 − E)e−k/k⋆ + E]P real
L (k, z) + P real

1h (k, z)

P real
L (k, z) + P

pseudo
1h (k, z)

. (53)

Here, E ∼ 1 and k⋆ > 0 are parameters introduced to improve the
accuracy of the halo model reactions in modified gravity theories.
These are not free parameters, and we shall derive them using the
halo model and standard perturbation theory (SPT) below. However,
let us first examine the general behaviour of equation (53):

(i) On large linear scales R → 1 by definition;10

8Note that in Mead (2017) this is referred to as response. We use the term
reaction to distinguish it from the quantities studied in Neyrinck & Yang
(2013), Nishimichi, Bernardeau & Taruya (2016), or Barreira & Schmidt
(2017). Our and these other definitions are all conceptually analogous, in
the sense that they describe how the non-linear power spectrum responds
to changes in some feature, which in our case is physics beyond the
vanilla !CDM cosmology, e.g. fifth forces, evolving DE, massive neutrinos,
baryons etc.
9Note that we neglect the integral factor equation (50) in our two-halo terms.
We checked that setting I2(k) = 1 for all scales has no measurable impact
on our halo model reactions.
10This is not strictly true in the traditional halo model implementation we
adopt in this work. In fact, the one-halo terms have a constant tail in the
low-k limit (see equation 54) that dominates the two-halo contributions on
very large scales. In a consistent formulation of the halo model, however,
where mass and momentum conservation are enforced, this tail disappears

(ii) On small non-linear scales R ≈ P real
1h /P

pseudo
1h ;

(iii) Quasi-linear scales 0.01 ! k Mpc h−1 ! 0.1 are well de-
scribed by perturbation theory, while intermediate scales 0.1 !
k Mpc h−1 ! 1 are primarily controlled by the halo mass function
ratio nreal

vir /npseudo
vir .

Fixing the real and pseudo linear power spectra to be identical
(as in equation 51) forces the corresponding mass functions to be
somewhat similar. Therefore, owing to (iii), reaction functions can
overcome the typical inaccuracies that plague the halo model in the
transition region between large and small scales.

To assign a value to the boost/suppression term E , it is important
to realize that we would like to preserve the smoothness in the
transition from the linear to the non-linear regime. In turn, this is
tied to the shape of the one-halo terms on scales 0.5 ! k Mpc h−1 !
1, where the two-halo contribution becomes subdominant. In this
regime the one-halo terms are well approximated by their large-
scale limit P1h(k → 0), thus suggesting that

E(z) = P real
1h (k → 0, z)

P
pseudo
1h (k → 0, z)

(54)

is a good choice, one that only depends on the ratio nreal
vir /npseudo

vir .
In equation (53), the transition rate from linear to non-linear

scales is governed by the parameter k⋆:11 for k⋆ → 0 the halo model
reaction collapses to the ratio of one-halo terms; in the opposite
case, k⋆ → ∞, the parameter E loses any role, and the reaction
reduces to its definition in Mead (2017). We determine this scale
using SPT (Koyama et al. 2009; Brax & Valageas 2013; Bose &
Koyama 2016) by solving the equation

R(k0, z|k⋆) = P real
SPT(k0, z) + P real

1h (k0, z)

P
pseudo
SPT (k0, z) + P

pseudo
1h (k0, z)

, (55)

where

PSPT(k, z) = PL(k, z) + P22(k, z) + P13(k, z) + P #
13(k, z), (56)

and we set k0 = 0.06 h Mpc−1, which we found to be the largest
wavenumber that can both ensure reliable perturbative predictions
and keep the inaccuracies induced by the exponential sensitivity
to k⋆ under control (see Appendix B and Carlson, White &
Padmanabhan 2009). Expressions for the second order corrections
P22, P13, and P #

13 to the linear power spectrum are given in
Appendix B. Note that alternative perturbation schemes can also be
used in equation (55), such as the Lagrangian perturbation theory
for modified gravity recently developed in Aviles & Cervantes-Cota
(2017).

The role of the two-halo correction factor in equation (53)
becomes clear in the limiting case k⋆ → ∞, where it goes to
unity. Mead (2017) showed that this form of the reactions matches
smooth DE simulations at per cent level or better on scales k !
1 h Mpc−1for z = 0 (see also Section 5 below). On quasi-linear
scales this remarkable agreement can be understood in terms of
SPT. Schematically, the non-linear matter power spectrum is a non-
trivial function of the linear power spectrum obtained through some

leaving only the theoretically motivated two-halo term (Schmidt 2016). For
our purposes we can simply ignore this inconsistency, and restrict the use of
the reaction function to scales k > 0.01 h Mpc−1.
11As we shall see below, k⋆ is derived from perturbation theory and is
largely independent of the one-halo contribution. However, its specific value
should be interpreted with caution, in that equally good alternatives to the
exponential function in equation (53) can provide different solutions to
equation (55).
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Takada 2005; Eifler 2011; Hearin, Zentner & Ma 2012; Taylor,
Kitching & McEwen 2018a).

To mitigate these downsides one can add complexity to the model
at the expense of introducing new free parameters (see e.g. Seljak &
Vlah 2015), fitting the existing ones to the matter power spectrum
measured in simulations (see e.g. Mead et al. 2015b), or sensibly
increasing the computational costs by going beyond linear order in
perturbation theory (see e.g. Valageas & Nishimichi 2011). Here,
instead, we follow and extend the approach presented in Mead
(2017), which we shall refer to as halo model reactions.8

Our goal is to model the non-linear power spectrum of fairly
general extensions to the standard cosmology, a flat !CDM Uni-
verse with massless neutrinos. These cosmologies equipped with
beyond-!CDM physics are what we will call real cosmologies.
We use the halo model to determine the change (i.e. the reaction)
that this new physics induces in a reference !CDM cosmology,
for which simulations are considerably cheaper. Key to the success
of our method is how this reference cosmology is defined, which
is what we will call the pseudo cosmology. Essentially, this is
a !CDM cosmology evolved with standard gravity up to a final
redshift zf, with the additional property that its linear clustering of
matter exactly matches that of the target real cosmology of interest
at zf. In other words, the cold dark matter and the cosmological
constant determine the expansion history and growth of structure of
the pseudo cosmology, but the initial conditions (see Section 4) are
adjusted so that

P
pseudo

L (k, zf ) = P real
L (k, zf ). (51)

The reaction function is then defined as the ratio of the non-linear
matter power spectrum in the real cosmology to that in the pseudo
cosmology,

R(k, z) ≡ P real(k, z)
P pseudo(k, z)

, (52)

and our corresponding halo model prediction takes the heuristic
form9

R(k, z) = [(1 − E)e−k/k⋆ + E]P real
L (k, z) + P real

1h (k, z)

P real
L (k, z) + P

pseudo
1h (k, z)

. (53)

Here, E ∼ 1 and k⋆ > 0 are parameters introduced to improve the
accuracy of the halo model reactions in modified gravity theories.
These are not free parameters, and we shall derive them using the
halo model and standard perturbation theory (SPT) below. However,
let us first examine the general behaviour of equation (53):

(i) On large linear scales R → 1 by definition;10

8Note that in Mead (2017) this is referred to as response. We use the term
reaction to distinguish it from the quantities studied in Neyrinck & Yang
(2013), Nishimichi, Bernardeau & Taruya (2016), or Barreira & Schmidt
(2017). Our and these other definitions are all conceptually analogous, in
the sense that they describe how the non-linear power spectrum responds
to changes in some feature, which in our case is physics beyond the
vanilla !CDM cosmology, e.g. fifth forces, evolving DE, massive neutrinos,
baryons etc.
9Note that we neglect the integral factor equation (50) in our two-halo terms.
We checked that setting I2(k) = 1 for all scales has no measurable impact
on our halo model reactions.
10This is not strictly true in the traditional halo model implementation we
adopt in this work. In fact, the one-halo terms have a constant tail in the
low-k limit (see equation 54) that dominates the two-halo contributions on
very large scales. In a consistent formulation of the halo model, however,
where mass and momentum conservation are enforced, this tail disappears

(ii) On small non-linear scales R ≈ P real
1h /P

pseudo
1h ;

(iii) Quasi-linear scales 0.01 ! k Mpc h−1 ! 0.1 are well de-
scribed by perturbation theory, while intermediate scales 0.1 !
k Mpc h−1 ! 1 are primarily controlled by the halo mass function
ratio nreal

vir /npseudo
vir .

Fixing the real and pseudo linear power spectra to be identical
(as in equation 51) forces the corresponding mass functions to be
somewhat similar. Therefore, owing to (iii), reaction functions can
overcome the typical inaccuracies that plague the halo model in the
transition region between large and small scales.

To assign a value to the boost/suppression term E , it is important
to realize that we would like to preserve the smoothness in the
transition from the linear to the non-linear regime. In turn, this is
tied to the shape of the one-halo terms on scales 0.5 ! k Mpc h−1 !
1, where the two-halo contribution becomes subdominant. In this
regime the one-halo terms are well approximated by their large-
scale limit P1h(k → 0), thus suggesting that

E(z) = P real
1h (k → 0, z)

P
pseudo
1h (k → 0, z)

(54)

is a good choice, one that only depends on the ratio nreal
vir /npseudo

vir .
In equation (53), the transition rate from linear to non-linear

scales is governed by the parameter k⋆:11 for k⋆ → 0 the halo model
reaction collapses to the ratio of one-halo terms; in the opposite
case, k⋆ → ∞, the parameter E loses any role, and the reaction
reduces to its definition in Mead (2017). We determine this scale
using SPT (Koyama et al. 2009; Brax & Valageas 2013; Bose &
Koyama 2016) by solving the equation

R(k0, z|k⋆) = P real
SPT(k0, z) + P real

1h (k0, z)

P
pseudo
SPT (k0, z) + P

pseudo
1h (k0, z)

, (55)

where

PSPT(k, z) = PL(k, z) + P22(k, z) + P13(k, z) + P #
13(k, z), (56)

and we set k0 = 0.06 h Mpc−1, which we found to be the largest
wavenumber that can both ensure reliable perturbative predictions
and keep the inaccuracies induced by the exponential sensitivity
to k⋆ under control (see Appendix B and Carlson, White &
Padmanabhan 2009). Expressions for the second order corrections
P22, P13, and P #

13 to the linear power spectrum are given in
Appendix B. Note that alternative perturbation schemes can also be
used in equation (55), such as the Lagrangian perturbation theory
for modified gravity recently developed in Aviles & Cervantes-Cota
(2017).

The role of the two-halo correction factor in equation (53)
becomes clear in the limiting case k⋆ → ∞, where it goes to
unity. Mead (2017) showed that this form of the reactions matches
smooth DE simulations at per cent level or better on scales k !
1 h Mpc−1for z = 0 (see also Section 5 below). On quasi-linear
scales this remarkable agreement can be understood in terms of
SPT. Schematically, the non-linear matter power spectrum is a non-
trivial function of the linear power spectrum obtained through some

leaving only the theoretically motivated two-halo term (Schmidt 2016). For
our purposes we can simply ignore this inconsistency, and restrict the use of
the reaction function to scales k > 0.01 h Mpc−1.
11As we shall see below, k⋆ is derived from perturbation theory and is
largely independent of the one-halo contribution. However, its specific value
should be interpreted with caution, in that equally good alternatives to the
exponential function in equation (53) can provide different solutions to
equation (55).
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1-loop SPT

captures the deviation from the LCDM reference on weakly non-linear scales, 
through the matching to 1-loop SPT at k0

Modified gravity (for instance) enters through the linear growth rate, 1-loop SPT, 
the halo mass function (spherical collapse for the critical and virial density contrasts)
and the halo profiles (concentration parameter).

2126 M. Cataneo et al.

To properly account for these correlations we need to know the
abundance of such haloes. For any redshift z, the halo mass function
provides the comoving number density of haloes of mass Mvir, and
it is defined as

nvir ≡ dn

d ln Mvir
= ρ̄m,0

Mvir
νf (ν)

d ln ν

d ln Mvir
, (40)

where the peak height ν ≡ δc/σ , and we adopt the Sheth–Tormen
(ST) multiplicity function (Sheth & Tormen 1999, 2002)

νf (ν) = A

√
2
π

qν2[1 + (qν2)−p] exp[−qν2/2]. (41)

Here, the normalization constant A is found imposing that all mass
in the Universe is confined into haloes, i.e.

∫
dνf(ν) = 1, and the

remaining parameters take the &CDM standard values q = 0.75 and
p = 0.3, unless stated otherwise. The variance of the linear density
field smoothed with a top-hat filter of comoving radius R enclosing
a mass M = 4πR3ρ̄m,0/3 is given by

σ 2(R, z) =
∫

d3k

(2π )3
|W̃ (kR)|2PL(k, z), (42)

where W̃ is the Fourier transform of the top-hat filter, and PL(k, z)
is the &CDM linear power spectrum. At this point it is worth
emphasizing that in some GR extensions, besides its usual depen-
dence on background cosmology and redshift, the spherical collapse
threshold δc can also vary with halo mass and environment (Li &
Efstathiou 2012; Li & Lam 2012; Lam & Li 2012; Lombriser et al.
2013, 2014). When appropriate we include both these dependencies
in our modelling by following the approach of Cataneo et al. (2016),
where the initial value of the environmental overdensity is derived
from the peak of the environment probability distribution.

Haloes are biased tracers of the underlying dark matter density
field, and at the linear level the halo and matter density fields
are connected by the relation δh = bLδ. Adopting the ST mass
function, the peak-background split formalism predicts the linear
halo bias7 (Sheth & Tormen 1999)

bL(Mvir) = 1 + qν2 − 1
δc

+ 2p

δc[1 + (qν2)p]
. (43)

The last piece of information required by the halo model is a
description of the matter distribution within haloes. We adopt
Navarro–Frenk–White (NFW) halo profiles (Navarro et al. 1996)

ρh(r) = ρs

r/rs(1 + r/rs)2
, (44)

where the scale radius rs is parametrized through the virial con-
centration cvir ≡ Rvir/rs, and the normalization ρs follows from the
virial mass as

ρs = Mvir

4πr3
s

[
ln(1 + cvir) − cvir

1 + cvir

]−1

. (45)

Inside the virial radius, and for all cosmological models studied
here, the NFW profiles are a good representation of the averaged
halo profiles measured in simulations (Schmidt et al. 2009; Schmidt
2009b; Zhao et al. 2011; Lombriser et al. 2012; Kwan et al. 2013;
Shi et al. 2015; Achitouv et al. 2016).

7Valogiannis & Bean (2019) recently found that in f(R) gravity the linear
halo bias contains an additional term accounting for the environmental de-
pendence, which we omit in equation (43). Given the relative unimportance
of the bias for our halo model reactions (see Sections 3.3 and 5), this choice
is, in effect, inconsequential for the accuracy of our predictions.

