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Global picture

1 Introduction

Over the next decade, large-scale structure (LSS) surveys will play an increasingly important

role in the measurement of cosmological parameters and as a probe of initial conditions. In order

to relate late-time observables to the physics of the early universe, several sources of secondary

non-linearities need to be understood (see fig. 1). Reducing the theory error is essential if the

full potential of future surveys is to be realized.1 Non-linearities in the gravitational evolution

can be characterized by numerical N-body simulations [3] and, on su�ciently large scales, by

perturbation theory [4, 5]. Less well understood are non-linearities in the biasing between the

clustering of galaxies and the underlying dark matter density.
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Figure 1. Non-linearities in the gravitational evolution, in the biasing and in redshift space distor-
tions (RSD) complicate the relationship between the primordial initial conditions and large-scale structure
observables.

The biasing problem is already visible in dark matter-only simulations, where it is reflected

in the biasing of dark matter halos. On large scales, linear biasing has been shown to be a good

approximation:

�h = b1� , (1.1)

where �h and � are the density contrasts of the halos and the dark matter, respectively, and

the bias parameter b1 is an unknown coe�cient (to be fit to data). However, linear biasing is

known to fail on small scales where non-linearities becomes important. One common procedure

for describing halos beyond the linear biasing model is local Eulerian biasing [6] which assumes

that the halo density contrast is a local function of the dark matter density, �h(x, ⌧) = F [�(x, ⌧)].

Formally, we might write this relation as a Taylor expansion

�h(x, ⌧) =
1X

n=0

b
(0)
n

n!
�
n(x, ⌧) . (1.2)

Local biasing is motivated both as a natural generalization of linear biasing and as a consequence

of a number of semi-analytic models of halo formation. It is also often employed in data anal-

ysis [7–12]. However, the meaning of (1.2) is far from clear, as we need to define �
n(x, ⌧) for

1
The number of useful modes in galaxy surveys scales as the cube of the maximum wavenumber, kmax, at which

the theoretical predictions can still be trusted. Even a relatively modest gain in kmax can therefore dramatically

impact the scientific potential of galaxy surveys (but see [1, 2]).
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Standard perturbation theory + EFT of LSS
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of a number of semi-analytic models of halo formation. It is also often employed in data anal-

ysis [7–12]. However, the meaning of (1.2) is far from clear, as we need to define �
n(x, ⌧) for

1
The number of useful modes in galaxy surveys scales as the cube of the maximum wavenumber, kmax, at which

the theoretical predictions can still be trusted. Even a relatively modest gain in kmax can therefore dramatically

impact the scientific potential of galaxy surveys (but see [1, 2]).
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Galaxy biasing
Long-wavelength fluctuations of galaxies are described as biased tracers of the long-wavelength 
fluctuations of DM + DM counterterms. 
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IV. THEORETICAL TEMPLATE

In this section we describe the implementation of the
theoretical model by the two teams participating in the
cosmological analysis challenge. The employed method-
ologies are almost identical to the ones used in the anal-
ysis of the actual BOSS data by the same teams [28–30].

Both teams participating in the PT challenge use, es-
sentially, the same theoretical template. However, there
are di↵erences in the implementation of IR resummation,
the choice of nuisance parameters and their priors. Be-
sides, the two teams use absolutely independent pipelines
based on di↵erent software. This section describes in de-
tail the pipelines used by the two teams and focuses on
methodological di↵erences.

A. Common basis for the EFT formulation

On general grounds, it is believed that any physical
system has a unique and correct description at long wave-
lengths where the microscopical details of the physical
system under consideration can be encoded in just a few
coe�cients of the terms in the equations of motion. In
the context of the long-distance universe, this description
is believed to be the E↵ective Field Theory of Large-
Scale Structure (EFTofLSS) [63, 64]. The originality of
the EFTofLSS with respect to other pre-existing pertur-
bative methods that were applied in the context of LSS
is two-fold. First is the presence of suitable terms in
the equations of motion that encode the e↵ect of short-
distance non-linearities and galaxies at long distances,
and that cannot be predicted without detailed knowl-
edge of galaxy physics, and therefore are generically fit
to observations. Second, the equations of motion in the
EFTofLSS have non-linear terms that are proportional
to some parameters. Due to the many phenomena that
control the evolution of our universe, there are several of
these parameters, such as the size of the density pertur-
bation or the ratio of a given wavelength with respect to
the size of the displacements induced by short distance
modes [18]. For all of these parameters but one, an iter-
ative solution is performed. Instead for one parameter,
the one encoding the e↵ect of long wavelength displace-
ments, a non-linear solution is performed, which goes
under the name of IR-Resummation [18, 65–68]. Di↵er-
ent incarnations of the EFTofLSS make this expansion
more or less manifest. For example, the Lagrangian-
space EFTofLSS [69] automatically solves non-linearly in
the e↵ect of long-displacements, and so, it is identical to
the Eulerian EFTofLSS that we use here after this has
been IR-Resummed [18].

In the EFTofLSS, the description of the clustering of
galaxies in redshift space is performed in the following
way. First, the dark matter and baryonic fields are de-
scribed in terms of fluids with a non-trivial stress tensor.
Galaxies are biased tracers, in the sense that, if �g is the

galaxy overdensity, we have that [19]

�g(x, t) =
X

n

Z
dt

0
Kn(t, t

0) Õn(xfl, t
0) (12)

=
X

n,m

bn,m(t)On,m(x, t)

where Õn are all possible fields, such as, for example,
the dark matter density, that, by general relativity, can
a↵ect the formation of galaxies. Kn(t, t0) are some ker-
nels that relate how a field at a certain time a↵ects the
galaxies at later times, and xfl is the location at time t

0

of the fluid element that is at x at time t. The last step
of the above equation can be performed using the per-
turbative expression for the matter and baryonic fields.
In fact, in perturbation theory the time- and space-
dependence parts factorize in a form, schematically, given
by �(~k, t) ⇠

P
n fn(t)�

(n)(~k), where �(n) is order n in the
expansion parameters. This allows us to define the bi-
ases b as bn,m(t) ⇠

R
dt

0
Kn(t, t0)fm(t0). This provides

the first complete parametrization of the bias expansion,
though many earlier attempts were made and substantial
but partial successes were obtained.
Next, we need to describe the observed density

field in redshift space. This is a combination of
the density field in configuration space and density
times powers of the velocity field of galaxies, such
as ⇢(~x, t)v(~x, t)i, ⇢(~x, t)vi(~x, t)vi(~x, t), . . .. Again, these
short-distance-dependent terms are described as above
as biased tracers of the density and baryonic fields [20].
Because of what we just discussed, the range over

which di↵erent implementations of the EFTofLSS can
di↵er is extremely limited: they may choose a di↵erent
basis for the EFT-parameters, they may add an incom-
plete, and therefore di↵erent, set of higher-order contert-
erms to partially include the e↵ect of some higher order
calculation that was not performed, or they may have
di↵erent implementations or approximations for the IR-
Resummation. We are going to list them in detail next.

B. Group dependent implementation

Although both teams use the same theoretical model,
there are several important methodological di↵erences.
Moreover, the two groups have made very di↵erent
choices in the model implementation and numerical al-
gorithms. This section describes in detail the pipelines
used by the two teams.

1. East Coast Team

The East Coast Team used only the monopole and the
quadrupole in the analysis. The East Coast Team ana-
lyzed the challenge data with and without the hexade-

7

IV. THEORETICAL TEMPLATE

In this section we describe the implementation of the
theoretical model by the two teams participating in the
cosmological analysis challenge. The employed method-
ologies are almost identical to the ones used in the anal-
ysis of the actual BOSS data by the same teams [28–30].

Both teams participating in the PT challenge use, es-
sentially, the same theoretical template. However, there
are di↵erences in the implementation of IR resummation,
the choice of nuisance parameters and their priors. Be-
sides, the two teams use absolutely independent pipelines
based on di↵erent software. This section describes in de-
tail the pipelines used by the two teams and focuses on
methodological di↵erences.