In &CDM, f(R) gravity and nDGP we model the c–M relation as
the power law

cvir(Mvir, z) = c0

1 + z

(
Mvir

M∗

)−α

, (46)

fixing c0 = 9 and α = 0.13 (Bullock et al. 2001), and M∗ is defined
by ν(M∗) = 1. In particular, for f(R) gravity M∗ depends itself on the
halo mass (Lombriser et al. 2014), which means the c–M relation
for these models is no longer described by a simple power law (Shi
et al. 2015). For the smooth DE models in Section 2.3 we correct
for the different expansion histories following Dolag et al. (2004),
that is

cvir → c0

1 + z

(
Mvir

M∗

)−α
gDE(z → ∞)
g&(z → ∞)

, (47)

where gX is the linear growth factor normalized to z = 0 (see Ap-
pendix B). This correction reflects that haloes collapse at different
times in cosmological models with different growth histories. In
cosmological models where haloes collapse earlier these haloes
will be more concentrated compared to the same mass haloes if
they form later. In Appendix C we demonstrate that our results are
insensitive to the correct shape of the c–M relation on scales k !
0.5 hMpc−1.

We can now predict the non-linear matter power spectrum, and
rewrite equation (39) as

P (k) = I 2(k)PL(k) + P1h(k), (48)

where, more explicitly,

P1h(k) =
∫

d ln Mvirnvir

(
Mvir

ρ̄m,0

)2

|u(k, Mvir)|2, (49)

I (k) =
∫

d ln Mvirnvir
Mvir

ρ̄m,0
u(k, Mvir)bL(Mvir). (50)

In the equations above, u(k, M) corresponds to the Fourier transform
of an NFW profile truncated at Rvir, normalized such that u(k →
0, M) → 1. Note that from equations (41) and (43) it follows that
limk → 0I(k) = 1.

3.3 Halo model reactions

The apparent simplicity and versatility of the halo model has con-
tributed to its widespread use as a method to predict the non-linear
matter power spectrum in diverse scenarios. Examples include the
&CDM cosmology (Peacock & Smith 2000; Seljak 2000; Giocoli
et al. 2010; Valageas & Nishimichi 2011; Valageas, Nishimichi &
Taruya 2013; Mohammed & Seljak 2014; Seljak & Vlah 2015; van
Daalen & Schaye 2015; Mead et al. 2015b; Schmidt 2016), DE and
modified gravity models (Schmidt et al. 2009, 2010; Li & Hu 2011;
Fedeli et al. 2012; Brax & Valageas 2013; Lombriser et al. 2014;
Barreira et al. 2014a, b; Achitouv et al. 2016; Mead et al. 2016; Hu
et al. 2018), massive neutrinos (Abazajian et al. 2005; Massara,
Villaescusa-Navarro & Viel 2014; Mead et al. 2016), baryonic
physics (Fedeli 2014; Fedeli et al. 2014; Mohammed & Seljak
2014; Mead et al. 2015b), alternatives to cold dark matter (Dunstan
et al. 2011; Schneider et al. 2012; Marsh 2016), and primordial
non-Gaussianity (Smith, Desjacques & Marian 2011). Its imperfect
underlying assumptions are however responsible for inaccuracies
that limit its applicability to future high-quality data (see e.g. fig. 1
in Massara et al. 2014), where per cent level accuracy is required
in order to obtain unbiased cosmological constraints (Huterer &
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To properly account for these correlations we need to know the
abundance of such haloes. For any redshift z, the halo mass function
provides the comoving number density of haloes of mass Mvir, and
it is defined as

nvir ≡ dn

d ln Mvir
= ρ̄m,0

Mvir
νf (ν)

d ln ν

d ln Mvir
, (40)

where the peak height ν ≡ δc/σ , and we adopt the Sheth–Tormen
(ST) multiplicity function (Sheth & Tormen 1999, 2002)

νf (ν) = A

√
2
π

qν2[1 + (qν2)−p] exp[−qν2/2]. (41)

Here, the normalization constant A is found imposing that all mass
in the Universe is confined into haloes, i.e.

∫
dνf(ν) = 1, and the

remaining parameters take the &CDM standard values q = 0.75 and
p = 0.3, unless stated otherwise. The variance of the linear density
field smoothed with a top-hat filter of comoving radius R enclosing
a mass M = 4πR3ρ̄m,0/3 is given by

σ 2(R, z) =
∫

d3k

(2π )3
|W̃ (kR)|2PL(k, z), (42)

where W̃ is the Fourier transform of the top-hat filter, and PL(k, z)
is the &CDM linear power spectrum. At this point it is worth
emphasizing that in some GR extensions, besides its usual depen-
dence on background cosmology and redshift, the spherical collapse
threshold δc can also vary with halo mass and environment (Li &
Efstathiou 2012; Li & Lam 2012; Lam & Li 2012; Lombriser et al.
2013, 2014). When appropriate we include both these dependencies
in our modelling by following the approach of Cataneo et al. (2016),
where the initial value of the environmental overdensity is derived
from the peak of the environment probability distribution.

Haloes are biased tracers of the underlying dark matter density
field, and at the linear level the halo and matter density fields
are connected by the relation δh = bLδ. Adopting the ST mass
function, the peak-background split formalism predicts the linear
halo bias7 (Sheth & Tormen 1999)

bL(Mvir) = 1 + qν2 − 1
δc

+ 2p

δc[1 + (qν2)p]
. (43)

The last piece of information required by the halo model is a
description of the matter distribution within haloes. We adopt
Navarro–Frenk–White (NFW) halo profiles (Navarro et al. 1996)

ρh(r) = ρs

r/rs(1 + r/rs)2
, (44)

where the scale radius rs is parametrized through the virial con-
centration cvir ≡ Rvir/rs, and the normalization ρs follows from the
virial mass as

ρs = Mvir

4πr3
s

[
ln(1 + cvir) − cvir

1 + cvir

]−1

. (45)

Inside the virial radius, and for all cosmological models studied
here, the NFW profiles are a good representation of the averaged
halo profiles measured in simulations (Schmidt et al. 2009; Schmidt
2009b; Zhao et al. 2011; Lombriser et al. 2012; Kwan et al. 2013;
Shi et al. 2015; Achitouv et al. 2016).

7Valogiannis & Bean (2019) recently found that in f(R) gravity the linear
halo bias contains an additional term accounting for the environmental de-
pendence, which we omit in equation (43). Given the relative unimportance
of the bias for our halo model reactions (see Sections 3.3 and 5), this choice
is, in effect, inconsequential for the accuracy of our predictions.

In &CDM, f(R) gravity and nDGP we model the c–M relation as
the power law

cvir(Mvir, z) = c0

1 + z

(
Mvir

M∗

)−α

, (46)

fixing c0 = 9 and α = 0.13 (Bullock et al. 2001), and M∗ is defined
by ν(M∗) = 1. In particular, for f(R) gravity M∗ depends itself on the
halo mass (Lombriser et al. 2014), which means the c–M relation
for these models is no longer described by a simple power law (Shi
et al. 2015). For the smooth DE models in Section 2.3 we correct
for the different expansion histories following Dolag et al. (2004),
that is

cvir → c0

1 + z

(
Mvir

M∗

)−α
gDE(z → ∞)
g&(z → ∞)

, (47)

where gX is the linear growth factor normalized to z = 0 (see Ap-
pendix B). This correction reflects that haloes collapse at different
times in cosmological models with different growth histories. In
cosmological models where haloes collapse earlier these haloes
will be more concentrated compared to the same mass haloes if
they form later. In Appendix C we demonstrate that our results are
insensitive to the correct shape of the c–M relation on scales k !
0.5 hMpc−1.

We can now predict the non-linear matter power spectrum, and
rewrite equation (39) as

P (k) = I 2(k)PL(k) + P1h(k), (48)

where, more explicitly,

P1h(k) =
∫

d ln Mvirnvir

(
Mvir

ρ̄m,0

)2

|u(k, Mvir)|2, (49)

I (k) =
∫

d ln Mvirnvir
Mvir

ρ̄m,0
u(k, Mvir)bL(Mvir). (50)

In the equations above, u(k, M) corresponds to the Fourier transform
of an NFW profile truncated at Rvir, normalized such that u(k →
0, M) → 1. Note that from equations (41) and (43) it follows that
limk → 0I(k) = 1.

3.3 Halo model reactions

The apparent simplicity and versatility of the halo model has con-
tributed to its widespread use as a method to predict the non-linear
matter power spectrum in diverse scenarios. Examples include the
&CDM cosmology (Peacock & Smith 2000; Seljak 2000; Giocoli
et al. 2010; Valageas & Nishimichi 2011; Valageas, Nishimichi &
Taruya 2013; Mohammed & Seljak 2014; Seljak & Vlah 2015; van
Daalen & Schaye 2015; Mead et al. 2015b; Schmidt 2016), DE and
modified gravity models (Schmidt et al. 2009, 2010; Li & Hu 2011;
Fedeli et al. 2012; Brax & Valageas 2013; Lombriser et al. 2014;
Barreira et al. 2014a, b; Achitouv et al. 2016; Mead et al. 2016; Hu
et al. 2018), massive neutrinos (Abazajian et al. 2005; Massara,
Villaescusa-Navarro & Viel 2014; Mead et al. 2016), baryonic
physics (Fedeli 2014; Fedeli et al. 2014; Mohammed & Seljak
2014; Mead et al. 2015b), alternatives to cold dark matter (Dunstan
et al. 2011; Schneider et al. 2012; Marsh 2016), and primordial
non-Gaussianity (Smith, Desjacques & Marian 2011). Its imperfect
underlying assumptions are however responsible for inaccuracies
that limit its applicability to future high-quality data (see e.g. fig. 1
in Massara et al. 2014), where per cent level accuracy is required
in order to obtain unbiased cosmological constraints (Huterer &
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To properly account for these correlations we need to know the
abundance of such haloes. For any redshift z, the halo mass function
provides the comoving number density of haloes of mass Mvir, and
it is defined as

nvir ≡ dn

d ln Mvir
= ρ̄m,0

Mvir
νf (ν)

d ln ν

d ln Mvir
, (40)

where the peak height ν ≡ δc/σ , and we adopt the Sheth–Tormen
(ST) multiplicity function (Sheth & Tormen 1999, 2002)

νf (ν) = A

√
2
π

qν2[1 + (qν2)−p] exp[−qν2/2]. (41)

Here, the normalization constant A is found imposing that all mass
in the Universe is confined into haloes, i.e.

∫
dνf(ν) = 1, and the

remaining parameters take the &CDM standard values q = 0.75 and
p = 0.3, unless stated otherwise. The variance of the linear density
field smoothed with a top-hat filter of comoving radius R enclosing
a mass M = 4πR3ρ̄m,0/3 is given by

σ 2(R, z) =
∫

d3k

(2π )3
|W̃ (kR)|2PL(k, z), (42)

where W̃ is the Fourier transform of the top-hat filter, and PL(k, z)
is the &CDM linear power spectrum. At this point it is worth
emphasizing that in some GR extensions, besides its usual depen-
dence on background cosmology and redshift, the spherical collapse
threshold δc can also vary with halo mass and environment (Li &
Efstathiou 2012; Li & Lam 2012; Lam & Li 2012; Lombriser et al.
2013, 2014). When appropriate we include both these dependencies
in our modelling by following the approach of Cataneo et al. (2016),
where the initial value of the environmental overdensity is derived
from the peak of the environment probability distribution.

Haloes are biased tracers of the underlying dark matter density
field, and at the linear level the halo and matter density fields
are connected by the relation δh = bLδ. Adopting the ST mass
function, the peak-background split formalism predicts the linear
halo bias7 (Sheth & Tormen 1999)

bL(Mvir) = 1 + qν2 − 1
δc

+ 2p

δc[1 + (qν2)p]
. (43)

The last piece of information required by the halo model is a
description of the matter distribution within haloes. We adopt
Navarro–Frenk–White (NFW) halo profiles (Navarro et al. 1996)

ρh(r) = ρs

r/rs(1 + r/rs)2
, (44)

where the scale radius rs is parametrized through the virial con-
centration cvir ≡ Rvir/rs, and the normalization ρs follows from the
virial mass as

ρs = Mvir

4πr3
s

[
ln(1 + cvir) − cvir

1 + cvir

]−1

. (45)

Inside the virial radius, and for all cosmological models studied
here, the NFW profiles are a good representation of the averaged
halo profiles measured in simulations (Schmidt et al. 2009; Schmidt
2009b; Zhao et al. 2011; Lombriser et al. 2012; Kwan et al. 2013;
Shi et al. 2015; Achitouv et al. 2016).

7Valogiannis & Bean (2019) recently found that in f(R) gravity the linear
halo bias contains an additional term accounting for the environmental de-
pendence, which we omit in equation (43). Given the relative unimportance
of the bias for our halo model reactions (see Sections 3.3 and 5), this choice
is, in effect, inconsequential for the accuracy of our predictions.

In &CDM, f(R) gravity and nDGP we model the c–M relation as
the power law

cvir(Mvir, z) = c0

1 + z

(
Mvir

M∗

)−α

, (46)

fixing c0 = 9 and α = 0.13 (Bullock et al. 2001), and M∗ is defined
by ν(M∗) = 1. In particular, for f(R) gravity M∗ depends itself on the
halo mass (Lombriser et al. 2014), which means the c–M relation
for these models is no longer described by a simple power law (Shi
et al. 2015). For the smooth DE models in Section 2.3 we correct
for the different expansion histories following Dolag et al. (2004),
that is

cvir → c0

1 + z

(
Mvir

M∗

)−α
gDE(z → ∞)
g&(z → ∞)

, (47)

where gX is the linear growth factor normalized to z = 0 (see Ap-
pendix B). This correction reflects that haloes collapse at different
times in cosmological models with different growth histories. In
cosmological models where haloes collapse earlier these haloes
will be more concentrated compared to the same mass haloes if
they form later. In Appendix C we demonstrate that our results are
insensitive to the correct shape of the c–M relation on scales k !
0.5 hMpc−1.

We can now predict the non-linear matter power spectrum, and
rewrite equation (39) as

P (k) = I 2(k)PL(k) + P1h(k), (48)

where, more explicitly,

P1h(k) =
∫

d ln Mvirnvir

(
Mvir

ρ̄m,0

)2

|u(k, Mvir)|2, (49)

I (k) =
∫

d ln Mvirnvir
Mvir

ρ̄m,0
u(k, Mvir)bL(Mvir). (50)

In the equations above, u(k, M) corresponds to the Fourier transform
of an NFW profile truncated at Rvir, normalized such that u(k →
0, M) → 1. Note that from equations (41) and (43) it follows that
limk → 0I(k) = 1.

3.3 Halo model reactions

The apparent simplicity and versatility of the halo model has con-
tributed to its widespread use as a method to predict the non-linear
matter power spectrum in diverse scenarios. Examples include the
&CDM cosmology (Peacock & Smith 2000; Seljak 2000; Giocoli
et al. 2010; Valageas & Nishimichi 2011; Valageas, Nishimichi &
Taruya 2013; Mohammed & Seljak 2014; Seljak & Vlah 2015; van
Daalen & Schaye 2015; Mead et al. 2015b; Schmidt 2016), DE and
modified gravity models (Schmidt et al. 2009, 2010; Li & Hu 2011;
Fedeli et al. 2012; Brax & Valageas 2013; Lombriser et al. 2014;
Barreira et al. 2014a, b; Achitouv et al. 2016; Mead et al. 2016; Hu
et al. 2018), massive neutrinos (Abazajian et al. 2005; Massara,
Villaescusa-Navarro & Viel 2014; Mead et al. 2016), baryonic
physics (Fedeli 2014; Fedeli et al. 2014; Mohammed & Seljak
2014; Mead et al. 2015b), alternatives to cold dark matter (Dunstan
et al. 2011; Schneider et al. 2012; Marsh 2016), and primordial
non-Gaussianity (Smith, Desjacques & Marian 2011). Its imperfect
underlying assumptions are however responsible for inaccuracies
that limit its applicability to future high-quality data (see e.g. fig. 1
in Massara et al. 2014), where per cent level accuracy is required
in order to obtain unbiased cosmological constraints (Huterer &
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Takada 2005; Eifler 2011; Hearin, Zentner & Ma 2012; Taylor,
Kitching & McEwen 2018a).

To mitigate these downsides one can add complexity to the model
at the expense of introducing new free parameters (see e.g. Seljak &
Vlah 2015), fitting the existing ones to the matter power spectrum
measured in simulations (see e.g. Mead et al. 2015b), or sensibly
increasing the computational costs by going beyond linear order in
perturbation theory (see e.g. Valageas & Nishimichi 2011). Here,
instead, we follow and extend the approach presented in Mead
(2017), which we shall refer to as halo model reactions.8

Our goal is to model the non-linear power spectrum of fairly
general extensions to the standard cosmology, a flat !CDM Uni-
verse with massless neutrinos. These cosmologies equipped with
beyond-!CDM physics are what we will call real cosmologies.
We use the halo model to determine the change (i.e. the reaction)
that this new physics induces in a reference !CDM cosmology,
for which simulations are considerably cheaper. Key to the success
of our method is how this reference cosmology is defined, which
is what we will call the pseudo cosmology. Essentially, this is
a !CDM cosmology evolved with standard gravity up to a final
redshift zf, with the additional property that its linear clustering of
matter exactly matches that of the target real cosmology of interest
at zf. In other words, the cold dark matter and the cosmological
constant determine the expansion history and growth of structure of
the pseudo cosmology, but the initial conditions (see Section 4) are
adjusted so that

P
pseudo

L (k, zf ) = P real
L (k, zf ). (51)

The reaction function is then defined as the ratio of the non-linear
matter power spectrum in the real cosmology to that in the pseudo
cosmology,

R(k, z) ≡ P real(k, z)
P pseudo(k, z)

, (52)

and our corresponding halo model prediction takes the heuristic
form9

R(k, z) = [(1 − E)e−k/k⋆ + E]P real
L (k, z) + P real

1h (k, z)

P real
L (k, z) + P

pseudo
1h (k, z)

. (53)

Here, E ∼ 1 and k⋆ > 0 are parameters introduced to improve the
accuracy of the halo model reactions in modified gravity theories.
These are not free parameters, and we shall derive them using the
halo model and standard perturbation theory (SPT) below. However,
let us first examine the general behaviour of equation (53):

(i) On large linear scales R → 1 by definition;10

8Note that in Mead (2017) this is referred to as response. We use the term
reaction to distinguish it from the quantities studied in Neyrinck & Yang
(2013), Nishimichi, Bernardeau & Taruya (2016), or Barreira & Schmidt
(2017). Our and these other definitions are all conceptually analogous, in
the sense that they describe how the non-linear power spectrum responds
to changes in some feature, which in our case is physics beyond the
vanilla !CDM cosmology, e.g. fifth forces, evolving DE, massive neutrinos,
baryons etc.
9Note that we neglect the integral factor equation (50) in our two-halo terms.
We checked that setting I2(k) = 1 for all scales has no measurable impact
on our halo model reactions.
10This is not strictly true in the traditional halo model implementation we
adopt in this work. In fact, the one-halo terms have a constant tail in the
low-k limit (see equation 54) that dominates the two-halo contributions on
very large scales. In a consistent formulation of the halo model, however,
where mass and momentum conservation are enforced, this tail disappears

(ii) On small non-linear scales R ≈ P real
1h /P

pseudo
1h ;

(iii) Quasi-linear scales 0.01 ! k Mpc h−1 ! 0.1 are well de-
scribed by perturbation theory, while intermediate scales 0.1 !
k Mpc h−1 ! 1 are primarily controlled by the halo mass function
ratio nreal

vir /npseudo
vir .

Fixing the real and pseudo linear power spectra to be identical
(as in equation 51) forces the corresponding mass functions to be
somewhat similar. Therefore, owing to (iii), reaction functions can
overcome the typical inaccuracies that plague the halo model in the
transition region between large and small scales.

To assign a value to the boost/suppression term E , it is important
to realize that we would like to preserve the smoothness in the
transition from the linear to the non-linear regime. In turn, this is
tied to the shape of the one-halo terms on scales 0.5 ! k Mpc h−1 !
1, where the two-halo contribution becomes subdominant. In this
regime the one-halo terms are well approximated by their large-
scale limit P1h(k → 0), thus suggesting that

E(z) = P real
1h (k → 0, z)

P
pseudo
1h (k → 0, z)

(54)

is a good choice, one that only depends on the ratio nreal
vir /npseudo

vir .
In equation (53), the transition rate from linear to non-linear

scales is governed by the parameter k⋆:11 for k⋆ → 0 the halo model
reaction collapses to the ratio of one-halo terms; in the opposite
case, k⋆ → ∞, the parameter E loses any role, and the reaction
reduces to its definition in Mead (2017). We determine this scale
using SPT (Koyama et al. 2009; Brax & Valageas 2013; Bose &
Koyama 2016) by solving the equation

R(k0, z|k⋆) = P real
SPT(k0, z) + P real

1h (k0, z)

P
pseudo
SPT (k0, z) + P

pseudo
1h (k0, z)

, (55)

where

PSPT(k, z) = PL(k, z) + P22(k, z) + P13(k, z) + P #
13(k, z), (56)

and we set k0 = 0.06 h Mpc−1, which we found to be the largest
wavenumber that can both ensure reliable perturbative predictions
and keep the inaccuracies induced by the exponential sensitivity
to k⋆ under control (see Appendix B and Carlson, White &
Padmanabhan 2009). Expressions for the second order corrections
P22, P13, and P #

13 to the linear power spectrum are given in
Appendix B. Note that alternative perturbation schemes can also be
used in equation (55), such as the Lagrangian perturbation theory
for modified gravity recently developed in Aviles & Cervantes-Cota
(2017).

The role of the two-halo correction factor in equation (53)
becomes clear in the limiting case k⋆ → ∞, where it goes to
unity. Mead (2017) showed that this form of the reactions matches
smooth DE simulations at per cent level or better on scales k !
1 h Mpc−1for z = 0 (see also Section 5 below). On quasi-linear
scales this remarkable agreement can be understood in terms of
SPT. Schematically, the non-linear matter power spectrum is a non-
trivial function of the linear power spectrum obtained through some

leaving only the theoretically motivated two-halo term (Schmidt 2016). For
our purposes we can simply ignore this inconsistency, and restrict the use of
the reaction function to scales k > 0.01 h Mpc−1.
11As we shall see below, k⋆ is derived from perturbation theory and is
largely independent of the one-halo contribution. However, its specific value
should be interpreted with caution, in that equally good alternatives to the
exponential function in equation (53) can provide different solutions to
equation (55).
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Figure 3. Matter power spectrum fractional enhancements relative to GR for f(R) gravity with |f̄R0| = 10−5. As in the previous figures, the data points
correspond to the results from simulations at z = 0 (blue squares) and z = 1 (red triangles). Coloured lines denote predictions based on the halo model reactions
at z = 0 (dashed blue) and z = 1 (dot–dashed red). To emphasize the impact of non-linearities we include the linear theory predictions as dashed grey lines.

Lower panels show the fractional deviation of the non-linear predictions from the simulations, ! ≡
(
R × P

Sim/HMcode
Pseudo /P

Sim/HMcode
GR

)
/
(
P Sim

Real/P
Sim
GR

)
− 1,

with grey bands marking 1 per cent and 2 per cent uncertainty regions. Left: for our theoretical estimates we use pseudo cosmology matter power spectra
measured from simulations as the baseline, which we then rescale with the halo model reactions employing the Cataneo et al. (2016) halo mass functions. The
lower panel illustrates that with future codes, eventually capable of reaching per cent-level accuracy on the matter power spectra for the "CDM-evolved pseudo
cosmologies, high-accuracy non-linear matter power spectra in modified gravity will also be accessible. Right: same as left-hand panel with the difference
that the pseudo cosmology matter power spectra computed with HMCODE are now adopted as the baseline. This implies that applying our halo model reaction
methodology to baseline "CDM predictions from existing codes we can achieve !2 per cent precision on scales k ! 1 h Mpc−1.

Figure 4. Same as Fig. 3 with the background field amplitude set to |f̄R0| = 10−6.

can be predicted within 2 per cent over the range of scales relevant
for this work.

5.3 Dark energy

Fig. 9 shows the reaction functions for the evolving DE cosmologies
listed in Table 1. The left-hand panel contains essentially the

same z = 0 information of Fig. 2 in Mead (2017), with the
notable difference that here we compute the spherical collapse virial
overdensities including the DE contribution to the potential energy,
and do not assume energy conservation during collapse (Schmidt
et al. 2010) (expressions for the individual terms entering the
virial theorem can be found in Appendix A). The right-hand panel
shows the same quantity at z = 1. At both redshifts the halo
model reactions based on the standard ST mass function fits can
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Modified gravity:  f(R) |fR0 | = 10�5

relative deviation from LCDM

relative deviation from simulations

using simulations for 
the reference P(k)

using Halo Model for 
the reference P(k)

1% accuracy up to k ~ 1 h/Mpc

fast, no need for many PT or complicated integrals (only 1-loop SPT at 1 wavenumber)

Cataneo et al. (2019)



Bose et al. (2021)massive neutrinos:

2 B. Bose et al.

clid Amendola et al. (2018); Blanchard et al. (2020), DESI Levi et al.
(2019), Nancy Grace Roman Space Telescope Akeson et al. (2019),
Vera Rubin Observatory LSST Dark Energy Science Collaboration
(2012)) which enable the detection of even the tiniest deviations to
the standard model. This all hinges on our ability to theoretically
model the key observables at these scales, including deviations to the
standard model, at the percent level (Taylor et al. 2018).

The key quantity of interest when considering LSS observations is
the 2-point correlation function, or power spectrum in Fourier space,
of the cosmological matter density field. This quantity is sensitive at
non-linear scales to a host of physical e�ects which add new layers of
complexity on top of the gravitational and cosmological modelling.
In particular, the e�ects of a non-zero neutrino mass have been shown
to be significant at the scales of interest (Bird et al. 2018, 2012; Blas
et al. 2014; Mead et al. 2016a; Lawrence et al. 2017; Tram et al.
2019; Massara et al. 2014; Angulo et al. 2020). Further, baryonic
processes also begin to play a role the further we go into the non-
linear regime (e.g., van Daalen et al. 2011; Mummery et al. 2017;
Springel et al. 2018; van Daalen et al. 2020; for a review see Chisari
et al. 2019). If we do not account for these e�ects, we will not be
able to reliably use the precise non-linear information coming from
future surveys. For example, using these scales without accounting
for phenomena such as baryonic feedback has been shown to produce
biased estimates of cosmological parameters in the context of surveys
like Euclid (Semboloni et al. 2011; Schneider et al. 2020a; Martinelli
et al. 2020). Therefore, there is a pressing need for good theoretical
models of these e�ects to be integrated in accurate frameworks for
the matter power spectrum in beyond-⇤CDM cosmologies.

Recently, a framework called the halo model reaction was pro-
posed (Cataneo et al. 2019) which o�ered a means of calculating
the non-linear matter power spectrum at percent level accuracy in
models beyond ⇤CDM. A subsequent code called ReACT (Bose et al.
2020) was developed, providing a means to e�ciently compute the
halo model reaction, making the framework viable for statistical data
analyses, with a first application to constrain modified gravity using
weak lensing data being made in Tröster et al. (2020). Moreover, in
Cataneo et al. (2020), the halo model reaction was developed for mas-
sive neutrino cosmologies, assuming GR and a constant dark energy.
With respect to baryonic e�ects, a number of modelling approaches
have been developed which are based on parametrising feedback pro-
cesses and then fitting to hydrodynamical simulations (Mead et al.
2021; Schneider et al. 2020a,b; Aricò et al. 2020). These promis-
ing prescriptions are yet to be integrated and tested against #-body
simulations that include multiple physical e�ects simultaneously.

In this paper, we present an extension to the framework of Cata-
neo et al. (2019) (C19) to include the e�ects of massive neutrinos
as modelled in Cataneo et al. (2020), i.e. consistently combining
the beyond-⇤CDM and massive neutrino halo model reactions. We
also include these extensions in ReACT1, making fast and accurate
predictions for the non-linear power spectrum in beyond-⇤CDM cos-
mologies including massive neutrinos. We test the modelling against
#-body simulations in 5 (') gravity and against the recently de-
veloped Bacco emulator (Angulo et al. 2020) and EuclidEmulator2
(Euclid Collaboration et al. 2020) for evolving dark energy cosmolo-
gies with massive neutrinos (aFCDM). Finally, we also check the
accuracy of ReACT combined with the baryonic feedback fit of Mead
et al. (2021) against hydrodynamical simulations that include both

1 Download ReACT with massive neutrinos: https://github.com/
nebblu/ReACT/tree/react_with_neutrinos

massive neutrino e�ects in standard (a⇤CDM) and evolving dark
energy cosmologies.

This paper is organised as follows: In section 2 we present the halo
model reaction framework used to compute general modifications
to ⇤CDM non-linear power spectra with the inclusion of massive
neutrinos. In section 3 we assess the halo model reaction’s accuracy
through #-body simulations, state-of-the-art emulators and hydro-
dynamical simulation comparisons. In section 4 we summarise our
results and conclude.

2 EXTENDED HALO MODEL REACTION

Our goal is to precisely model the non-linear power spectrum in
cosmologies that include both massive neutrinos and modifications
to⇤CDM. To do this we combine the halo model reaction for beyond-
⇤CDM cosmologies (Cataneo et al. 2019) with that for massive
neutrinos (Cataneo et al. 2020).