A. Common basis for the EFT formulation

On general grounds, it is believed that any physical
system has a unique and correct description at long wave-
lengths where the microscopical details of the physical
system under consideration can be encoded in just a few
coe�cients of the terms in the equations of motion. In
the context of the long-distance universe, this description
is believed to be the E↵ective Field Theory of Large-
Scale Structure (EFTofLSS) [63, 64]. The originality of
the EFTofLSS with respect to other pre-existing pertur-
bative methods that were applied in the context of LSS
is two-fold. First is the presence of suitable terms in
the equations of motion that encode the e↵ect of short-
distance non-linearities and galaxies at long distances,
and that cannot be predicted without detailed knowl-
edge of galaxy physics, and therefore are generically fit
to observations. Second, the equations of motion in the
EFTofLSS have non-linear terms that are proportional
to some parameters. Due to the many phenomena that
control the evolution of our universe, there are several of
these parameters, such as the size of the density pertur-
bation or the ratio of a given wavelength with respect to
the size of the displacements induced by short distance
modes [18]. For all of these parameters but one, an iter-
ative solution is performed. Instead for one parameter,
the one encoding the e↵ect of long wavelength displace-
ments, a non-linear solution is performed, which goes
under the name of IR-Resummation [18, 65–68]. Di↵er-
ent incarnations of the EFTofLSS make this expansion
more or less manifest. For example, the Lagrangian-
space EFTofLSS [69] automatically solves non-linearly in
the e↵ect of long-displacements, and so, it is identical to
the Eulerian EFTofLSS that we use here after this has
been IR-Resummed [18].

In the EFTofLSS, the description of the clustering of
galaxies in redshift space is performed in the following
way. First, the dark matter and baryonic fields are de-
scribed in terms of fluids with a non-trivial stress tensor.
Galaxies are biased tracers, in the sense that, if �g is the

galaxy overdensity, we have that [19]

�g(x, t) =
X

n

Z
dt

0
Kn(t, t
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Figure 6: Sketch of the spacetime region involved in the formation of tracers such as halos or galaxies. Time is running
vertically. The solid line denotes the fluid trajectory xfl(⌧ 0) from a Lagrangian position q = xfl(⌧ = 0) to a Eulerian position
x = xfl(⌧) at time ⌧ . The shaded region with a comoving spatial extent of order R⇤ denotes the region from which the matter
within the galaxy and its host halo originates, or the region of influence feedback processes—whichever is larger.

complicated dynamics of the formation of galaxies (Sec. 2.10).
When considering galaxy formation as e↵ectively local, the only quantities that are relevant for the

formation of galaxies are then the density and the tidal field @i@j�(xfl(⌧ 0), ⌧ 0) along the trajectory of a
Lagrangian patch enclosing the galaxy ([88, 131]; Ref. [125] only considered the matter density along the
fluid trajectory). One way to prove this statement is to invoke the equivalence principle, which states that
in a free-falling frame, such as that comoving with the trajectory xfl(⌧), the leading locally observable
gravitational e↵ect is given by second derivatives of the metric tensor. Moreover, essentially all tracers
of the LSS are non-relativistic. Then, the only relevant component of the metric tensor is the time-time-
component. On sub-horizon scales, this is in turn equivalent to the tensor @i@j�, where � is the gravitational
potential defined in Eq. (1.2). This tensor can further be decomposed into the trace r2� which is directly
related to the density perturbation � through the Poisson equation; and the trace-free part Kij [Eq. (2.22)],
which quantifies the tidal field proper. An alternative, more rigorous derivation of the same result is given
by the Conformal Fermi Coordinate (CFC) approach [145, 146], which clarifies the meaning of the density
perturbation and Kij in the relativistic context. We will return to this in Sec. 2.9.

This reasoning provides the physical justification for our definition of local bias (Sec. 1.3) as encompassing
all terms in the general bias expansion that are constructed (without any further spatial derivatives) out
of the density and tidal field along the fluid trajectory: these are precisely the leading local gravitational
observables for a comoving observer. In conformal-Newtonian gauge, these terms are characterized by
exactly two spatial derivatives acting on each power of the potential �. Note that we do not need to assume
a conserved, passively evolving galaxy sample here. Any gravitational interactions such as mergers [147]
do not, on su�ciently large scales, depend on any property apart from the local density and tidal field. A
galaxy sample that preferentially resides in halos formed from recent major mergers might have a larger
nonlocality scale R⇤ than that of typical halos of the same mass. Nevertheless, it will be a finite scale, and
presumably still of order the Lagrangian radius of these halos as argued above.

In our reasoning we did however implicitly assume that the small-scale initial conditions, i.e. those of
much smaller scale than the large-scale correlations we are interested in, are statistically uncorrelated over
large scales. This is the case for Gaussian initial conditions, which we assume in this section.

Now, let us formalize our reasoning. The dependence on �(xfl(⌧ 0), ⌧ 0) and Kij(xfl(⌧ 0), ⌧ 0) can be written
as multiple time integrals over the fluid trajectory. For example, in the simplest case, for a given operator
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Global picture

1 Introduction

Over the next decade, large-scale structure (LSS) surveys will play an increasingly important

role in the measurement of cosmological parameters and as a probe of initial conditions. In order

to relate late-time observables to the physics of the early universe, several sources of secondary

non-linearities need to be understood (see fig. 1). Reducing the theory error is essential if the

full potential of future surveys is to be realized.1 Non-linearities in the gravitational evolution

can be characterized by numerical N-body simulations [3] and, on su�ciently large scales, by

perturbation theory [4, 5]. Less well understood are non-linearities in the biasing between the

clustering of galaxies and the underlying dark matter density.

Initial Conditions Large-Scale Structure
SPT, EFT-of-LSS
N-body simulations

dark matter

halos

galaxies

halo biasing

galaxy biasing

RSD

Figure 1. Non-linearities in the gravitational evolution, in the biasing and in redshift space distor-
tions (RSD) complicate the relationship between the primordial initial conditions and large-scale structure
observables.

The biasing problem is already visible in dark matter-only simulations, where it is reflected

in the biasing of dark matter halos. On large scales, linear biasing has been shown to be a good

approximation:

�h = b1� , (1.1)

where �h and � are the density contrasts of the halos and the dark matter, respectively, and

the bias parameter b1 is an unknown coe�cient (to be fit to data). However, linear biasing is

known to fail on small scales where non-linearities becomes important. One common procedure

for describing halos beyond the linear biasing model is local Eulerian biasing [6] which assumes

that the halo density contrast is a local function of the dark matter density, �h(x, ⌧) = F [�(x, ⌧)].

Formally, we might write this relation as a Taylor expansion

�h(x, ⌧) =
1X

n=0

b
(0)
n

n!
�
n(x, ⌧) . (1.2)

Local biasing is motivated both as a natural generalization of linear biasing and as a consequence

of a number of semi-analytic models of halo formation. It is also often employed in data anal-

ysis [7–12]. However, the meaning of (1.2) is far from clear, as we need to define �
n(x, ⌧) for

1
The number of useful modes in galaxy surveys scales as the cube of the maximum wavenumber, kmax, at which

the theoretical predictions can still be trusted. Even a relatively modest gain in kmax can therefore dramatically

impact the scientific potential of galaxy surveys (but see [1, 2]).
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Héctor Gil-Maŕın Modern Cosmology, Benasque The power spectrum and bispectrum of the CMASS BOSS galaxies

Introduction
Redshift Space distortions

Bispectrum
Measurements

Conclusions

Introduction
Linear order

Redshift space distortions: Introduction

Redshift space Real space
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Galaxies are measured in redshift space but we can relate the density 
in redshift space and real space by mass conservation
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Since the k-binning of the challenge spectra is very
wide (�k = 0.01 hMpc�1) compared to the fundamen-
tal mode of the box, the theoretical predictions had to be
properly averaged over each bin. The boundaries of the
bins were estimated using the simulation volume, known
to both teams. The East Coast Team checked that the
estimated boundaries allow one to accurately reproduce
the provided weighted means of the k-bins and found
that averaging the theory over the bin versus evaluat-
ing it in the mean can induce roughly O(0.5)� shifts in
cosmological parameters.

2. West Coast Team

The implementation of the West Coast Team is the
result of a long journey where each of ingredients of the
EFTofLSS that is necessary to apply it to data was one-
by-one subsequently developed, tested on simulations,
shown to be successful. Though not all those results are
directly used in the analysis, the West Coast Team, and
probably nobody, would simply have never applied the
model to the data without those intermediate successes.
We therefore find it nice to add, in each instance where
the EFTofLSS is applied to data, the following footnote
where we acknowledge at least a fraction of those impor-
tant developments4.