The non-linear power spectrum, %NL, according to these prescrip-
tions is the product of two key quantities

%NL (: , I) = R(: , I)%pseudo
NL (: , I) , (1)

with R(: , I) being the halo model reaction and %pseudo
NL (: , I) the

non-linear pseudo power spectrum. The pseudo power spectrum de-
scribes a cosmology where the non-linear physics are governed by
the ⇤CDM model but whose linear clustering at the target redshift is
tuned to match that of the ‘real’, modified cosmology.

2.1 The halo model reaction: R

The halo model reaction R then provides the non-linear corrections
to the pseudo power spectrum coming from a non-zero neutrino mass
and modifications to dark energy or gravity. At its core, the halo model
reaction is a ratio of halo model quantities - the real cosmology halo
model prediction to the pseudo halo model prediction. Note that the
benefit of using the pseudo cosmology as a reference is because
this ensures the mass functions in both real and pseudo cosmologies
(which have the same linear clustering) are similar. This allows a
smoother transition between 2- and 1-halo terms. This was one of
the issues in the standard halo model prescriptions (Cooray & Sheth
2002; Cacciato et al. 2009; Giocoli et al. 2010).

The reaction is given by

R(:) =
(1 � 5a)2 % (cb)

HM (:) + 2 5a (1 � 5a) % (cba)
HM (:) + 5 2

a %
(a)
L (:)

% (m)
L (:) + %pseudo

1h (:)
,

(2)

with (m) ⌘ (cb + a), cb standing for CDM plus baryons and a
standing for massive neutrinos. The components of the reaction are
given by

% (cba)
HM (:) ⇡

q
% (cb)

HM (:)% (a)
L (:) , (3)

% (cb)
HM (:) =

h
(1 � E)4�:/:¢ + E

i
% (cb)

L (:) + % (cb)
1h (:) . (4)

Here we have added in the scale :¢ and boost/suppression factor
E that have been shown to help the transition between 1- and 2-
halo regimes in modified gravity theories. The linear spectra for
CDM and baryons (% (cb)

L ), massive neutrinos (% (a)
L ) and total matter

(% (m)
L ) are provided by MGCAMB (Zucca et al. 2019; Hojjati et al. 2011;
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Figure 1. Comparison of theoretical predictions to DUSTGRAIN-pathfinder
measurements in 5 (') + "a (case (a) in main text) with | 5R0 | = 10�6 and
"a = 0.1eV. We compare the ratio of the 5 (') + "a % (:) to the ⇤CDM
% (:) , in the two cases. Top is I = 0 and bottom is I = 1. We show linear
(red dotted), HMCode2020 pseudo (green dashed) and HMCode2020 pseudo
with reaction (green solid) predictions.

Figure 2. Comparison of theoretical predictions to DUSTGRAIN-pathfinder
measurements in 5 (') + "a (case (b) in main text) with | 5R0 | = 10�5 and
"a = 0.1eV. We compare the ratio of the 5 (') + "a % (:) to the ⇤CDM
% (:) , in the two cases. Top is I = 0 and bottom is I = 1. We show linear
(red dotted), HMCode2020 pseudo (green dashed) and HMCode2020 pseudo
with reaction (green solid) predictions.

Figure 3. Comparison of theoretical predictions to DUSTGRAIN-pathfinder
measurements in 5 (') + "a (case (c) in main text) with | 5R0 | = 10�5 and
"a = 0.15eV. We compare the ratio of the 5 (') + "a % (:) to the ⇤CDM
% (:) , in the two cases. Top is I = 0 and bottom is I = 1. We show linear
(red dotted), HMCode2020 pseudo (green dashed) and HMCode2020 pseudo
with reaction (green solid) predictions.

(a) A constant dark energy case (a⇤CDM) characterised by {F0,F0} =
{�1, 0} with �B = 2.39 ⇥ 10�9 and ⌦a = 0.0053 ("a = 0.24eV,
⌦cdm = 0.2277).

(b) A low neutrino mass evolving dark energy case (low-aFCDM)
{F0,F0} = {�0.9, 0.1} with �B = 2.45 ⇥ 10�9 and ⌦a = 0.0022
("a = 0.1eV, ⌦cdm = 0.2308).

(c) A high neutrino mass evolving dark energy case (high-aFCDM)
{F0,F0} = {�0.9, 0.1} with �B = 2.45 ⇥ 10�9 and ⌦a = 0.0053
("a = 0.24eV, ⌦cdm = 0.2277).

We compare the emulator predictions with the Halofit fitting formula
(Takahashi et al. 2012) and with Equation 1 (HMCode2020 combined
with the halo model reaction given in Equation 2). Since EuclidEm-
ulator2 only supports "a  0.1eV, we only show these comparisons
for case (b).

In Figure 4 we show the ratio of matter power spectra from our
theoretical predictions to the Bacco emulator prediction, for case (a),
the a⇤CDM cosmology. At I = 0 Halofit is up to 5% discrepant with
Bacco and also fails to smear the oscillatory features characterising
the baryon acoustic oscillations, both of which were noted in Angulo
et al. (2020) and Knabenhans et al. (2019). HMCode2020 combined
with the halo model reaction on the other hand stays within 3% of
the Bacco predictions down to : = 3⌘/Mpc. At I = 1 all predictions
remain within 2% agreement with Bacco down to : = 5⌘/Mpc, with
Equation 1 doing the best overall.

In Figure 5 we show the comparisons for case (b), the low-aFCDM
cosmology. Here we also include the EuclidEmulator2 predictions as
dotted black lines. We find that HMCode2020 combined with the halo
model reaction is again within 2% of the Bacco predictions down
to : = 3⌘/Mpc, but notably is within 1% of the EuclidEmulator2
down to : = 5⌘/Mpc at both redshifts. The Halofit formula is again
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only very weakly dependent on cosmology (primarily through the
universal baryon fraction, ⌦1/⌦<), such that recalibration of the
feedback is generally unnecessary when varying cosmology. Indeed,
for the a⇤CDM and aFCDM simulations we use here, the feedback
prescription was left unchanged from the fiducial BAHAMAS run
but it was verified that the relative impact of the power spectrum (or
the predicted baryon fractions) did not change by more than about a
percent. Finally, we note that van Daalen et al. (2020) have demon-
strated that on very large scales (where the impact of baryons is
expected to be unimportant) the ratio of the hydro simulations to
their dissipationless counterparts converges to typically better than
0.1% accuracy, which might be viewed as the numerical accuracy of
the predicted (relative) power spectra.

3.2.1 a⇤CDM

We consider the WMAP9 cosmology of this suite which adopts the
baseline parameters ⌘ = 0.7, =B = 0.972, ⌦< = 0.2793, ⌦1 =
0.0463 and �B = 2.392 ⇥ 10�9. We consider 3 massive neutrino
cases:

(a) Low mass: "a = 0.06eV (⌦a = 0.0013, ⌦cdm = 0.2317).
(b) Medium mass: "a = 0.24eV (⌦a = 0.0053, ⌦cdm = 0.2277).
(c) High mass: "a = 0.48eV (⌦a = 0.0105, ⌦cdm = 0.2225).

We again show the ratio of the quantity %mnu+b (:)/%⇤CDM, where
‘mnu+b’ stands for the massive neutrino cosmology with baryonic
e�ects, between the theoretical predictions and the simulation mea-
surements6. This is shown for cases (a), (b) and (c) in Figure 7,
Figure 8 and Figure 9 respectively. For all cases we find that the halo
model reaction combined with HMCode2020 is  3% accurate for
:  5⌘/Mpc for I = 0 and I = 1, with the predictions generally
being more accurate for lower neutrino mass and I = 0.

We note that the feedback model of HMCode2020 is fit to the
BAHAMAS simulations and so the high degree of accuracy is not
surprising. These results further confirm the halo model analysis
results of Mead et al. (2016b) which show a high degree of inde-
pendence between massive neutrino and baryonic e�ects down to
: = 10⌘/Mpc.

Again, we also note the tilt (and non-unity ratio) observed in
the comparisons at large scales are likely due to relativistic e�ects
included in the linear power spectrum produced by MGCAMB, as also
noted in the DUSTGRAIN-pathfinder simulation comparisons.

3.2.2 aFCDM

We will make use of three simulations from this suite, all of which
have =B = 0.97 and a neutrino mass of "a = 0.06eV. The other
cosmological parameters are detailed below:

(a) Non-phantom:⌦< = 0.286,⌦1 = 0.0462, �0 = 69.97,f8 = 0.819
and {F0,F0} = {�0.67,�1.45}.

(b) Phantom: ⌦< = 0.309, ⌦1 = 0.0501, �0 = 67.25, f8 = 0.773 and
{F0,F0} = {�1.16, 0.73}.

(c) a⇤CDM: ⌦< = 0.294, ⌦1 = 0.0476, �0 = 68.98 and f8 = 0.802
(dark matter only).

In this subsection the theoretical predictions for cases (a) and (b)
follow Equation 1 with R including both evolving dark energy and

6 The %⇤CDM quantity includes no baryonic e�ects i.e. the simulation mea-
surement is from a dark matter-only simulation as opposed to cases (a), (b)
and (c) which are all made from hydrodynamical simulations.

Figure 7. Comparison of theoretical predictions to BAHAMAS measure-
ments in a⇤CDM (case (a) in main text) with "a = 0.06eV. We compare
the ratio of the a⇤CDM % (:) to the ⇤CDM % (:) , in the two cases. Top
is I = 0 and bottom is I = 1. We show linear (red dotted), HMCode2020
pseudo (green dashed) and HMCode2020 pseudo with reaction (green solid)
predictions.

Figure 8. Comparison of theoretical predictions to BAHAMAS measure-
ments in a⇤CDM (case (b) in main text) with "a = 0.24eV. We compare
the ratio of the a⇤CDM % (:) to the ⇤CDM % (:) , in the two cases. Top
is I = 0 and bottom is I = 1. We show linear (red dotted), HMCode2020
pseudo (green dashed) and HMCode2020 pseudo with reaction (green solid)
predictions.
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neutrinos + bayonic feedback:

baryonic feedback is included in the reference pseudo spectrum, obtained from simulations 
or from a halo model (fitted to LCDM hydro simulations) 

3% accuracy up to k ~ 5 h/Mpc

Bose et al. (2021)

baryonic feedback can be considered independently of massive 
neutrinos or modified gravity (its relative impact does not depend much 
on cosmology): the feedback parameters are kept as in LCDM.
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Table 4. Best-fitting parameter values for our 6-parameter feedback model that match the data from BAHAMAS and COSMO-OWLS hydrodynamical simulations.
The exact cosmological parameters of each simulation can be found in table 2 of van Daalen et al. (2020). For the WMAP 9 simulations with neutrinos the
value of σ 8 decreases as the neutrino mass increases. For the Planck 2015 simulations with neutrinos all cosmological parameters change as the neutrino mass
changes such that the Planck CMB data remain well fitted.

Simulation suite Feedback log10(TAGN/ K) Cosmology Mν/ eV B0 Bz f∗, 0/10−2 f∗, z log10(Mb,0/ h−1 M⊙) Mb, z

BAHAMAS AGN 7.6 WMAP 9 0 3.55 − 0.060 2.06 0.40 13.52 − 0.13
BAHAMAS AGN 7.8 WMAP 9 0 3.41 − 0.066 2.03 0.41 13.84 − 0.14
BAHAMAS AGN 8.0 WMAP 9 0 3.37 − 0.075 1.94 0.41 14.24 − 0.05

BAHAMAS AGN 7.8 Planck 2013 0 3.55 − 0.066 1.85 0.42 13.78 − 0.16

BAHAMAS AGN 7.8 WMAP 9 0.06 3.41 − 0.065 2.09 0.41 13.84 − 0.13
BAHAMAS AGN 7.8 WMAP 9 0.12 3.42 − 0.071 2.09 0.42 13.88 − 0.16
BAHAMAS AGN 7.8 WMAP 9 0.24 3.36 − 0.069 2.30 0.40 13.86 − 0.14
BAHAMAS AGN 7.8 WMAP 9 0.48 3.28 − 0.071 2.65 0.39 13.86 − 0.10

BAHAMAS AGN 7.8 Planck 2015 0.06 3.45 − 0.057 2.03 0.40 13.82 − 0.13
BAHAMAS AGN 7.8 Planck 2015 0.12 3.44 − 0.058 2.07 0.40 13.83 − 0.14
BAHAMAS AGN 7.8 Planck 2015 0.24 3.41 − 0.058 2.20 0.40 13.84 − 0.12
BAHAMAS AGN 7.8 Planck 2015 0.48 3.37 − 0.065 2.54 0.40 13.84 − 0.10

COSMO-OWLS AGN 8.0 WMAP 7 0 3.13 − 0.046 2.26 0.40 13.56 − 0.09
COSMO-OWLS AGN 8.5 WMAP 7 0 3.19 − 0.055 2.03 0.40 14.28 − 0.11
COSMO-OWLS AGN 8.7 WMAP 7 0 3.22 − 0.057 1.77 0.40 14.83 0.57

COSMO-OWLS AGN 8.0 Planck 2013 0 3.23 − 0.039 2.07 0.40 13.53 − 0.09
COSMO-OWLS AGN 8.5 Planck 2013 0 3.30 − 0.046 1.88 0.40 14.26 − 0.13
COSMO-OWLS AGN 8.7 Planck 2013 0 3.38 − 0.056 1.58 0.42 14.79 0.29

COSMO-OWLS NO-COOL – WMAP 7 0 4.22 0.015 0.00 0.00 12.39 − 0.15
COSMO-OWLS REF – WMAP 7 0 3.79 − 0.007 3.92 0.27 13.20 − 0.41

to fit these simulations demonstrates some level of robustness. We
see some obvious trends in our best-fitting parameters, particularly
with the AGN ‘strength’, which is governed in the simulations
by the sub-grid heating parameter TAGN – this is not a physical
parameter that could be measured in the Universe. As feedback
strength is increased Mb increases, which makes physical sense as
more violent feedback expels more gas from the haloes. We also
see a decrease in the star fraction, f∗, as TAGN increases, which
indicates that star formation is being suppressed by AGN feedback.
Surprisingly, we see a preference for f∗ to increase with z in all
AGN feedback models, which taken literally would suggest that halo
star fractions were higher in the past. This might be possible, if star
formation peaked at higher redshifts and then shut off. However,
this trend was not seen in Mead et al. (2020), which suggests that
the relatively simplicity of the modelling presented here means that
f∗ is capturing physics not associated directly with stars. In all
simulations with AGN we see a preference for a decrease in the
concentration–mass parameter B away from the standard value of 4.
However, in BAHAMAS, B decreases with feedback strength while in
COSMO-OWLS B increases. This difference may be due to the different
hydrodynamical implementations between the two simulation suites,
or it may point to a more complicated relationship between feedback
strength and the backreaction effect on the halo concentration. It
may also be due to our model being overly simplistic since we
take B and f∗ to be independent of halo mass or because we do
not attempt to explicitly model the bound or ejected gas profiles.
In general, the feedback in COSMO-OWLS has a stronger impact on
the power spectrum than that in BAHAMAS, and it is possible that
there is a non-monotonic relationship between the feedback strength
and the effect on B. As shown in McCarthy et al. (2018), the power
spectrum response to feedback when the neutrino mass is varied is
quite minimal. This is reflected in the relatively similar best-fitting
model parameters, particularly for the Planck 2015 case where the

Table 5. Values for our single-parameter baryonic feedback model as a
function of the sub-grid heating temperature in the BAHAMAS feedback
models. In the formulae below θ = log10(TAGN/107.8 K). In equation (24)
β = 2 has been fixed. Parameter X(z) is constructed from X0 and Xz as
X(z) = X0 × 10zXz .

Parameter Equation BAHAMAS formula

B0 20 3.44–0.496θ

Bz 20 −0.0671–0.0371θ

f∗, 0/10−2 25 2.01–0.30θ

f∗, z 25 0.409+0.0224θ

log10(Mb,0/ h−1 M⊙) 24 13.87+1.81θ

Mb, z 24 −0.108+0.195θ

other cosmological parameters are all adjusted to be best fitting for the
Planck data, which preserves the linear spectrum shape and therefore
the feedback response.

6.3 Single-parameter model

It may be preferable to have a less general, but single-parameter,
model for baryonic feedback. Since degeneracies may exist between
the 6 parameters of our model, top-hat priors may not represent the
true uncertainty, while also slowing down MCMC analyses. Based
on the BAHAMAS best-fitting parameters in Table 4 we see roughly
linear trends between parameters and the feedback temperature.
We therefore propose the model detailed in Table 5, where all
6 feedback parameters have been linearly fitted as functions of
log10(TAGN/K) for the BAHAMAS simulations. Given our modelling it
is not possible to have a single-parameter model that works for both
COSMO-OWLS and BAHAMAS since we observe the opposite trend in
the mass–concentration parameter B with TAGN in each case. We
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Table 4. Best-fitting parameter values for our 6-parameter feedback model that match the data from BAHAMAS and COSMO-OWLS hydrodynamical simulations.
The exact cosmological parameters of each simulation can be found in table 2 of van Daalen et al. (2020). For the WMAP 9 simulations with neutrinos the
value of σ 8 decreases as the neutrino mass increases. For the Planck 2015 simulations with neutrinos all cosmological parameters change as the neutrino mass
changes such that the Planck CMB data remain well fitted.

Simulation suite Feedback log10(TAGN/ K) Cosmology Mν/ eV B0 Bz f∗, 0/10−2 f∗, z log10(Mb,0/ h−1 M⊙) Mb, z

BAHAMAS AGN 7.6 WMAP 9 0 3.55 − 0.060 2.06 0.40 13.52 − 0.13
BAHAMAS AGN 7.8 WMAP 9 0 3.41 − 0.066 2.03 0.41 13.84 − 0.14
BAHAMAS AGN 8.0 WMAP 9 0 3.37 − 0.075 1.94 0.41 14.24 − 0.05

BAHAMAS AGN 7.8 Planck 2013 0 3.55 − 0.066 1.85 0.42 13.78 − 0.16

BAHAMAS AGN 7.8 WMAP 9 0.06 3.41 − 0.065 2.09 0.41 13.84 − 0.13
BAHAMAS AGN 7.8 WMAP 9 0.12 3.42 − 0.071 2.09 0.42 13.88 − 0.16
BAHAMAS AGN 7.8 WMAP 9 0.24 3.36 − 0.069 2.30 0.40 13.86 − 0.14
BAHAMAS AGN 7.8 WMAP 9 0.48 3.28 − 0.071 2.65 0.39 13.86 − 0.10

BAHAMAS AGN 7.8 Planck 2015 0.06 3.45 − 0.057 2.03 0.40 13.82 − 0.13
BAHAMAS AGN 7.8 Planck 2015 0.12 3.44 − 0.058 2.07 0.40 13.83 − 0.14
BAHAMAS AGN 7.8 Planck 2015 0.24 3.41 − 0.058 2.20 0.40 13.84 − 0.12
BAHAMAS AGN 7.8 Planck 2015 0.48 3.37 − 0.065 2.54 0.40 13.84 − 0.10

COSMO-OWLS AGN 8.0 WMAP 7 0 3.13 − 0.046 2.26 0.40 13.56 − 0.09
COSMO-OWLS AGN 8.5 WMAP 7 0 3.19 − 0.055 2.03 0.40 14.28 − 0.11
COSMO-OWLS AGN 8.7 WMAP 7 0 3.22 − 0.057 1.77 0.40 14.83 0.57

COSMO-OWLS AGN 8.0 Planck 2013 0 3.23 − 0.039 2.07 0.40 13.53 − 0.09
COSMO-OWLS AGN 8.5 Planck 2013 0 3.30 − 0.046 1.88 0.40 14.26 − 0.13
COSMO-OWLS AGN 8.7 Planck 2013 0 3.38 − 0.056 1.58 0.42 14.79 0.29

COSMO-OWLS NO-COOL – WMAP 7 0 4.22 0.015 0.00 0.00 12.39 − 0.15
COSMO-OWLS REF – WMAP 7 0 3.79 − 0.007 3.92 0.27 13.20 − 0.41

to fit these simulations demonstrates some level of robustness. We
see some obvious trends in our best-fitting parameters, particularly
with the AGN ‘strength’, which is governed in the simulations
by the sub-grid heating parameter TAGN – this is not a physical
parameter that could be measured in the Universe. As feedback
strength is increased Mb increases, which makes physical sense as
more violent feedback expels more gas from the haloes. We also
see a decrease in the star fraction, f∗, as TAGN increases, which
indicates that star formation is being suppressed by AGN feedback.
Surprisingly, we see a preference for f∗ to increase with z in all
AGN feedback models, which taken literally would suggest that halo
star fractions were higher in the past. This might be possible, if star
formation peaked at higher redshifts and then shut off. However,
this trend was not seen in Mead et al. (2020), which suggests that
the relatively simplicity of the modelling presented here means that
f∗ is capturing physics not associated directly with stars. In all
simulations with AGN we see a preference for a decrease in the
concentration–mass parameter B away from the standard value of 4.
However, in BAHAMAS, B decreases with feedback strength while in
COSMO-OWLS B increases. This difference may be due to the different
hydrodynamical implementations between the two simulation suites,
or it may point to a more complicated relationship between feedback
strength and the backreaction effect on the halo concentration. It
may also be due to our model being overly simplistic since we
take B and f∗ to be independent of halo mass or because we do
not attempt to explicitly model the bound or ejected gas profiles.
In general, the feedback in COSMO-OWLS has a stronger impact on
the power spectrum than that in BAHAMAS, and it is possible that
there is a non-monotonic relationship between the feedback strength
and the effect on B. As shown in McCarthy et al. (2018), the power
spectrum response to feedback when the neutrino mass is varied is
quite minimal. This is reflected in the relatively similar best-fitting
model parameters, particularly for the Planck 2015 case where the

Table 5. Values for our single-parameter baryonic feedback model as a
function of the sub-grid heating temperature in the BAHAMAS feedback
models. In the formulae below θ = log10(TAGN/107.8 K). In equation (24)
β = 2 has been fixed. Parameter X(z) is constructed from X0 and Xz as
X(z) = X0 × 10zXz .

Parameter Equation BAHAMAS formula

B0 20 3.44–0.496θ

Bz 20 −0.0671–0.0371θ

f∗, 0/10−2 25 2.01–0.30θ

f∗, z 25 0.409+0.0224θ

log10(Mb,0/ h−1 M⊙) 24 13.87+1.81θ

Mb, z 24 −0.108+0.195θ

other cosmological parameters are all adjusted to be best fitting for the
Planck data, which preserves the linear spectrum shape and therefore
the feedback response.

6.3 Single-parameter model

It may be preferable to have a less general, but single-parameter,
model for baryonic feedback. Since degeneracies may exist between
the 6 parameters of our model, top-hat priors may not represent the
true uncertainty, while also slowing down MCMC analyses. Based
on the BAHAMAS best-fitting parameters in Table 4 we see roughly
linear trends between parameters and the feedback temperature.
We therefore propose the model detailed in Table 5, where all
6 feedback parameters have been linearly fitted as functions of
log10(TAGN/K) for the BAHAMAS simulations. Given our modelling it
is not possible to have a single-parameter model that works for both
COSMO-OWLS and BAHAMAS since we observe the opposite trend in
the mass–concentration parameter B with TAGN in each case. We
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Table 4. Best-fitting parameter values for our 6-parameter feedback model that match the data from BAHAMAS and COSMO-OWLS hydrodynamical simulations.
The exact cosmological parameters of each simulation can be found in table 2 of van Daalen et al. (2020). For the WMAP 9 simulations with neutrinos the
value of σ 8 decreases as the neutrino mass increases. For the Planck 2015 simulations with neutrinos all cosmological parameters change as the neutrino mass
changes such that the Planck CMB data remain well fitted.

Simulation suite Feedback log10(TAGN/ K) Cosmology Mν/ eV B0 Bz f∗, 0/10−2 f∗, z log10(Mb,0/ h−1 M⊙) Mb, z

BAHAMAS AGN 7.6 WMAP 9 0 3.55 − 0.060 2.06 0.40 13.52 − 0.13
BAHAMAS AGN 7.8 WMAP 9 0 3.41 − 0.066 2.03 0.41 13.84 − 0.14
BAHAMAS AGN 8.0 WMAP 9 0 3.37 − 0.075 1.94 0.41 14.24 − 0.05

BAHAMAS AGN 7.8 Planck 2013 0 3.55 − 0.066 1.85 0.42 13.78 − 0.16

BAHAMAS AGN 7.8 WMAP 9 0.06 3.41 − 0.065 2.09 0.41 13.84 − 0.13
BAHAMAS AGN 7.8 WMAP 9 0.12 3.42 − 0.071 2.09 0.42 13.88 − 0.16
BAHAMAS AGN 7.8 WMAP 9 0.24 3.36 − 0.069 2.30 0.40 13.86 − 0.14
BAHAMAS AGN 7.8 WMAP 9 0.48 3.28 − 0.071 2.65 0.39 13.86 − 0.10

BAHAMAS AGN 7.8 Planck 2015 0.06 3.45 − 0.057 2.03 0.40 13.82 − 0.13
BAHAMAS AGN 7.8 Planck 2015 0.12 3.44 − 0.058 2.07 0.40 13.83 − 0.14
BAHAMAS AGN 7.8 Planck 2015 0.24 3.41 − 0.058 2.20 0.40 13.84 − 0.12
BAHAMAS AGN 7.8 Planck 2015 0.48 3.37 − 0.065 2.54 0.40 13.84 − 0.10

COSMO-OWLS AGN 8.0 WMAP 7 0 3.13 − 0.046 2.26 0.40 13.56 − 0.09
COSMO-OWLS AGN 8.5 WMAP 7 0 3.19 − 0.055 2.03 0.40 14.28 − 0.11
COSMO-OWLS AGN 8.7 WMAP 7 0 3.22 − 0.057 1.77 0.40 14.83 0.57

COSMO-OWLS AGN 8.0 Planck 2013 0 3.23 − 0.039 2.07 0.40 13.53 − 0.09
COSMO-OWLS AGN 8.5 Planck 2013 0 3.30 − 0.046 1.88 0.40 14.26 − 0.13
COSMO-OWLS AGN 8.7 Planck 2013 0 3.38 − 0.056 1.58 0.42 14.79 0.29

COSMO-OWLS NO-COOL – WMAP 7 0 4.22 0.015 0.00 0.00 12.39 − 0.15
COSMO-OWLS REF – WMAP 7 0 3.79 − 0.007 3.92 0.27 13.20 − 0.41

to fit these simulations demonstrates some level of robustness. We
see some obvious trends in our best-fitting parameters, particularly
with the AGN ‘strength’, which is governed in the simulations
by the sub-grid heating parameter TAGN – this is not a physical
parameter that could be measured in the Universe. As feedback
strength is increased Mb increases, which makes physical sense as
more violent feedback expels more gas from the haloes. We also
see a decrease in the star fraction, f∗, as TAGN increases, which
indicates that star formation is being suppressed by AGN feedback.
Surprisingly, we see a preference for f∗ to increase with z in all
AGN feedback models, which taken literally would suggest that halo
star fractions were higher in the past. This might be possible, if star
formation peaked at higher redshifts and then shut off. However,
this trend was not seen in Mead et al. (2020), which suggests that
the relatively simplicity of the modelling presented here means that
f∗ is capturing physics not associated directly with stars. In all
simulations with AGN we see a preference for a decrease in the
concentration–mass parameter B away from the standard value of 4.
However, in BAHAMAS, B decreases with feedback strength while in
COSMO-OWLS B increases. This difference may be due to the different
hydrodynamical implementations between the two simulation suites,
or it may point to a more complicated relationship between feedback
strength and the backreaction effect on the halo concentration. It
may also be due to our model being overly simplistic since we
take B and f∗ to be independent of halo mass or because we do
not attempt to explicitly model the bound or ejected gas profiles.
In general, the feedback in COSMO-OWLS has a stronger impact on
the power spectrum than that in BAHAMAS, and it is possible that
there is a non-monotonic relationship between the feedback strength
and the effect on B. As shown in McCarthy et al. (2018), the power
spectrum response to feedback when the neutrino mass is varied is
quite minimal. This is reflected in the relatively similar best-fitting
model parameters, particularly for the Planck 2015 case where the

Table 5. Values for our single-parameter baryonic feedback model as a
function of the sub-grid heating temperature in the BAHAMAS feedback
models. In the formulae below θ = log10(TAGN/107.8 K). In equation (24)
β = 2 has been fixed. Parameter X(z) is constructed from X0 and Xz as
X(z) = X0 × 10zXz .

Parameter Equation BAHAMAS formula

B0 20 3.44–0.496θ

Bz 20 −0.0671–0.0371θ

f∗, 0/10−2 25 2.01–0.30θ

f∗, z 25 0.409+0.0224θ

log10(Mb,0/ h−1 M⊙) 24 13.87+1.81θ

Mb, z 24 −0.108+0.195θ

other cosmological parameters are all adjusted to be best fitting for the
Planck data, which preserves the linear spectrum shape and therefore
the feedback response.

6.3 Single-parameter model

It may be preferable to have a less general, but single-parameter,
model for baryonic feedback. Since degeneracies may exist between
the 6 parameters of our model, top-hat priors may not represent the
true uncertainty, while also slowing down MCMC analyses. Based
on the BAHAMAS best-fitting parameters in Table 4 we see roughly
linear trends between parameters and the feedback temperature.
We therefore propose the model detailed in Table 5, where all
6 feedback parameters have been linearly fitted as functions of
log10(TAGN/K) for the BAHAMAS simulations. Given our modelling it
is not possible to have a single-parameter model that works for both
COSMO-OWLS and BAHAMAS since we observe the opposite trend in
the mass–concentration parameter B with TAGN in each case. We
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which suppresses the (otherwise constant) one-halo term at large
scales but leaves it unchanged at small scales. This term introduces
the single free parameter k∗. If a suppression is not imposed, the
one-halo term can unphysically contribute power on large scales
(k ! 0.01 h Mpc−1 at z = 0) where linear theory is known to be near
perfect. In previous versions of HMCODE a different form for one-
halo damping was used, with exponential damping, but we prefer the
current form since it respects the physical P1H ∝ k4 large-scale limit.