The model for the West Coast Team and the analysis
techniques are the same as the one used in [28, 30], to
which we refer for details. The one-loop redshift-space

4 The initial formulation of the EFTofLSS was performed in Eu-
lerian space in [63, 64], and then extended to Lagrangian space
in [69]. The dark matter power spectrum has been computed
at one-, two- and three-loop orders in [18, 64, 83–91]. Some ad-
ditional theoretical developments of the EFTofLSS that accom-
panied these calculations were a careful understanding of renor-
malization [64, 92, 93] (including rather-subtle aspects such as
lattice-running [64] and a better understanding of the velocity
field [83, 94]), of the several ways for extracting the value of the
counterterms from simulations [64, 95], and of the non-locality in
time of the EFTofLSS [19, 83, 85]. These theoretical explorations
also include an instructive study in 1+1 dimensions [95]. In or-
der to correctly describe the Baryon Acoustic Oscillation (BAO)
peak, an IR-resummation of the long displacement fields had
to be performed. This has led to the so-called IR-Resummed
EFTofLSS [18, 65–68]. A method to account for baryonic ef-
fects was presented in [21]. The dark-matter bispectrum has
been computed at one-loop in [96, 97], the one-loop trispectrum
in [98], and the displacement field in [99]. The lensing power
spectrum has been computed at two loops in [100]. Biased trac-
ers, such as halos and galaxies, have been studied in the context
of the EFTofLSS in [19, 72, 73, 101–103] (see also [14]), the halo
and matter power spectra and bispectra (including all cross cor-
relations) in [19, 101]. Redshift space distortions have been de-
veloped in [20, 22, 73]. Clustering dark energy has been included
in the formalism in [90, 104–106], primordial non-Gaussianities
in [22, 101, 107–110], and neutrinos in [111, 112]. Faster evalu-
ation schemes for evaluation for some of the loop integrals have
been developed in [77].

galaxy power spectrum reads:
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k
�1
m controls the bias derivative expansion and we set it

to be ' k
�1
nl , which is the scale controlling the expansion

of the dark matter derivative expansion. We set knl =
0.7hMpc�1. n̄g is the mean galaxy density.
In the next to the last line of Eq. (20), the term in

cct represents a linear combination of a higher deriva-
tive bias [19] that appears in Eq. (12) and the speed of

sound of dark matter [63, 64]: �(~k, t) � k
2
�lin(~k, t). The

terms in cr,1 and cr,2 represent the redshift-space coun-

terterms [20]: �redshift(~k, t) � k
2
µ
2
�(k, t), k

2
µ
4
�(k, t). In

the last line of Eq. (20), we have the stochastic coun-
terterms: c✏,1 and c✏,2 originate from Taylor expansion
of Eq. (12) [19], while c✏,3 originates from the redshift-
space expressions [20].
The redshift-space galaxy density kernels Z1, Z2 and

Z3 are given in Appendix A. These kernels depend on
the bias coe�cients that we define as explained below
Eq. (12). By choosing only the linearly-independent ones,
this gives rise to the so-called base of descendants. While
up to cubic order this base is equivalent to more standard
bases, already at quartic perturbative order new terms
appear.

The IR-resummation is performed in a numerically ef-
ficient way using the original method for configuration
and redshift space developed in [18, 66, 67], where all the
errors are parametrically controlled by the perturbative
order of the calculation (i.e. no uncontrolled approxima-
tions are present) 5.

We define the following combination of parameters:
c2 = (b2 + b4)/

p
2, c4 = (b2 � b4)/

p
2, c✏,mono =

c✏,2 + fc✏,3/3 and c✏,quad = 2fc✏,3/3. As we analyze
only the monopole and the quadrupole, we set cr,2 = 0

5 Especially within the observational community, a non-linear
treatment of the BAO based on the decomposition of the wiggle
and smooth part of the power spectrum has been popular for a
long time (see for example [113]). However, this Team does not
find this decomposition to be under parametric control (i.e. there
is no small parameter controlling its correctness). It is possible
to go from the original IR-Resummation to the simplified ones
based on the decomposition by performing a series of approxi-
mations (see Appendix of [67]). Of course, this does not mean
that the errors which are introduced are large or significant, as
can be a-posteriori checked on numerical simulations.

D’Amico et al. 1909.05271

Kaiser ‘87

(see also Ivanov et al. 1909.05277)



Fast loop evaluation

dimensionality. This poses a direct challenge to our ability to interrogate large datasets and one

that merely more and faster computers will not address.

In order to simplify and speed up loop calculations we require new ideas, new strategies, to

approach the problem. One inspiring idea, developed in [9] and [10], is to use Fast Fourier Trans-

form (FFT) for e�cient evaluation of the one-loop power spectrum. After first “deconvolving”

the lowest order PT solutions, and performing all angular integrals, the one-loop expressions

reduce to a set of simple one-dimensional integrals that can be e�ciently evaluated using FFT.

Unfortunately, deconvolving higher order perturbative solutions and extending this approach to

the one-loop bispectrum or the two-loop power spectrum proves to be challenging [11].

In this paper we build on ideas of [9, 10] but choose a slightly di↵erent strategy which allows

us to go beyond the one-loop power spectrum. Let us briefly sketch the main idea behind our

proposal. Prior to doing any integrals, the linear power spectrum is expanded as a superposition

of ideal self-similar power-law cosmologies. This is naturally accomplished using FFT in log k.

Given some range of wavenumbers of interest, from kmin to kmax, the approximation for the linear

power spectrum with N sampling points is [9, 12]

P̄lin(kn) =

m=N/2X

m=�N/2

cm k⌫+i⌘m
n , (1.1)

where the coe�cients cm and the frequencies ⌘m are given by

cm =
1

N

N�1X

l=0

Plin(kl) k�⌫
l k�i⌘m

min e�2⇡iml/N , ⌘m =
2⇡m

log(kmax/kmin)
. (1.2)

Notice that the we denote the approximation for the linear power spectrum with P̄lin(k), while

eq. (1.2) uses the exact linear power spectrum Plin(k) to calculate the coe�cients cm. We will keep

using the same notation throughout the paper. The parameter ⌫ is an arbitrary real number. As

we will see, the simplest choice ⌫ = 0 is insu�cient in some applications, so we will use the more

general form of the Fourier transform. In the terminology of [9] we call this ⌫ parameter bias.

Note that the powers in the power-law expansion are complex numbers. In practice, even a small

number of power-laws, O(100), is enough to capture all features of the linear power spectrum

including the BAO wiggles. One important thing to keep in mind is that the Fourier transform

produces the power spectrum that is periodic in log k. Therefore, we will take care to choose kmin

and kmax such that we cover the range of scales where we actually care about the value of the

power spectrum. In other words we are choosing the momentum range where the loop integrals

have the most of the support. However, one always has to be careful about possible contributions

particularly from high k modes or short scales.

Is this a limitation? Absolutely not. At the heart of the EFT understanding is the simple

recognition that the PT idealized description of satisfying fluid-like equations of motion can only

be valid at certain scales. This is much the same as the hydrodynamic description of liquid water

is only valid at certain scales. Attempting to integrate this approximation over scales outside

of its validity introduces non-parametrically controlled errors. Instead the information in the

3

are complex numbers rather than integers. Still, the unknown dimensionless function I(⌫1, ⌫2)

can be easily calculated using the standard technique with Feynman parameters. The result is a

well known expression [13, 14]

I(⌫1, ⌫2) =
1

8⇡3/2

�(3
2 � ⌫1)�(3

2 � ⌫2)�(⌫12 �
3
2)

�(⌫1)�(⌫2)�(3 � ⌫12)
, (2.6)

were ⌫12 = ⌫1 + ⌫2 (throughout the paper we adopt the following notation ⌫1...n ⌘ ⌫1 + · · ·+ ⌫n).

Notice that, thanks to the analytic continuation, I(⌫1, ⌫2) gives a finite answer even for the

values of parameters for which the integral is formally divergent. In practice, breaking the loop

calculation into many pieces can lead to some divergent terms. However, as long as the total

sum is well defined and finite, for at least some power-law cosmology Plin(k) ⇠ k⌫ , by analytic

continuation it is guaranteed that eq. (2.6) gives the correct answer.

Sometimes the condition that the integral at hand is convergent for at least some power-law

power spectrum cannot be met, and one has to use eq. (2.6) with some care. For example,

the function I(⌫1, ⌫2) vanishes if one of the arguments is zero (or a negative integer). Apply-

ing (2.6) blindly would lead in these cases to paradoxical results. For instance, after power-law

decomposition of the linear power spectrum, eq. (2.6) would imply

Z 1

0
dq Plin(q) = 0 , (2.7)

which is obviously the wrong answer. This is a consequence of the well known statement that in

dimensional regularization all power-law divergences vanish:
R
q q⌫ = 0.3

Similar issues can appear in calculating loop diagrams. Luckily, for a ⇤CDM-like cosmology,

they can be always easily fixed. Let us imagine that the integral we are interested in is divergent

for a given bias ⌫. Then, if the integral diverges in the UV(IR), one has to find the UV(IR)

limit of the integrand. This can be easily done fixing all external momenta and sending the loop

momentum to infinity(zero). This limit always has the form of eq. (2.7) and it would be set to

zero by dimensional regularization. Therefore, to get the correct answer, one simply has to add

the UV(IR) contribution by hand. In the following sections we will give more details for each

specific case we consider.