4.4 One-halo ingredients

We adopt the mass function of Sheth & Tormen (1999)

F (ν)dν = A

[
1 + 1

(qν2)p

]
e−qν2/2 dν, (18)

where ν is the peak height, defined in equation (7), and the
normalization A is constrained by the condition that F(ν)dν must
integrate to unity. Standard values are p = 0.3, q = 0.707, which
gives A ≃ 0.216. Note that the mass function in equation (18) has no
explicit cosmology or redshift dependence, which is all encoded in
the transformation ν = δc(z)/σ (M, z). We take δc(z) to be given by
the fitting formula in Mead (2017), which is detailed in Appendix A
and which accurately reproduces spherical-collapse calculations for
a wide range of cosmologies. This reduces to the standard ≃1.686
when $m = 1, but is more accurate than the fitting formula of
Nakamura & Suto (1997) for dark energy cosmologies.

As in Mead et al. (2015, 2016), we take our halo profiles to be a
modified form of those from Navarro, Frenk & White (NFW; 1997)

ρc(M, r) ∝ 1
r/(νηrs)[1 + r/(νηrs)]2

, (19)

with rs related to rv by the concentration parameter: c = rv/rs. The
profile is assumed to extend out to νηrv, and to be zero beyond
that. Here, η is a new free ‘halo bloating’ parameter; η = 0 would
correspond to the standard NFW profile. As shown in Copeland,
Taylor & Hall (2020), the factors of νη in equation (19) correspond
to the Fourier-space change W(M, k, z) → W(M, νηk, z) applied
to the halo window functions in equation (3). The normalization of
the NFW profile is calculated from equation (5), ensuring that the
halo mass is enclosed within the (modified) virial radius. We take
'v(z) from the spherical-collapse fitting function provided by Mead
(2017), which is similar to that given in Bryan & Norman (1998), but
more accurate for dark energy cosmologies. The formula is detailed
in Appendix A.

We take our halo mass–concentration relation to be that of Bullock
et al. (2001)

c(M, z) = B

[
1 + zf (M, z)

1 + z

]
, (20)

where the formation redshift, zf is calculated from

g(zf )
g(z)

σcc(γM, z) = δc(z). (21)

This is essentially answering the question of: ‘at what redshift did
the halo attain a fraction γ of its final mass at z?’ γ = 0.01 is taken,
exactly as in Bullock et al. (2001), even though it is strange for
the concentration to be determined when such a small fraction of
the mass has accumulated. g(z) is the linear growth function, which
is discussed in Appendix A. For cosmologies that have a scale-
dependent linear growth, we calculate a linear growth function in the
large-scale limit with neutrinos clustered along with cold dark matter
(CDM). When solving equation (21) it is possible to find zf < z, in

this case we follow Bullock et al. (2001) and force zf = z so that the
halo concentration can never be below the value B, which we take as
a free parameter.

We modify the concentration–mass relation so as to be appropriate
for dark-energy cosmologies using the prescription of Dolag et al.
(2004), whereby we modify the concentration by the ratio of linear
growth factors at the halo ‘collapse’ redshift

c(M, z) → c(M, z)
g(zc)
g)(zc)

g)(z)
g(z)

. (22)

g)(z) is the growth factor calculated in an equivalent Lambda cold
dark matter ()CDM) cosmology where we force the dark energy to
be ) (fixing w = −1 and wa = 0), enforce flatness (fixing $) =
1 − $m) and convert any neutrino mass into CDM mass. The final
fraction on the right-hand side of equation (22) was not present in
previous HMCODE versions, or in Dolag et al. (2004), but we consider
it necessary for the correction to make sense in the high-z limit when
the dark energy density is too small to have an appreciable effect on
the formation of haloes. Dolag et al. (2004) showed that evaluating
their correction at the halo-collapse redshift was almost equivalent
to evaluating it at an infinite redshift, so when evaluating the formula
numerically we take zc = 10 to be suitably infinite. Note that in Mead
et al. (2016), the correction in equation (22) was strengthened via an
additional 1.5 exponent, but we do not find this to be necessary in
this work.

4.5 Total power

As in Mead et al. (2015, 2016) we find it necessary to modify the
transition between the two- and the one-halo terms when constructing
the full halo-model power. We do this via

'2
HM(k, z) =

[[
'2

2H(k, z)
]α +

[
'2

1H(k, z)
]α]1/α

, (23)

where α = 1 would correspond to a standard transition. α < 1 smooths
the transition while α > 1 sharpens it. We treat the parameter α as
free.

5 N O N - L I N E A R M O D E L

5.1 Parameter fitting

The free parameters in our model are constrained using the 37 node
cosmologies of the FRANKEN EMU emulator, which reports to be
accurate at the 4 per cent level. However, this is the quoted accuracy
for the emulation scheme, and evaluating at the node cosmologies is
considerably more accurate given that this involves no interpolation.
From Fig. 1, we estimate the accuracy to be !1 per cent at the
nodes. The set of node cosmologies spans a Latin Hypercube, with
parameter ranges given in Table 1. Working with the nodes has the
additional advantage of allowing us to exploit the Hypercube design.
The parameter space of FRANKEN EMU encompasses ωm, ωb, ns, σ 8,
w, and h.

Our best-fitting parameters are given in Table 2. To perform the
fitting we used the Nelder & Mead (1965) simplex algorithm with a
large number of initial starting points. We constrain the parameters
using all node cosmologies, with an equal logarithmic weight in k
between 0.01 and 10 h Mpc−1 and using data from z = 0, 0.5, 1, and
2 with equal weight. Initially cosmologies and redshifts were fitted
independently, taking constant values for parameters, to determine
if the model worked well for the cosmologies on a case-by-case
basis. We then fitted the cosmologies and redshifts simultaneously,
and plot the residuals to determine reasonable functional forms to

MNRAS 502, 1401–1422 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/1/1401/6102542 by C
EA user on 21 June 2021

concentration parameter

1412 A. J. Mead et al.

 0.8

 0.9

 1

 1.1

 1.2

 0.01  0.1  1  10

P H
M

co
de

(k
) /

 P
ha

lo 
m

od
el(

k)

k / h Mpc-1

Two-halo
One-halo

Full

Figure 4. Comparison of the ratio of power spectra for HMCODE-2020
compared to that from the regular halo-model calculation with the same
basic ingredients. The models are shown for a standard !CDM cosmology at
z = 0. The two-halo term (long dashed), the one-halo term (short-dashed), and
the total (solid) are shown for each model to illustrate the main differences
between them.

structure formation. This assumption is built in to our model given
that we use ingredients for the halo model, such as the mass function
and halo profiles, that are calibrated on simulations that only consider
the gravitational interaction, and also because we have fitted our
model to power spectra from such simulations. However, in reality we
know that electromagnetic processes, particularly those associated
with star formation and black hole accretion, can have a significant
impact on the distribution of matter. In this section, we develop a
simple model to account for the effect of these baryonic feedback
processes on the matter power spectrum. This is possible with the
halo model since we have physical information such as the masses,
distribution, and structural properties of haloes that we expect to be
altered by feedback.

6.1 Baryonic feedback model

We parametrize an effective model for baryonic physics by including
three physically motivated changes to the standard halo model (not
HMCODE-2020) discussed in Section 3:

(i) We allow feedback to deform haloes via a change in halo
concentration (Rudd, Zentner & Kravtsov 2008) via the parameter
B in equation (20). This is similar to the approach taken in Mead
et al. (2015, 2020). Physically, we expect that gas expulsion from
haloes removes mass from the halo centre, thus lowering the effective
concentration from the default B = 4.

(ii) We include a central delta-function term, of magnitude f∗, in
the halo density profile to account for the presence of stars within
haloes. As shown in Fedeli (2014), Debackere et al. (2020), and Mead
et al. (2020), a term like this is necessary to model the power spectra
of stellar matter as seen in hydrodynamic simulations. Stars that have
an appreciable effect on the matter power spectrum predominantly
cluster in the centres of haloes and this creates a shot-noise term in
the power spectrum, as well a cross term between this and the NFW
profile, both of which contribute to additional small-scale power. The
parameter 0 < f∗ < "b/"m can be thought of as an effective halo
stellar mass fraction.

(iii) We account for gas expulsion by lowering the gas content of
haloes via

fg(M) =
(

"b

"m
− f∗

)
(M/Mb)β

1 + (M/Mb)β
, (24)

where fg is the halo gas fraction, the pre-factor in parenthesis is the
available gas reservoir, while Mb > 0 and β > 0 are fitted parameters.

Haloes of M ≫ Mb are unaffected while those of M < Mb have lost
more than half of their gas.

To implement these changes, we replace the NFW window
function, W(M, k), that would normally enter equation (3), with

W̃ (M, k) =
[

"c

"m
+ fg(M)

]
W (M, k) + f∗

M

ρ̄
. (25)

In the M ≪ Mb limit halo masses are lowered by the fraction "c/"m

+ f∗, while in the opposite limit they are altered by 1 − fν as in the
gravity-only case. The removal of gas mass implied by equation (24)
lowers the overall amplitude of the one-halo term as well as changes
its shape.

In previous versions of HMCODE the feedback model was more
basic. The parameters B from equation (20) and η from equation (19)
were fitted to data from the original OWLS simulations (Schaye et al.
2010; van Daalen et al. 2011) to provide a model that approximately
matched the suppression due to AGN feedback. Both this change in
halo concentration and this ‘halo bloating’ were found to be necessary
to provide a good match. However, there was no term to account for
star formation, so the model would only ever predict a suppression
in power.

6.2 Baryonic feedback parameters

The free parameters in our feedback model are constrained using
data from the hydrodynamical library9 of van Daalen, McCarthy &
Schaye (2020), which contains simulations from the COSMO-OWLS

(Le Brun et al. 2014) and BAHAMAS 10 (McCarthy et al. 2017) suites.
We choose to fit the power spectrum ‘response’, as advocated in Mead
(2017, 2020) and Cataneo et al. (2019).11 For the simulations, the
response is the matter–matter power spectrum measurement divided
by that measured in an equivalent ‘gravity only’ simulation. This
approach has the advantage that we cancel out Gaussian variance at
large scales in the simulations. For the halo model response we take
the feedback model described in the previous subsection and divide
it by the model described in Section 3. We fit for the free parameters
B (equation 20), Mb (equation 24), and f∗ (equation 25), and we allow
for redshift dependence of the form

X(z) = X0 × 10zXz , (26)

where X can be either B, Mb, or f∗ and there are two free parameters,
X0 and Xz, for each X. This functional form was determined by
initially fitting the model independently of z and then examining the
preferred trends in fitted parameters. We fix β = 2 in equation (25)
since there was no clear preference for a specific value, and this
worked well for all simulations considered. The eventual feedback
model therefore has 6 parameters. Redshifts were fitted simultane-
ously from z = 0 to 1 with a linear weight, and wavenumbers were
fitted with a logarithmic weight from k = 0.03 to 20 h Mpc−1.

The best-fitting baryon feedback parameters for all the simulations
we considered are listed in Table 4. All fitted models have an RMS
error of less than one per cent. We mainly focused on simulations that
include realistic AGN feedback, but we also constrained our model
using the COSMO-OWLS REF and NO-COOL simulations, which are not
considered to be realistic. However, the fact that the model is still able

9http://powerlib.strw.leidenuniv.nl.
10http://www.astro.ljmu.ac.uk/ igm/BAHAMAS.
11HMCODE-2020 matches the DMONLY spectra from the library at the ≃2.5
per cent level for k < 20 h Mpc−1, which is within the expected range based
on Figs 1 and 2.
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Figure 4. Comparison of the ratio of power spectra for HMCODE-2020
compared to that from the regular halo-model calculation with the same
basic ingredients. The models are shown for a standard !CDM cosmology at
z = 0. The two-halo term (long dashed), the one-halo term (short-dashed), and
the total (solid) are shown for each model to illustrate the main differences
between them.

structure formation. This assumption is built in to our model given
that we use ingredients for the halo model, such as the mass function
and halo profiles, that are calibrated on simulations that only consider
the gravitational interaction, and also because we have fitted our
model to power spectra from such simulations. However, in reality we
know that electromagnetic processes, particularly those associated
with star formation and black hole accretion, can have a significant
impact on the distribution of matter. In this section, we develop a
simple model to account for the effect of these baryonic feedback
processes on the matter power spectrum. This is possible with the
halo model since we have physical information such as the masses,
distribution, and structural properties of haloes that we expect to be
altered by feedback.

6.1 Baryonic feedback model

We parametrize an effective model for baryonic physics by including
three physically motivated changes to the standard halo model (not
HMCODE-2020) discussed in Section 3:

(i) We allow feedback to deform haloes via a change in halo
concentration (Rudd, Zentner & Kravtsov 2008) via the parameter
B in equation (20). This is similar to the approach taken in Mead
et al. (2015, 2020). Physically, we expect that gas expulsion from
haloes removes mass from the halo centre, thus lowering the effective
concentration from the default B = 4.

(ii) We include a central delta-function term, of magnitude f∗, in
the halo density profile to account for the presence of stars within
haloes. As shown in Fedeli (2014), Debackere et al. (2020), and Mead
et al. (2020), a term like this is necessary to model the power spectra
of stellar matter as seen in hydrodynamic simulations. Stars that have
an appreciable effect on the matter power spectrum predominantly
cluster in the centres of haloes and this creates a shot-noise term in
the power spectrum, as well a cross term between this and the NFW
profile, both of which contribute to additional small-scale power. The
parameter 0 < f∗ < "b/"m can be thought of as an effective halo
stellar mass fraction.

(iii) We account for gas expulsion by lowering the gas content of
haloes via

fg(M) =
(

"b

"m
− f∗

)
(M/Mb)β

1 + (M/Mb)β
, (24)

where fg is the halo gas fraction, the pre-factor in parenthesis is the
available gas reservoir, while Mb > 0 and β > 0 are fitted parameters.

Haloes of M ≫ Mb are unaffected while those of M < Mb have lost
more than half of their gas.

To implement these changes, we replace the NFW window
function, W(M, k), that would normally enter equation (3), with

W̃ (M, k) =
[

"c

"m
+ fg(M)

]
W (M, k) + f∗

M

ρ̄
. (25)

In the M ≪ Mb limit halo masses are lowered by the fraction "c/"m

+ f∗, while in the opposite limit they are altered by 1 − fν as in the
gravity-only case. The removal of gas mass implied by equation (24)
lowers the overall amplitude of the one-halo term as well as changes
its shape.