Let us also point out that all UV divergences have a well defined momentum dependence. This

momentum dependence is the same as for the counterterms in the EFTofLSS. Therefore, one can

proceed without explicitly adding the UV-dependent terms to the loop calculation. The only

e↵ect of this choice is to change the usual values of the counterterms. In this sense we can say

that eq. (2.6) calculates only the “finite” part of the loop integral. As expected, the counterterms

absorb all UV-dependent pieces.
3More precisely, this integral is related to a delta function [15]. A change of coordinates relates

Z

q

1
q3+2⌫1

=
i

2⇡2
�(⌫1) . (2.8)

To get the consistent results one can use this equation. In practice, there is a much simpler way, as described in

the main text.

6

2 One-loop Power Spectrum

Let us first consider the simplest case—the one-loop power spectrum. In perturbation theory

there are two di↵erent one-loop contributions. Using the usual approximation in which the time

dependence is separated from k dependence (for a review see [8]), the one-loop power spectrum

reads

P1�loop(k, ⌧) = D4(⌧)[P22(k) + P13(k)] , (2.1)

where ⌧ is conformal time, D(⌧) is the growth factor for matter fluctuations and the two terms

in the square brackets are given by

P22(k) = 2

Z

q
F 2

2 (q,k � q)Plin(q)Plin(|k � q|) , (2.2)

P13(k) = 6Plin(k)

Z

q
F3(q,�q,k)Plin(q) , (2.3)

where
R
q ⌘

R d3q
(2⇡)3 . Diagrammatic representation of these two contributions is shown in Fig. 1.

The explicit form of kernels Fn can be calculated using well-known recursion relations [8]. One

important point is that it is always possible to expand kernels in (2.2) and (2.3) in integer powers

of k2, q2 and |k � q|2. For example,

F2(q,k � q) =
5

14
+

3k2

28q2
+

3k2

28|k � q|2
�

5q2

28|k � q|2
�

5|k � q|2

28q2
+

k4

14|k � q|2q2
. (2.4)

A similar expression can be found for F3(q,�q,k).2 If we further decompose Plin(k) in power

laws using (1.1), the one-loop power spectrum becomes a sum of simple momentum integrals of

the following form Z

q

1

q2⌫1 |k � q|2⌫2
⌘ k3�2⌫12 I(⌫1, ⌫2) , (2.5)

where ⌫1 and ⌫2 are in general complex numbers.

Plin

Plin

P22

F2 F2

Plin

Plin

P13

F3 Plin

Plin

2

Plin

Plin

P22

F2 F2

Plin

Plin

P13

F3 Plin

Plin

2

Figure 1. Diagrammatic representation of two contributions to the one-loop power spectrum.

As we already mentioned, the form of the integral is identical to the one-loop massless two

point function in QFT. The only di↵erence is that in this case the powers of the “propagators”

2In the expansion of F3(q,�q,k) some terms contain |k + q|2. Given that the kernels are always integrated

over q, one is allowed to do the following change of coordinates q ! �q and bring these terms to the same form

as in (2.4)

5

P22(k) = 2

Z
d3q

(2⇡)3
P11(q)P11(|~k � ~q|)

⇥
F2(~q,~k � ~q)

⇤2

F2(~q,~k � ~q) =
5

14
+

3k2

28q2
+

3k2

28|~k � ~q|2
� 5q2

28|~k � ~q|2
� 5|~k � ~q|2

28q2
+

k4

14|~k � ~q|2q2
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MG: Scale independent models
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Figure 6: Matter power spectrum for four di↵erent values of ↵B today, i.e. ↵B,0 = �0.06, �0.12, �0.24 and
�0.48, at redshift z = 0 (left panel) and z = 1 (right panel). For comparison, the dashed and dotted lines
in the left lower panel respectively show the quasi-static approximation and the perturbative solution of
eq. (D.10).

D.1 Matter power spectrum

We plot the matter power spectrum in Fig. 6. The e↵ect of ↵B is to enhance the power on short
scales, due to strengthening of gravity. Indeed, the modification of the Poisson equation (3.24)
reads

µ� = 1�
↵B

1 + ↵B + 3⌦m/2
, (D.4)

and one can use this relation in eq. (3.27) (with � = 0) to predict the corresponding enhancement.
On large scales we observe the opposite e↵ect, i.e. a suppression of power, and a crossover scale
between these two regimes independent of ↵B,0.

To study the large scale regime we proceed analogously to what done in Sec. 4.1 and solve the

30
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r2⇡ = ↵ · 4⇡G�

Scalar field clustering on short scales:

Scale independent models: nDGP, Galileons, Horndeski, beyond Horndeski, etc. 
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Same equations for the dark matter fluid (continuity + Euler). Poisson equation modified:

<latexit sha1_base64="z/7B6pGHg6r+w8sZGT0rIblIkuU=">AAACOXicbVDLSgMxFM34tr6qLt0Ei9CClplRVBCh4MaNUME+0KlDJs20oZkHyZ1CKX6ZG5f+gks3Im4U/AEz7SC0eiDhcB4k93qx4ApM88WYmZ2bX1hcWs6trK6tb+Q3t+oqSiRlNRqJSDY9opjgIasBB8GasWQk8ARreL2L1G/0mVQ8Cm9gELNWQDoh9zkloCU3f3vl2kWnzyjuudZ+RuwSPsdOkLg2LpKSI5gPxdS/t1NT3wf4t4Md2o4A/za160je6ULJzRfMsjkC/kusjBRQhqqbf3baEU0CFgIVRKk7y4yhNSQSOBXsIeckisWE9kiHDUeTP+A9LbWxH0l9QsAjdSJHAqUGgaeTAYGumvZS8T/vLgH/tDXkYZwAC+n4IT8RGCKcrhG3uWQUxEATQiXXP8S0SyShoJed06Nb04P+JXW7bB2XD6+PCpWzbAlLaAftoiKy0AmqoEtURTVE0RN6Q5/oy3g0Xo1342McnTGyzjaagPH9A2Mvpwc=</latexit>
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k21k

2
2 � (~k1 · ~k2)2

⌘
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<latexit sha1_base64="yYBMU+J1nEk861TFoRWyxuuTQiI=">AAAB+3icbVDLSgMxFL1TX7W+Rl3qIliEuikzKiqIUHChywr2AW0ZMmmmDc08SDJCGWbjr7gRcaPgP/gL/o3pdBa29UDg5JwTcu9xI86ksqwfo7C0vLK6VlwvbWxube+Yu3tNGcaC0AYJeSjaLpaUs4A2FFOctiNBse9y2nJHtxO/9USFZGHwqMYR7fl4EDCPEay05JiHd07SFT6inpeiG/TnVsEnjlm2qlYGtEjsnJQhR90xv7v9kMQ+DRThWMqObUWql2ChGOE0LXVjSSNMRnhAk2z2FB1rqY+8UOgTKJSpMznsSzn2XZ30sRrKeW8i/ud1YuVd9RIWRLGiAZl+5MUcqRBNikB9JihRfKwJJoLpCREZYoGJ0nWV9Or2/KKLpHlatS+qZw/n5dp1XkIRDuAIKmDDJdTgHurQAALP8Aof8GmkxovxZrxPowUjf7MPMzC+fgEYiJLy</latexit>
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MG: Scale independent models
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<latexit sha1_base64="U55mTIDPITXhOd8HuAN4LEvBtzs=">AAAB+HicbVDLSsNAFL3xWesr6krcDBbBVUxUVHBTcOOygn1AU8JkOmmHziRhZiLUUPwVNyJuFPwKf8G/cdpm09YDA4dzznDvPWHKmdKu+2stLa+srq2XNsqbW9s7u/befkMlmSS0ThKeyFaIFeUspnXNNKetVFIsQk6b4eBu7DefqFQsiR/1MKUdgXsxixjB2kiBfSgCP+0z5HOOBkHuS4EiRzijMxzYFddxJ0CLxCtIBQrUAvvH7yYkEzTWhGOl2p6b6k6OpWaE01HZzxRNMRngHs0ni4/QiZG6KEqkebFGE3Umh4VSQxGapMC6r+a9sfif1850dNPJWZxmmsZkOijKONIJGreAukxSovnQEEwkMxsi0scSE226KpvTvflDF0nj3PGunIuHy0r1tiihBEdwDKfgwTVU4R5qUAcCL/AGn/BlPVuv1rv1MY0uWcWfA5iB9f0HZ76SCg==</latexit>
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<latexit sha1_base64="mBPFgfO+iJpgGwd8c+HITnT/IWA="></latexit>

Same equations for the dark matter fluid. Poisson equation modified

<latexit sha1_base64="z/7B6pGHg6r+w8sZGT0rIblIkuU="></latexit>
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<latexit sha1_base64="yYBMU+J1nEk861TFoRWyxuuTQiI=">AAAB+3icbVDLSgMxFL1TX7W+Rl3qIliEuikzKiqIUHChywr2AW0ZMmmmDc08SDJCGWbjr7gRcaPgP/gL/o3pdBa29UDg5JwTcu9xI86ksqwfo7C0vLK6VlwvbWxube+Yu3tNGcaC0AYJeSjaLpaUs4A2FFOctiNBse9y2nJHtxO/9USFZGHwqMYR7fl4EDCPEay05JiHd07SFT6inpeiG/TnVsEnjlm2qlYGtEjsnJQhR90xv7v9kMQ+DRThWMqObUWql2ChGOE0LXVjSSNMRnhAk2z2FB1rqY+8UOgTKJSpMznsSzn2XZ30sRrKeW8i/ud1YuVd9RIWRLGiAZl+5MUcqRBNikB9JihRfKwJJoLpCREZYoGJ0nWV9Or2/KKLpHlatS+qZw/n5dp1XkIRDuAIKmDDJdTgHurQAALP8Aof8GmkxovxZrxPowUjf7MPMzC+fgEYiJLy</latexit>
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Figure 1: E↵ect of some of the modified gravity couplings on the one-loop matter power spectrum. The ratio between
the predicted up-to-one-loop power spectrum with dark energy and that for ⇤CDM is shown for di↵erent current
values of two modified gravity parameters, ↵B (blue and red solid lines) and ↵V2 (green dashed line), including LSS
counterterms. Specifically, ↵B enters at quadratic and higher order in the action while ↵V2 enters at cubic and
higher order, so it does not modify the linear spectrum. All the other modified gravity parameters not mentioned in
the legend are set to zero. Moreover, for the ↵B case the prediction for the linear power spectrum is shown by the
curves labeled as “Linear” (thin dashed-dot lines) in the legend. The green band around the dashed green curve is
obtained by varying the amplitude of the LSS counterterm over a reasonable range (see more details in Section 6).
Since a non-vanishing ↵B changes also the linear power spectrum with dark energy, large modifications on mildly
non-linear scales due to this parameter also imply large changes in the linear spectrum. On the other hand, ↵V2 has
a direct e↵ect on mildly-nonlinear scales without a↵ecting the linear predictions.

thick dashed green curve in Figure 1. The green shaded region is given by varying the value of the
counterterm for the dashed green curve over a reasonable range. More details on this plot can be
found in Section 6.

In this work, we will make use of the following notation. We mark time derivatives by ḟ ⌘ @f/@t

and derivatives with respect to the scale factor by f
0 ⌘ @f/@a. The physical Hubble scale is

H = ȧ/a and the comoving one is H = aH. Spatial indices are raised and lowered by the spatial
metric hij . Note that for spatial derivatives we will use @

2 =
P

3

i=1
@i@i, which does not contain

any factors of the metric. The Heaviside theta function is denoted by ⇥H. The convention for a
symmetrized tensor is V(ab) =

1

2
(Vab + Vba).

keep an eye out for fluidity related to moving the EFT section up
Mention double screening Gratia:2016tgq ?

2 Nonlinear E↵ective Theory of Dark Energy

When approaching short scales, gravitational as well as scalar field nonlinearities become impor-
tant. To study this regime, we must extend the E↵ective Field Theory of Dark Energy approach
developed for linear perturbations in [6,8,12] and introduce higher-order operators (see also [36]).
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EFT of Dark Energy

GR

model

↵1
<latexit sha1_base64="t1KGmr3ZaEuc8mrj46Ytfnryfw8=">AAAB5XicbVDLSgNBEOz1GeMr6tHLYBA8hR0RFLwEvHiMYB6QhNA7mU2GzD6Y6RVCyCd4EfGi4O/4C/6Nk2QvSSwYKKpq6K4OUq0s+f6vt7G5tb2zW9gr7h8cHh2XTk4bNsmMkHWR6MS0ArRSq1jWSZGWrdRIjAItm8HoYeY3X6SxKomfaZzKboSDWIVKIDmp1UGdDrHHe6WyX/HnYOuE56QMOWq90k+nn4gskjEJjda2uZ9Sd4KGlNByWuxkVqYoRjiQk/mWU3bppD4LE+NeTGyuLuUwsnYcBS4ZIQ3tqjcT//PaGYV33YmK04xkLBaDwkwzStisMusrIwXpsSMojHIbMjFEg4LcYYquOl8tuk4a1xXuV/jTTbl6nx+hAOdwAVfA4Raq8Ag1qIMADW/wCV/ewHv13r2PRXTDy/+cwRK87z+Ot4tg</latexit><latexit sha1_base64="t1KGmr3ZaEuc8mrj46Ytfnryfw8=">AAAB5XicbVDLSgNBEOz1GeMr6tHLYBA8hR0RFLwEvHiMYB6QhNA7mU2GzD6Y6RVCyCd4EfGi4O/4C/6Nk2QvSSwYKKpq6K4OUq0s+f6vt7G5tb2zW9gr7h8cHh2XTk4bNsmMkHWR6MS0ArRSq1jWSZGWrdRIjAItm8HoYeY3X6SxKomfaZzKboSDWIVKIDmp1UGdDrHHe6WyX/HnYOuE56QMOWq90k+nn4gskjEJjda2uZ9Sd4KGlNByWuxkVqYoRjiQk/mWU3bppD4LE+NeTGyuLuUwsnYcBS4ZIQ3tqjcT//PaGYV33YmK04xkLBaDwkwzStisMusrIwXpsSMojHIbMjFEg4LcYYquOl8tuk4a1xXuV/jTTbl6nx+hAOdwAVfA4Raq8Ag1qIMADW/wCV/ewHv13r2PRXTDy/+cwRK87z+Ot4tg</latexit><latexit sha1_base64="t1KGmr3ZaEuc8mrj46Ytfnryfw8=">AAAB5XicbVDLSgNBEOz1GeMr6tHLYBA8hR0RFLwEvHiMYB6QhNA7mU2GzD6Y6RVCyCd4EfGi4O/4C/6Nk2QvSSwYKKpq6K4OUq0s+f6vt7G5tb2zW9gr7h8cHh2XTk4bNsmMkHWR6MS0ArRSq1jWSZGWrdRIjAItm8HoYeY3X6SxKomfaZzKboSDWIVKIDmp1UGdDrHHe6WyX/HnYOuE56QMOWq90k+nn4gskjEJjda2uZ9Sd4KGlNByWuxkVqYoRjiQk/mWU3bppD4LE+NeTGyuLuUwsnYcBS4ZIQ3tqjcT//PaGYV33YmK04xkLBaDwkwzStisMusrIwXpsSMojHIbMjFEg4LcYYquOl8tuk4a1xXuV/jTTbl6nx+hAOdwAVfA4Raq8Ag1qIMADW/wCV/ewHv13r2PRXTDy/+cwRK87z+Ot4tg</latexit><latexit sha1_base64="t1KGmr3ZaEuc8mrj46Ytfnryfw8=">AAAB5XicbVDLSgNBEOz1GeMr6tHLYBA8hR0RFLwEvHiMYB6QhNA7mU2GzD6Y6RVCyCd4EfGi4O/4C/6Nk2QvSSwYKKpq6K4OUq0s+f6vt7G5tb2zW9gr7h8cHh2XTk4bNsmMkHWR6MS0ArRSq1jWSZGWrdRIjAItm8HoYeY3X6SxKomfaZzKboSDWIVKIDmp1UGdDrHHe6WyX/HnYOuE56QMOWq90k+nn4gskjEJjda2uZ9Sd4KGlNByWuxkVqYoRjiQk/mWU3bppD4LE+NeTGyuLuUwsnYcBS4ZIQ3tqjcT//PaGYV33YmK04xkLBaDwkwzStisMusrIwXpsSMojHIbMjFEg4LcYYquOl8tuk4a1xXuV/jTTbl6nx+hAOdwAVfA4Raq8Ag1qIMADW/wCV/ewHv13r2PRXTDy/+cwRK87z+Ot4tg</latexit>