In previous versions of HMCODE the feedback model was more
basic. The parameters B from equation (20) and η from equation (19)
were fitted to data from the original OWLS simulations (Schaye et al.
2010; van Daalen et al. 2011) to provide a model that approximately
matched the suppression due to AGN feedback. Both this change in
halo concentration and this ‘halo bloating’ were found to be necessary
to provide a good match. However, there was no term to account for
star formation, so the model would only ever predict a suppression
in power.

6.2 Baryonic feedback parameters

The free parameters in our feedback model are constrained using
data from the hydrodynamical library9 of van Daalen, McCarthy &
Schaye (2020), which contains simulations from the COSMO-OWLS

(Le Brun et al. 2014) and BAHAMAS 10 (McCarthy et al. 2017) suites.
We choose to fit the power spectrum ‘response’, as advocated in Mead
(2017, 2020) and Cataneo et al. (2019).11 For the simulations, the
response is the matter–matter power spectrum measurement divided
by that measured in an equivalent ‘gravity only’ simulation. This
approach has the advantage that we cancel out Gaussian variance at
large scales in the simulations. For the halo model response we take
the feedback model described in the previous subsection and divide
it by the model described in Section 3. We fit for the free parameters
B (equation 20), Mb (equation 24), and f∗ (equation 25), and we allow
for redshift dependence of the form

X(z) = X0 × 10zXz , (26)

where X can be either B, Mb, or f∗ and there are two free parameters,
X0 and Xz, for each X. This functional form was determined by
initially fitting the model independently of z and then examining the
preferred trends in fitted parameters. We fix β = 2 in equation (25)
since there was no clear preference for a specific value, and this
worked well for all simulations considered. The eventual feedback
model therefore has 6 parameters. Redshifts were fitted simultane-
ously from z = 0 to 1 with a linear weight, and wavenumbers were
fitted with a logarithmic weight from k = 0.03 to 20 h Mpc−1.

The best-fitting baryon feedback parameters for all the simulations
we considered are listed in Table 4. All fitted models have an RMS
error of less than one per cent. We mainly focused on simulations that
include realistic AGN feedback, but we also constrained our model
using the COSMO-OWLS REF and NO-COOL simulations, which are not
considered to be realistic. However, the fact that the model is still able

9http://powerlib.strw.leidenuniv.nl.
10http://www.astro.ljmu.ac.uk/ igm/BAHAMAS.
11HMCODE-2020 matches the DMONLY spectra from the library at the ≃2.5
per cent level for k < 20 h Mpc−1, which is within the expected range based
on Figs 1 and 2.
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Figure 5. Comparison of our single-parameter baryonic feedback response model against three different versions of BAHAMAS AGN feedback simulations with
the WMAP 9 cosmology that differ only by their values of the ‘sub-grid heating’ temperature (blue, grey, and light-red for log10(TAGN/K) = 7.6, 7.8, and 8.0).
The dots show the simulation measurements while the lines show the HMCODE model. In all cases we see that baryonic feedback suppresses power, starting at
k ∼ 0.1 h Mpc−1 with a maximum suppression effect of tens of per cent at k ∼ 7 h Mpc−1, which is followed by a sharp rise in power. The suppression is caused
by AGN feedback expelling gas from haloes while the rise in power is caused by galaxy formation in halo centres. The dark-red curve shows the COSMO-OWLS

extreme AGN simulation with the Planck 2013 cosmology. This feedback scenario is quite well matched with the same single-parameter feedback model with
an increased effective AGN temperature of log10(TAGN/K) = 8.3. The dashed-grey line shows the AGN feedback model from the previous versions of HMCODE,
which suppresses the power more than any of the scenarios shown here for k > 5 h Mpc−1 and the onset of the suppression is at slightly smaller scales compared
to the BAHAMAS and COSMO-OWLS simulations.

therefore present a model only for BAHAMAS, although it would
be straightforward to develop a similar model for COSMO-OWLS. In
Fig. 5, we show the performance of our single-parameter model
against the three different TAGN BAHAMAS simulations to which it
was fitted. We see that the single-parameter model response follows
the simulation response to within a couple of per cent across the entire
range of scales shown. The largest errors are at the largest scales at
z = 1, where the scale dependence of the departure of the response
from unity in the model does not follow the simulations particularly
well. However, the amplitude of the maximum dip in power and the
smaller-scale increase in power are both well recovered. It should
be noted that this one-parameter model has no limit in which the
‘gravity only’ result is recovered. For comparison, in Fig. 5 we also
show the feedback model from the previous versions of HMCODE.
The suppression in the previous model activates at smaller scales
compared to the new model, predicts more suppression than all
scenarios discussed in this paper for k > 5 h Mpc−1, and has no
upturn because there was no attempt to model star formation in
Mead et al. (2015).

In Fig. 5, we also show the performance of the same single-
parameter model against the extreme AGN 8.7 simulation from
the COSMO-OWLS suite. This feedback model was not used in the
generation of our feedback model, but is well matched when assigned
with an effective BAHAMAS log10(TAGN/K) = 8.3. The other COSMO-
OWLS AGN 8.0 and 8.5 models can be similarly well matched with
effective log10(TAGN/K) = 7.7 and 8.0, respectively. We should not be
surprised that the effective BAHAMAS AGN temperature assigned to
these COSMO-OWLS feedback scenarios is different from their COSMO-
OWLS temperature because the underlying physical feedback model
differs between the two simulation suites. However, it is pleasing

that the same physical model can be made to work for both suites.
Of all the feedback models, the extreme COSMO-OWLS model shown
in the figure is the least well matched, with the largest errors at z =
1 for k < 3 h Mpc−1.

Our single-parameter model is calibrated on the BAHAMAS WMAP
9 (Hinshaw et al. 2013) simulations, therefore we should compare
it to the alternative BAHAMAS with Planck 2013 cosmology simu-
lation. For the same sub-grid heating temperature, the simulations
show that the Planck 2013 cosmology has less feedback-induced
suppression, with a maximum of ≃13 per cent at k ≃ 7 h Mpc−1 at
z = 0, compared to ≃17 per cent with the WMAP 9 cosmology.
If we evaluate our single-parameter feedback model for the Planck
cosmology, the model does predict less suppression, but with the
maximum reduced from ≃17 to only ≃15, rather than as far as ≃13
per cent. Within our model, this change at fixed TAGN arises due
to the different baryon fractions12 in each cosmology as because of
differences in the halo mass functions. It is encouraging that this
change with cosmology predicted by the model is in the correct
direction, but disheartening that it is not quite strong enough. Table 4
tells us that the Planck cosmology prefers a slightly lower value of
Mb, 0 compared to WMAP 9 (log10(Mb,0/ h−1 M⊙) = 13.78, rather
than 13.84). We tried to change the parametrization in equation (24)
for Mb to be proportional to the non-linear mass, σ (M∗, z) = δc(z),
but this trends in the wrong direction.13 The simulations demonstrate

12The baryon-mass fraction, #b/#m, in the WMAP 9 cosmology is ≃0.166
while it is ≃0.154 in Planck 2013.
13At z = 0 in WMAP 9 M∗ = 1012.61 h−1 M⊙ whereas in Planck 2013 M∗ =
1012.74 h−1 M⊙.
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quoted by Planck TTTEEE+lowE+lensing+BAO 2018. Bottom-left panel: di↵erences when also the constant dark energy equation of state is
drawn from a Gaussian distribution with a dispersion of 0.3. Bottom-right panel: di↵erence for evolving dark energy models where, alongside
w0, also wa is Gaussian distributed with a dispersion of 1.0. In the bottom panels w0 and wa (if present) are always chosen in such a way that
w(z) < �1/3. The feature visible at k ⇡ 0.005 h Mpc�1 corresponds the scale at which the non-linear corrections are turned on in CAMB.

These results highlight that the discrepancy between Halofit
and HMCode can be larger than 10% for k > 3 h Mpc�1.

The bottom-left panel considers models beyond ⇤CDM,
allowing for a constant equation of state parameter, w, that can
di↵er from �1. The di↵erent lines correspond to power spectra
when we draw parameters from a six-dimensional Gaussian dis-
tribution where we adopt a dispersion of 0.3 for w (but we do
require w < �1/3). The bands showing the discrepancy between
the di↵erent non-linear corrections increase slightly (a 10% dis-
crepancy is reached at scales of k = 1–2 h Mpc�1), but the overall
shape remains the same.

Finally, in the bottom-right panel we consider dynamical
dark energy models with a dark energy equation of state given
by Eq. (13). In this case we add wa (so that we draw parame-
ters from a seven-dimensional Gaussian) with a dispersion of 1.0
and we require the dark energy equation of state to be always
smaller than �1/3, that is w0 + wa < �1/3. The overall shape
for the bands is the same for HMCode and the linear spectra,
although the discrepancies are significantly larger (already 10%
at scales of k = 0.6 h Mpc�1). We also note that, since we
allow wa to vary, there is a di↵erence between Halofit and
Halofit+PKequal.

Lawrence et al. (2017) presented an updated version of
COSMIC EMU that includes massive neutrinos. Their high-
resolution simulations are interpolated with an accuracy of
⇠4%. Lawrence et al. (2017) compared their COSMIC EMU pre-
dictions with Halofit, and HMCode. When massive neutri-
nos are considered, the di↵erent approaches show di↵erences
of ⇠20% and ⇠15%, respectively, in the power spectra for
scales above k = 0.1 Mpc�1, indicating the need for further
improvements.

3. The Euclid Cosmic Shear survey

Our aim is to investigate how the expected constraints on cos-
mological parameters from Euclid data depend on the recipe
that is used to predict the matter power spectrum on non-linear
scales, although we note that our finding are also relevant for
other stage IV experiments. Euclid is an M-class mission of the
European Space Agency (Laureijs et al. 2011) that will carry
out a spectroscopic and a photometric survey of galaxies over
an area of 15 000 deg2. The cosmic shear measurements use
high-quality imaging at optical wavelengths, supported by multi-
band optical ground-based photometry and near-infrared obser-
vations by Euclid. The telescope is designed so that (residual)
instrumental sources of bias in the observed cosmic shear signal
are subdominant compared to the statistical uncertainties (e.g.,
Cropper et al. 2013; Euclid Collaboration 2020b). However, to
achieve its objectives, it is essential that the signal can be accu-
rately predicted in the non-linear regime. Although this is also
relevant to fully exploit the data from the clustering of galaxies
and the cross-correlations with the lensing signal, we focus on
the cosmic shear case in this paper and defer a more comprehen-
sive study to future work.

We adopt the baseline specifications for the Euclid data,
which are described in Euclid Collaboration (2020a, hereafter
EC19). The redshift distribution of the sources is given by

n(z) /
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5

, (14)

with z0 = 0.9/
p

2, resulting in a mean redshift of hzi = 0.96.
The sample is divided into 10 equi-populated redshift bins ni(z)
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Fig. 2. One-dimensional posterior distributions, and 68% and 95% confidence level marginalised contours for the dark energy parameters (w0
and wa) and the parameters h and �8. The left panel refers to the `max = 1500 case, while the right panel uses measurements deeper into the
non-linear regime, with `max = 5000. The mock data of Euclid cosmic shear assume Halofit+PKequal non-linear corrections as reference, while
the parameter estimation is performed with either HMCode (blue), or Halofit (orange). Black dashed lines mark the fiducial model.

is what we do here10. We note that the intrinsic variance of the
mean estimated by the MCMC also contributes to our estimate
of B(✓). We quantified this contribution by computing the scatter
of the mean value by bootstrapping the chains. We find that it is
always within 1% of the final error on cosmological parameters.

The results are reported in Table 4 and the posteriors are pre-
sented in Fig. 2. Although the optical depth ⌧ is a free parameter
in the model, it is e↵ectively constrained by the Planck measure-
ments alone. We therefore do not report its value here. Oppo-
sitely, as a comparison, we can see how constraints on other
parameters tighten thanks to the inclusion of Euclid data. For
instance, Planck Collaboration VI (2020) report for �8 a 68%
confidence level (C.L.) interval equal to 1.5% or 1% of the
parameter value in a w0waCDM cosmology, when Planck is
respectively combined with RSD and WL data or BAO and SN
data. Instead, with Planck-TT and Euclid-WL only we obtain
here 0.7%.

As expected, the biases are larger for HMCode compared
to Halofit without PKequal. We also find that for Halofit,
increasing the range from `max = 1500 to `max = 5000 does not
increase the bias significantly, whereas the bias strongly depends
on the `-range for HMCode, both in amplitude and in sign. This
can be explained by looking at Fig. 1: at scales larger than a few
h Mpc�1, HMCode systematically over-predicts the power with
respect to Halofit.

We find that in the Halofit case, the biases in the cos-
mological parameters approximately satisfy B(✓) . Bthr when
`max = 1500, while for HMCode the biases for almost all the
parameters exceed this threshold. When setting `max = 5000,
the parameters estimated in the HMCode case are all biased sig-
nificantly more than the acceptable threshold (except for !b,0),

10 This threshold could in principle be relaxed slightly if one wants to
compromise for a lower variance. The investigation of such a trade-o↵
is, however, outside the scope of this paper.

and now also the Halofit case exhibits biases larger than Bthr
for h, ⌦m,0 and �8.

In order to correct for the significant mismatch in the non-
linear prescriptions, HMCode increases !c,0, h, ln(1010As), and
wa, while at the same time the values for ns and w0 are
decreased. This tweaking of parameters increases the amplitude
of the linear matter power spectrum at scales 0.2 h Mpc�1 .
k . 2 h Mpc�1, where HMCode has a lack of power with
respect to Halofit+PKequal (see Fig. 1). As the scales around
0.2 h Mpc�1 are those that mainly contribute to the estimate of
�8, this explains the large bias observed for this (derived) param-
eter, B(�8) ⇠ 5.

Overall, the ��2 . 1 indicates that replacing Halofit +
PKequal with Halofit-only does not have a strong impact on
the results as it is well within the range of the statistical uncer-
tainties11. On the other hand, using HMCode leads to a signfi-
cantly higher ��2, highlighting how the di↵erence between the
two non-linear prescriptions cannot be fully compensated by
modifying the background quantities and the linear growth.

It is worth to noting that for both Halofit and HMCode the
parameters that are most significantly biased are H0 and �8.
These are the parameters that currently show tension between
high- and low-redshift measurements (e.g., Riess et al. 2019;
Hildebrandt 2020; Spurio Mancini et al. 2019). Our results
imply that the Euclid cosmic shear measurements have the sta-
tistical power to resolve this, but only if we can accurately model
the non-linear scales.

6. Impact of baryons

Up to this point, we have limited our study to the impact
of changing the recipe that is used to compute the non-linear

11 We note that as we do not introduce noise in our data vector, the �2

for the fiducial model vanishes.
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Table 6. Mean values, marginalised 68% errors, and bias.