↵2
<latexit sha1_base64="8h35bl5u+3XqdzQDUn1uIUqS1Qs=">AAAB5XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQcFLwIvHCOYBSQi9k9lkyOyDmV4hhHyCFxEvCv6Ov+DfONnsJYkFA0VVDd3VfqKkIdf9dQpb2zu7e8X90sHh0fFJ+fSsZeJUc9HksYp1x0cjlIxEkyQp0Um0wNBXou1PHhZ++0VoI+PomaaJ6Ic4imQgOZKVOj1UyRgHtUG54lbdDGyTeDmpQI7GoPzTG8Y8DUVEXKExXc9NqD9DTZIrMS/1UiMS5BMciVm25ZxdWWnIgljbFxHL1JUchsZMQ98mQ6SxWfcW4n9eN6Xgrj+TUZKSiPhyUJAqRjFbVGZDqQUnNbUEuZZ2Q8bHqJGTPUzJVvfWi26SVq3quVXv6aZSv8+PUIQLuIRr8OAW6vAIDWgCBwVv8Alfzsh5dd6dj2W04OR/zmEFzvcfkDGLYQ==</latexit><latexit sha1_base64="8h35bl5u+3XqdzQDUn1uIUqS1Qs=">AAAB5XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQcFLwIvHCOYBSQi9k9lkyOyDmV4hhHyCFxEvCv6Ov+DfONnsJYkFA0VVDd3VfqKkIdf9dQpb2zu7e8X90sHh0fFJ+fSsZeJUc9HksYp1x0cjlIxEkyQp0Um0wNBXou1PHhZ++0VoI+PomaaJ6Ic4imQgOZKVOj1UyRgHtUG54lbdDGyTeDmpQI7GoPzTG8Y8DUVEXKExXc9NqD9DTZIrMS/1UiMS5BMciVm25ZxdWWnIgljbFxHL1JUchsZMQ98mQ6SxWfcW4n9eN6Xgrj+TUZKSiPhyUJAqRjFbVGZDqQUnNbUEuZZ2Q8bHqJGTPUzJVvfWi26SVq3quVXv6aZSv8+PUIQLuIRr8OAW6vAIDWgCBwVv8Alfzsh5dd6dj2W04OR/zmEFzvcfkDGLYQ==</latexit><latexit sha1_base64="8h35bl5u+3XqdzQDUn1uIUqS1Qs=">AAAB5XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQcFLwIvHCOYBSQi9k9lkyOyDmV4hhHyCFxEvCv6Ov+DfONnsJYkFA0VVDd3VfqKkIdf9dQpb2zu7e8X90sHh0fFJ+fSsZeJUc9HksYp1x0cjlIxEkyQp0Um0wNBXou1PHhZ++0VoI+PomaaJ6Ic4imQgOZKVOj1UyRgHtUG54lbdDGyTeDmpQI7GoPzTG8Y8DUVEXKExXc9NqD9DTZIrMS/1UiMS5BMciVm25ZxdWWnIgljbFxHL1JUchsZMQ98mQ6SxWfcW4n9eN6Xgrj+TUZKSiPhyUJAqRjFbVGZDqQUnNbUEuZZ2Q8bHqJGTPUzJVvfWi26SVq3quVXv6aZSv8+PUIQLuIRr8OAW6vAIDWgCBwVv8Alfzsh5dd6dj2W04OR/zmEFzvcfkDGLYQ==</latexit><latexit sha1_base64="8h35bl5u+3XqdzQDUn1uIUqS1Qs=">AAAB5XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQcFLwIvHCOYBSQi9k9lkyOyDmV4hhHyCFxEvCv6Ov+DfONnsJYkFA0VVDd3VfqKkIdf9dQpb2zu7e8X90sHh0fFJ+fSsZeJUc9HksYp1x0cjlIxEkyQp0Um0wNBXou1PHhZ++0VoI+PomaaJ6Ic4imQgOZKVOj1UyRgHtUG54lbdDGyTeDmpQI7GoPzTG8Y8DUVEXKExXc9NqD9DTZIrMS/1UiMS5BMciVm25ZxdWWnIgljbFxHL1JUchsZMQ98mQ6SxWfcW4n9eN6Xgrj+TUZKSiPhyUJAqRjFbVGZDqQUnNbUEuZZ2Q8bHqJGTPUzJVvfWi26SVq3quVXv6aZSv8+PUIQLuIRr8OAW6vAIDWgCBwVv8Alfzsh5dd6dj2W04OR/zmEFzvcfkDGLYQ==</latexit>

↵3
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FIG. 9. Top figure: The T T , EE, lensing and T E angular powerspectra of the CMB for a reference LCDM and four different choices of the
{wDE, aX} functions along with the relative difference between EFTCAMB and hi class . Bottom figure: The same as in the top figure but
for the matter power spectrum at different redshifts.

For the models we considered we verified that the disagree-
ment between the different codes was never worse than 1%,
but it should be care of the user to verify that the precision pa-
rameters chosen are sufficient in order to obtain the accuracy
desired.

All the models we considered in this paper have the com-
mon property of being insensitive to the initial conditions as-
sumed for the evolution of the perturbation. This is a cru-
cial point when adding new degrees of freedom to the stan-
dard cosmological model. If it is true that probably most of

the models in the literature satisfy this requirement (with the
remarkable exceptions of the so-called “early dark energy”
models), it is also true that if one chooses arbitrary config-
urations for the additional degree of freedom the issue of the
initial conditions may be important. In these cases the agree-
ment between different codes could be much worse, due to
the fact that either during the era dominated by radiation the
scalar field has no attractor or it exists but the initial condi-
tions chosen are outside its basin of attraction. In the first
scenario one could simply discard the model under considera-
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FIG. 9. Top figure: The T T , EE, lensing and T E angular powerspectra of the CMB for a reference LCDM and four different choices of the
{wDE, aX} functions along with the relative difference between EFTCAMB and hi class . Bottom figure: The same as in the top figure but
for the matter power spectrum at different redshifts.

For the models we considered we verified that the disagree-
ment between the different codes was never worse than 1%,
but it should be care of the user to verify that the precision pa-
rameters chosen are sufficient in order to obtain the accuracy
desired.

All the models we considered in this paper have the com-
mon property of being insensitive to the initial conditions as-
sumed for the evolution of the perturbation. This is a cru-
cial point when adding new degrees of freedom to the stan-
dard cosmological model. If it is true that probably most of

the models in the literature satisfy this requirement (with the
remarkable exceptions of the so-called “early dark energy”
models), it is also true that if one chooses arbitrary config-
urations for the additional degree of freedom the issue of the
initial conditions may be important. In these cases the agree-
ment between different codes could be much worse, due to
the fact that either during the era dominated by radiation the
scalar field has no attractor or it exists but the initial condi-
tions chosen are outside its basin of attraction. In the first
scenario one could simply discard the model under considera-
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It is possible to further simplify the coe�cient A↵(t),
as we show in App. B 2. The result is

A↵(t) = 1 +

Z t

0
dt1Ḡ(t, t1)K2(t1)

D+(t1)2

D+(t)2
, (44)

where

K2 =
⌫�L�v + ��(3HfL�v + L̇�v)

1� ��
, (45)

and

L�v ⌘ Hf � L⇡ (46)

is defined analogously to eq. (35) for the relative velocity

�v
i
⌘ v

i
� v

i
⇡ . (47)

(We will return to this coe�cient in the next subsection,
in relation to symmetries of the field and fluid equa-
tions.) For Horndeski theories (which include the EdS
(Einstein de Sitter) approximation and ⇤CDM) we have
⌫� = �� = 0 and thus A↵(t) = 1. In Sec. IVA we will
discuss how this value is fixed by the consistency rela-
tions in Horndeski theories. Only DHOST theories can
change this coe�cient. This was shown in [40] restricting
to GLPV theories.

The coe�cient A�(t) has a complicated expression, in
general. It simplifies in the EdS approximation, where
A�(t) = �2/7, but in ⇤CDM and beyond it is in gen-
eral time dependent [48]. A study of this coe�cient in
Horndeski theories can be found in [33–37].

We plot these functions for two di↵erent redshifts and
di↵erent values of the EFT parameters in Fig. 1. As
expected, K2 = 0 and thus A↵ = 1 for Horndeski theories
(�1 = 0) while A� is modified in both Horndeski and
DHOST theories.

Notice that we can organize the kernel in eq. (40) as a
multipolar expansion in the angle µ ⌘ k̂1 ·k̂2, i.e. in terms
of the monopole (proportional to µ

0), dipole (propor-
tional to µ

1) and quadrupole (proportional to µ
2
� 1/3)

contributions. Explicitly, we have (suppressing the time
argument)

F2(~k1,~k2) = A↵ +
2

3
A� +A↵

µ

2

✓
k2

k1
+

k1

k2

◆

�A�

�
µ
2
� 1/3

�
.

(48)

As expected, the solution eq. (38) respects the conser-
vation of mass and momentum, since5

Z
d
3
x �

(2)(~x, t) = 0 and

Z
d
3
xx

i
�
(2)(~x, t) = 0 .

(50)

5 As discussed in [53], this means that in Fourier space,

�
(2)(~k) / k

2 (49)

for k ! 0, which one can explicitly verify for the solution eq. (38).
This contributes to the power spectrum with a term / k

4, which
is why one includes the so-called stochastic contribution in the
EFT of LSS [54].

In fact, mass and momentum conservation is the reason
that the non-linear corrections in eq. (38) appear in the
specific combinations eq. (17).

B. Symmetries of the fluid equations and infrared
behavior

To find the leading terms in the IR limit, one could of
course start with the explicit solution eq. (38) and take
the IR limit. However, we are going to show that the
leading IR behavior is related to the symmetries of the
gravitational field equations, discussed in Sec. II C, and
the symmetries of the fluid equations, which we discuss
next.
The fluid equations eq. (31) are invariant under the

following coordinate change and shifts of the fields:

x̃
i = x

i + n
i(t) , t̃ = t ,

'̃a(x̃
j
, t) = 'a(x

j
, t) + h

i
'a

(t)x̃i
,

�̃(x̃j
, t) = �(xj

, t) ,

ṽ
i(x̃j

, t) = v
i(xj

, t) + aṅ
i(t) ,

(51)

for generic n
i(t) and h

i
 ,⇡(t), as long as

h
i
�(t) = �a

2(n̈i(t) + 2Hṅ
i(t)) . (52)

These symmetries have been discussed to derive the con-
sistency relations of LSS, in e.g. [23–25, 55, 56], where
they apply to both the fluid and gravitational field equa-
tions. Here, we have introduced di↵erent notation from
the transformation eq. (23) to facilitate our discussion of
the adiabatic mode construction in Sec. IV.
Equivalently, the fluid equations are invariant under

the replacements

@i ! @i , @t ! @t � ṅ
i(t)@i , (53)

'a ! 'a + h
i
'a

(t)xi
, � ! � , v

i
! v

i + aṅ
i(t) .

One can explicitly check that the leading IR terms on the
right-hand side of eq. (32) are generated by this trans-
formation.
In the gravitational equations, the transformation of

⇡, eq. (25), is related to the coordinate change (while the
transformations of the other fields are arbitrary). In the
fluid equations, the transformations of vi and � are re-
lated to the coordinate transformation (while the trans-
formations of the other fields are arbitrary). These
transformations can be combined by taking ⇠

i(t) = n
i(t),

b
i
�, (t) = h

i
�, (t), and b

i
⇡(t) = �a

2
ṅ
i(t) to give an over-

all Galilean invariance. In this case, by eq. (23), eq. (28),
and eq. (53), the transformations of vi and v

i
⇡ are the

same, so both velocities can only be simultaneously elim-
inated if there is no relative velocity on large scales. As
we will see later, this means that a physical adiabatic
mode cannot be constructed.
Now, we show how these symmetries determine the

leading IR behavior of �(2). We start with the equations
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Structure of PT kernels dictated by symmetries (e.g. translation, rotations, Bose, mass and 
momentum conservation, etc.)

Time-dependent translation symmetry (Equivalence Principle)

k

q1

q2

qn−1

qn

φq1

φq2

φqn−1

φqn

δ(n)
t,k

1 Constraints on PT kernels for general tracers

Let us use the logarithm of the scale factor as time,

⌘ ⌘ log

✓
a

a0

◆
, (1.1)

and introduce the linear growth factor D(⌘) and the linear growth rate

f(⌘) ⌘ d logD(⌘)

d⌘
. (1.2)

We denote by D+(⌘) and D�(⌘) the growth factor in the growing and decaying mode, respectively.
For the growth rate, an analogous definition of f+ and f� follows from eq. (1.2).

We compress the notation and introduce the linear doublet ��

k(⌘) (� = 1, 2) that includes the
density contrast and the velocity divergence,

�
1(x, ⌘) ⌘ �

(1)(x, ⌘) , �
2(x, ⌘) ⌘ �r · v(1)(x, ⌘)

f+(⌘)H(⌘)
. (1.3)

After decomposing the doublet in Fourier space,

�
�(x, ⌘) =

Z
d
3
k

(2⇡)3
e
�ik·x

�
�

k(⌘) , (1.4)

for each mode k the linear solution reads

�
�

k(⌘) = u
�

f
(⌘)'k(⌘) , u

�

f
(⌘) ⌘

 
1

f(⌘)
f+(⌘)

!
, (1.5)

where 'k(⌘) is related to the initial field 'k(0) by the linear growth, 'k(⌘) = D(⌘)'k(0), with
D(0) = 1. For simplicity, and because this is what happens in most cosmological situations,
in the following we will assume that the external fields are in the growing mode, in which case
u
�

f+
(⌘) ⌘ (1, 1)T . One can straightforwardly generalize our discussion to include the decaying

mode as well.
Assuming deterministic evolution, the full matter density contrast �(⌘,x), or any of its tracers

�t(⌘,x), are a functional of the linear matter density field '(⌘,x),

�(x, ⌘) = F ['(x, ⌘)] , (1.6)

�t(x, ⌘) = Ft['(x, ⌘)] . (1.7)

Focusing on the tracer �t (which can be galaxies, halos, etc.) and going to Fourier space, we can
use perturbation theory to expand the matter density contrast, the velocity divergence and the
tracer density contrast in terms of the linear fields as

�k(⌘) =
1X

n=1

�
(n)
k (⌘), ✓k(⌘) =

1X

n=1

✓
(n)
k (⌘), �t,k(⌘) =

1X

n=1

�
(n)
t,k (⌘) , (1.8)

with
�
(n)
k (⌘) ⌘ Ik;q1··· ,qn F

(n)(q1, · · · ,qn; ⌘)'q1(⌘) · · ·'qn(⌘), (1.9)
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Figure 1: Symbolic representation of the K
(n)(q1, · · · ,qn; a) halo amplitude.

✓
(n)
k (⌘) ⌘ Ik;q1··· ,qn G

(n)(q1, · · · ,qn; ⌘)'q1(⌘) · · ·'qn(⌘), (1.10)

�
(n)
t,k (⌘) ⌘ Ik;q1··· ,qn K

(n)(q1, · · · ,qn; ⌘)'q1(⌘) · · ·'qn(⌘), (1.11)

where, assuming translation invariance, we have defined

Ik;q1··· ,qn ⌘ 1

n!

Z
d
3
q1

(2⇡)3
· · · d

3
qn

(2⇡)3
(2⇡)3�D

 
k�

nX

i=1

qi

!
. (1.12)

The kernels in the expansion (1.8), K(n)(q1, · · · ,qn; ⌘), can be interpreted as transition amplitudes
between linear and nonlinear (tracer field) states, represented in Fig. 1. In writing eq. (1.11) we
have assumed perturbation theory on all scales. However, the perturbative expansion is well known
to break down at short scales. This is usually taken into account by suitable counterterms. We
ignore these terms for the time being and will discuss them in Sec. 5.