CH18 ST15 HD15

✓ `max ✓? � B ✓? � B ✓? � B

!b,0 1500 0.2246 0.00011 0.09 0.2245 0.00012 0.00 0.02249 0.00012 0.34
5000 0.02251 0.00012 0.51 0.02252 0.00012 0.64 0.02252 0.00012 0.56

!c,0 1500 0.12061 0.00035 0.15 0.12059 0.00036 0.08 0.12044 0.00040 0.30
5000 0.12109 0.00036 1.49 0.12110 0.00037 1.46 0.12083 0.00036 0.76

h 1500 0.6833 0.0069 1.92 0.6799 0.0065 1.52 0.6819 0.0069 1.73
5000 0.6990 0.0041 7.15 0.7069 0.0041 9.11 0.6835 0.0045 2.99

ln(1010As) 1500 3.0571 0.0087 0.14 3.0590 0.0083 0.07 3.0578 0.0084 0.07
5000 3.0644 0.0083 0.73 3.0679 0.0087 1.10 3.0592 0.0083 0.10

ns 1500 0.9583 0.0024 0.68 0.9589 0.0025 0.42 0.9572 0.0025 1.11
5000 0.9489 0.0020 5.49 0.9488 0.0021 5.44 0.9503 0.0021 4.69

w0 1500 �1.040 0.078 1.79 �0.990 0.078 1.16 �1.063 0.092 1.77
5000 �1.220 0.039 8.22 �1.240 0.040 8.43 �1.142 0.053 4.55

wa 1500 0.43 0.19 1.68 0.30 0.20 0.98 0.51 0.23 1.78
5000 0.84 0.09 8.27 0.84 0.10 7.70 0.73 0.13 5.04

��2 1500 6.35 3.94 11.54
5000 63.61 107.32 45.05

Notes. The values are obtained by fitting mock Planck and Euclid cosmic shear data with Halofit without baryonic corrections, to non-linear
corrections with either CH18, ST15 or HD15 methods non-linear corrections. The number of degrees of freedom in this case is 11 (the number of
free parameters), which enables one to compare ��2 to the corresponding confidence interval.

Fig. 3. One-dimensional posterior distributions, and 68% and 95% marginalised joint two-parameter contours for w0 and wa, and the parameters
h, ns and �8 from the MCMC analysis. The results are obtained by neglecting baryon e↵ects when fitting mock datasets created without baryonic
e↵ects (green) and with baryonic e↵ects (orange for CH18, blue for ST15 and purple for Hd15). The left panel refers to the `max = 1500 case,
while the right panel goes deeper into the non-linear regime, with `max = 5000.

in all three analysis are h, w0 and wa. Overall, however, all three
cases produce very similar results, as can be seen in the left panel
of Fig. 3.

For `max = 5000, we find that the biases are very large when
BCM e↵ects are neglected; B(✓) > Bthr for all parameters, with
B & 5 for the dark energy parameters w0 and wa, B & 3 for h,
and B & 4.5 for ns. As expected, the biases in the power spectrum

amplitude, the baryon density, and the cold dark matter density
are the less significant because these are all well constrained by
the Planck measurements.

Ignoring BCM e↵ects could lead to a false detection of a
time-varying dark energy equation of state. Moreover, with the
current tension between H0 measurements between CMB and
late-time probes, an unbiased measurement of H0 will also be
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term Pnonpert
2H , associated with the residual effect of small-

scale multistreaming onto the large-scale power, and next
the one-halo contribution.

We must note that Fig. 7 does not define by itself the
limitation of semianalytical models. This only gives a
lower bound to the range of wave numbers that can be
described by semianalytical models, if we set all nonper-
turbative contributions to zero and use a Lagrangian-based
regularization of perturbation theory. In practice, if we take
into account nonperturbative contributions in an approxi-
mate fashion, as in Ref. [17] for instance or by including
some additional pressure terms to the equations of motion,
we can extend the range of validity of semianalytical
models. In particular, they only need to be modeled up to
10% on scales where they do not contribute to more than
20% if we require a 2% accuracy. We discuss in more
details these points in Secs. IVB 1 and IVB2 below.
However, Fig. 7 is useful as a warning to the limitations
of perturbation theories and gives an estimate of the scale

and accuracy where adding high-order contributions to the
single-stream perturbative expansions is relevant.
The Fourier transform of Eq. (20) gives the decomposi-

tion of the two-point correlation function,

!ðxÞ ¼ !pertðxÞ þ !nonpert
2H ðxÞ þ !1HðxÞ: (22)

We show our results in Fig. 8. Again, the perturbative term
dominates on large scales, the one-halo term on small
scales, and the nonperturbative part of the two-halo term
is mainly relevant on intermediate scales. The peaks at x ’
130h%1 Mpc in the lower panel are due to the zero crossing
of the two-point correlation, which makes the ratios
diverge. The lower panel shows that nonperturbative con-
tributions are negligible at z ¼ 0:35 on scales larger than
10h%1 Mpc, even when we require an accuracy of 1%.
(This also agrees with Ref. [30] who noticed that the
Zel’dovich correlation function is reasonably accurate
down to &10h%1 Mpc.) This shows that real-space statis-
tics provide a robust and efficient probe of cosmology as
they offer a clean separation between perturbative and
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Sensitivity of semi-analytical models Valageas (2013)
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cðMÞ. We also show the difference between the predictions
obtained using two different fits to numerical simulations
from previous works, Refs. [31,32]. We can see that the
difference between published fits for cðMÞ is of order 10%
(somewhat greater; this also depends on mass and redshift).
However, it appears that the impact on the power spectrum
and correlation function is restricted to rather small scales,
k * 1hMpc#1 and x & 2h#1Mpc at z ¼ 0:35, for a 1%
accuracy.

The contour lines in the ðk; zÞ and ðx; zÞ planes of a 2% or
8% impact on the power spectrum and correlation function
are shown in Fig. 11, for these same modifications to cðMÞ.
Again, we find that for the redshift range 0 % z % 3 the
uncertainties of the mass-concentration relation only affect
the power spectrum and correlation function on rather
small scales. The comparison with Fig. 9 shows that this
occurs in the highly nonlinear regime where the perturba-
tive expansions are no longer valid and the power spectrum

or correlation function is dominated by the one-halo
contribution.
Thus, the precise shape of halo profiles should not be a

worrying limitation of semianalytical models, because
there remains a large range of scales where its impact is
negligible.

2. Impact of the halo mass function

Apart from the halo profiles, a second limitation to the
accuracy of semianalytical models is the halo mass func-
tion itself. In principle, it should be more easily predicted
than halo profiles, because one does not need to follow the
late virialization stages of inner halo regions but only to
count collapsed regions. This explains the relative success
of various analytical approaches [33,34] that try to detect
future halos from the initial linear density field (for the
high-mass tail). However, it has proved difficult to go
below a 20% accuracy (this depends on mass and redshift)
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cðMÞ. We also show the difference between the predictions
obtained using two different fits to numerical simulations
from previous works, Refs. [31,32]. We can see that the
difference between published fits for cðMÞ is of order 10%
(somewhat greater; this also depends on mass and redshift).
However, it appears that the impact on the power spectrum
and correlation function is restricted to rather small scales,
k * 1hMpc#1 and x & 2h#1Mpc at z ¼ 0:35, for a 1%
accuracy.

The contour lines in the ðk; zÞ and ðx; zÞ planes of a 2% or
8% impact on the power spectrum and correlation function
are shown in Fig. 11, for these same modifications to cðMÞ.
Again, we find that for the redshift range 0 % z % 3 the
uncertainties of the mass-concentration relation only affect
the power spectrum and correlation function on rather
small scales. The comparison with Fig. 9 shows that this
occurs in the highly nonlinear regime where the perturba-
tive expansions are no longer valid and the power spectrum

or correlation function is dominated by the one-halo
contribution.
Thus, the precise shape of halo profiles should not be a

worrying limitation of semianalytical models, because
there remains a large range of scales where its impact is
negligible.

2. Impact of the halo mass function

Apart from the halo profiles, a second limitation to the
accuracy of semianalytical models is the halo mass func-
tion itself. In principle, it should be more easily predicted
than halo profiles, because one does not need to follow the
late virialization stages of inner halo regions but only to
count collapsed regions. This explains the relative success
of various analytical approaches [33,34] that try to detect
future halos from the initial linear density field (for the
high-mass tail). However, it has proved difficult to go
below a 20% accuracy (this depends on mass and redshift)
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cðMÞ is increased by 10%, or when we change from the fit given
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tion at z ¼ 0:35 for the same cases.
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and most works use fits to numerical simulations, or in-
volve some parameters that are taken from simulations.

We show in Fig. 12 the impact on the power spectrum
and correlation function, at z ¼ 0:35, of a 10% decrease of
the mass function nðMÞ. We also show the difference
between the predictions obtained using three different fits
to numerical simulations, Refs. [35–37]. We can see that
the difference between published fits for nðMÞ is of order
10% (somewhat greater; this also depends on mass and
redshift). The comparison with Fig. 10 shows that the
impact of a 10% inaccuracy of the halo mass function is
greater than the impact of a 10% inaccuracy of the mass-
concentration relation. Therefore, this could be the limiting
factor of semianalytical models.

Decreasing (or increasing) the halo mass function by
10% is not realistic because the total halo mass fraction
should remain at unity (or at least not greater than unity).
However, the power spectrum and correlation functions on

large scales are mostly sensitive to massive and large halos,
so that the constraint of a unit normalization (which is
satisfied by the three fits from Refs. [35–37]) is not suffi-
cient to lessen the impact on the power spectrum. The
large-mass tail is also difficult to measure from numerical
simulations, because these are rare objects. These fits for
halo mass functions are actually defined in different man-
ners, as one can use different halo-finder algorithms (e.g.,
based on a spherical-overdensity criterion or friends-of-
friends procedures) and different halo definitions (e.g.,
different halo density contrasts). This is a further difficulty
for semianalytical models, as different definitions may be
relevant for different purposes.
In any case, Fig. 12 shows that there remains a signifi-

cant range of scales that is not affected by these
inaccuracies of the halo mass function. In particular, for
the correlation function at z ¼ 0:35 scales beyond
10h$1 Mpc are not affected at the percent level. This
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and most works use fits to numerical simulations, or in-
volve some parameters that are taken from simulations.

We show in Fig. 12 the impact on the power spectrum
and correlation function, at z ¼ 0:35, of a 10% decrease of
the mass function nðMÞ. We also show the difference
between the predictions obtained using three different fits
to numerical simulations, Refs. [35–37]. We can see that
the difference between published fits for nðMÞ is of order
10% (somewhat greater; this also depends on mass and
redshift). The comparison with Fig. 10 shows that the
impact of a 10% inaccuracy of the halo mass function is
greater than the impact of a 10% inaccuracy of the mass-
concentration relation. Therefore, this could be the limiting
factor of semianalytical models.

Decreasing (or increasing) the halo mass function by
10% is not realistic because the total halo mass fraction
should remain at unity (or at least not greater than unity).
However, the power spectrum and correlation functions on

large scales are mostly sensitive to massive and large halos,
so that the constraint of a unit normalization (which is
satisfied by the three fits from Refs. [35–37]) is not suffi-
cient to lessen the impact on the power spectrum. The
large-mass tail is also difficult to measure from numerical
simulations, because these are rare objects. These fits for
halo mass functions are actually defined in different man-
ners, as one can use different halo-finder algorithms (e.g.,
based on a spherical-overdensity criterion or friends-of-
friends procedures) and different halo definitions (e.g.,
different halo density contrasts). This is a further difficulty
for semianalytical models, as different definitions may be
relevant for different purposes.
In any case, Fig. 12 shows that there remains a signifi-

cant range of scales that is not affected by these
inaccuracies of the halo mass function. In particular, for
the correlation function at z ¼ 0:35 scales beyond
10h$1 Mpc are not affected at the percent level. This
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FIG. 12 (color online). Upper panel: relative change of the
power spectrum at z ¼ 0:35 when the halo mass function nðMÞ is
decreased by 10%, or when we change from the fit given in
Ref. [35] to those of Ref. [36] (label ‘‘A.-T.’’ with triangle
symbols) or Ref. [37] (label ‘‘C.-T.’’ with cross symbols).
Lower panel: relative change of the correlation function at
z ¼ 0:35 for the same cases.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.1  1  10

z

k [h Mpc-1]

2%

2%

2%

8%

8%

8%

n(M)-10%
A. - T.
C. - T.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.1  1  10

z

x [h-1Mpc]

2%

2%

2%

8%

8%

8%

n(M)-10%
A. - T.
C. - T.

FIG. 13 (color online). Upper panel: contour lines in the ðk; zÞ
plane of the regions where the power spectrum is modified by
more than 2% (solid lines), or 8% (dotted lines), by a 10%
decrease of nðMÞ, or by changing from Ref. [35] to Ref. [36]
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‘‘C.-T.’’ with cross symbols). Lower panel: similar contour lines
in the ðx; zÞ plane for the two-point correlation.
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term Pnonpert
2H , associated with the residual effect of small-

scale multistreaming onto the large-scale power, and next
the one-halo contribution.

We must note that Fig. 7 does not define by itself the
limitation of semianalytical models. This only gives a
lower bound to the range of wave numbers that can be
described by semianalytical models, if we set all nonper-
turbative contributions to zero and use a Lagrangian-based
regularization of perturbation theory. In practice, if we take
into account nonperturbative contributions in an approxi-
mate fashion, as in Ref. [17] for instance or by including
some additional pressure terms to the equations of motion,
we can extend the range of validity of semianalytical
models. In particular, they only need to be modeled up to
10% on scales where they do not contribute to more than
20% if we require a 2% accuracy. We discuss in more
details these points in Secs. IVB 1 and IVB2 below.
However, Fig. 7 is useful as a warning to the limitations
of perturbation theories and gives an estimate of the scale

and accuracy where adding high-order contributions to the
single-stream perturbative expansions is relevant.
The Fourier transform of Eq. (20) gives the decomposi-

tion of the two-point correlation function,

!ðxÞ ¼ !pertðxÞ þ !nonpert
2H ðxÞ þ !1HðxÞ: (22)

We show our results in Fig. 8. Again, the perturbative term
dominates on large scales, the one-halo term on small
scales, and the nonperturbative part of the two-halo term
is mainly relevant on intermediate scales. The peaks at x ’
130h%1 Mpc in the lower panel are due to the zero crossing
of the two-point correlation, which makes the ratios
diverge. The lower panel shows that nonperturbative con-
tributions are negligible at z ¼ 0:35 on scales larger than
10h%1 Mpc, even when we require an accuracy of 1%.
(This also agrees with Ref. [30] who noticed that the
Zel’dovich correlation function is reasonably accurate
down to &10h%1 Mpc.) This shows that real-space statis-
tics provide a robust and efficient probe of cosmology as
they offer a clean separation between perturbative and
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turbative contributions to the full nonlinear density power spec-
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