The symmetry of the integration domain and of the multi-dimensional integration measure in
(1.11) translates in the requirement that the amplitude is symmetric under exchange of any pair
of external momenta, i.e.,

K
(n)(q1, · · · ,qi, · · · ,qj · · · ,qn; ⌘) = K

(n)(q1, · · · ,qj , · · · ,qi · · · ,qn; ⌘) . (1.13)

1.1 Galilean Invariance

We will use the invariance under time-dependent translations following from Galilean transforma-
tions and the Equivalence Principle, to derive relations between the kernels at di↵erent orders. In
the non-relativistic limit, the dark matter fluid dynamics is invariant under the following change
of coordinates [? ? ],

⌘ ! ⌘̃ = ⌘ , x ! x̃ = x+ d(⌘) , (1.14)

followed by an appropriate transformation of the density and velocity fields,

�(x, ⌘) ! �̃(x̃, ⌘̃) = �(x, ⌘) v(x, ⌘) ! ṽ(x̃, ⌘̃) = v(x, ⌘) +H @⌘d(⌘) , (1.15)

while the Newtonian potential transforms as

� ! ��
⇥
H@⌘(H@⌘d) +H2

@⌘d
⇤
· x . (1.16)

This is a symmetry regardless of the time dependence of d and follows from the Galilean
invariance of the equations in the non-relativistic limit. However, to derive relations between the

3

1 Constraints on PT kernels for general tracers

Let us use the logarithm of the scale factor as time,

⌘ ⌘ log

✓
a

a0

◆
, (1.1)

and introduce the linear growth factor D(⌘) and the linear growth rate

f(⌘) ⌘ d logD(⌘)

d⌘
. (1.2)

We denote by D+(⌘) and D�(⌘) the growth factor in the growing and decaying mode, respectively.
For the growth rate, an analogous definition of f+ and f� follows from eq. (1.2).

We compress the notation and introduce the linear doublet ��

k(⌘) (� = 1, 2) that includes the
density contrast and the velocity divergence,

�
1(x, ⌘) ⌘ �

(1)(x, ⌘) , �
2(x, ⌘) ⌘ �r · v(1)(x, ⌘)

f+(⌘)H(⌘)
. (1.3)

After decomposing the doublet in Fourier space,

�
�(x, ⌘) =

Z
d
3
k

(2⇡)3
e
�ik·x

�
�

k(⌘) , (1.4)

for each mode k the linear solution reads

�
�

k(⌘) = u
�

f
(⌘)'k(⌘) , u

�

f
(⌘) ⌘

 
1

f(⌘)
f+(⌘)

!
, (1.5)

where 'k(⌘) is related to the initial field 'k(0) by the linear growth, 'k(⌘) = D(⌘)'k(0), with
D(0) = 1. For simplicity, and because this is what happens in most cosmological situations,
in the following we will assume that the external fields are in the growing mode, in which case
u
�

f+
(⌘) ⌘ (1, 1)T . One can straightforwardly generalize our discussion to include the decaying

mode as well.
Assuming deterministic evolution, the full matter density contrast �(⌘,x), or any of its tracers

�t(⌘,x), are a functional of the linear matter density field '(⌘,x),

�(x, ⌘) = F ['(x, ⌘)] , (1.6)

�t(x, ⌘) = Ft['(x, ⌘)] . (1.7)

Focusing on the tracer �t (which can be galaxies, halos, etc.) and going to Fourier space, we can
use perturbation theory to expand the matter density contrast, the velocity divergence and the
tracer density contrast in terms of the linear fields as

�k(⌘) =
1X

n=1

�
(n)
k (⌘), ✓k(⌘) =

1X

n=1

✓
(n)
k (⌘), �t,k(⌘) =

1X

n=1

�
(n)
t,k (⌘) , (1.8)

with
�
(n)
k (⌘) ⌘ Ik;q1··· ,qn F

(n)(q1, · · · ,qn; ⌘)'q1(⌘) · · ·'qn(⌘), (1.9)

2

Same symmetries for tracers (excluding mass and momentum conservation): same PT structure for 
bias and RSD
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Horndeski vs beyond Horndeski
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Horndeski theories: time-dependent translation symmetry (EP)

Beyond Horndeski theories: time-dependent translation symmetry (EP)

PT kernels, bias, RSD enjoy the same structure as Standard Perturbation Theory. Example:
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Anomalous dipole

New features in PT kernels, bias, RSD, loops…

Fixed by symmetries
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Figure 1: Function A↵ � 1, see eq. (4.30), as a function of the scale factor a for various values of �1 and a
fixed ↵B. The background evolution has been chosen to be the one of ⇤CDM, i.e. the Hubble rate is given
by H(a) = H0

p
a�3⌦m,0 + 1� ⌦m,0, the matter evolution is given by ⌦m(a) = ⌦m,0/(⌦m,0+a

3(1�⌦m,0)),
and we have taken ⌦m,0 = 0.281 as the current value of the fractional matter density. (In the numerical
calculation, the Hubble rate always appears in the combination H/H0 so that the curves are independent
of the value of H0.) We parametrize the time dependence of the EFT of dark energy parameters as
↵B(a) = ↵̄B(1 � ⌦m(a)) and �1(a) = �̄1(1 � ⌦m(a)), where ↵̄B and �̄1 are constants. The other EFT
parameters, for simplicity, are chosen such that the model leaves the gravitational wave speed, amplitude,
and decay una↵ected (see e.g. [44] for a discussion), i.e. ↵T = ↵M = 0 and ↵H = �2�1. Moreover, we only
plot values of ↵̄B and �̄1 for which ↵c

2

s > 0, as required by the absence of ghost and gradient instability
(see e.g. [79]).

The final expression is [29]

�
(2)(t) ⇡ A↵(t)

@i�
(1)(t)

@2
@i�

(1)(t) , (4.29)

where

A↵(t) = 1 +

Z t

0
dt̃ Ḡ(t, t̃)K2(t̃)

D+(t̃)2

D+(t)2
, K2 ⌘

⌫�L�v + ��(3HfL�v + L̇�v)

1� ��
. (4.30)

We show an example plot of A↵(t)� 1 in Fig. 1.
Next, using the second-order solution above, we can solve for the third-order field. The equation

for �(3) in the IR is

�̈
(3) + ⌫̄��̇

(3)
� µ̄��

(3)
⇡� a

�1
h
v̇
i
(1)@i�

(2) + 2vi(1)@i�̇
(2) + (H � ⌫̄�)v

i
(1)@i�

(2) + a
�1

v
i
(1)v

j
(1)@i@j�

(1)
i

�
a
�1

1� ��

h
(⌫� �H��)�v

i
(1)@i�

(2) + ��

⇣
2�v

i
(1)@i�̇

(2) +�v̇
i
(1)@i�

(2)
⌘

+ ��a
�1

⇣
v
i
(1)v

j
(1) � v

i
⇡(1)v

j
⇡(1)

⌘
@i@j�

(1)
i
. (4.31)

Now, we apply the Green’s function. When we plug the ⇤CDM solution for �(2) into the first line
of eq. (4.31), we obtain the ⇤CDM solution for �

(3) (see App. B). For the rest of the terms, we
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MG: Scale dependent models
Scale dependent models: f(R), chameleon, etc.
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m� & kf.m./a

these terms to only a handful of terms at each order in perturbation theory, which holds in GR as described
in Sec. 2.5.2–2.5.3, is no longer possible in general for modified gravity.

To illustrate this, we adopt a scalar-tensor theory of Brans-Dicke type [702] as toy example of modified
gravity. The well-studied f(R) [703, 704] gravity model falls into this class [705]. This theory introduces
a scalar degree of freedom � with potential V (�) and a specific coupling strength to matter. The linear
growth factor equation, Eq. (B.9) in GR, is then modified to

d2

d⌧2
D(k, ⌧) + H d

d⌧
D(k, ⌧) � 3

2
⌦m(a)H2


1 + ↵(⌧)

k2

k2 + a2m2(⌧)

�
D(k, ⌧) = 0 , (8.26)

where ↵(⌧) > 0 is a coupling constant, while m2(⌧) = d2V (�)/d�2|�̄(⌧) is the mass of the scalar field at

its cosmological background value �̄(⌧) = h�(x, ⌧)i. Eq. (8.26) is derived by solving the usual linearized
Euler-Poisson system augmented by the Klein-Gordon equation for �, where time derivatives of the latter are
neglected (the so-called quasi-static approximation appropriate on subhorizon scales). Clearly, the growth
factor becomes scale-dependent unless m = 0. For k ⌧ am, corresponding to scales larger than the Compton
length of the field, gravity reduces to GR, while on scales within the Compton length (k � am) gravity is
enhanced by a factor 1 + ↵.

Now consider the evolution of a linear LIMD bias relation. At time ⌧ = ⌧⇤, we write �⇤g = b⇤
1
�⇤. Then,

linear evolution via Eq. (2.24) immediately yields [670, 671]

�g(k, ⌧) = bE
1

(k, ⌧)�(k, ⌧) , bE
1

(k, ⌧) = 1 + (b⇤
1

� 1)
D(k, ⌧⇤)

D(k, ⌧)
. (8.27)

Thus, a LIMD (scale-independent) initial bias becomes nonlocal (scale-dependent) at a later time, unless
D(k, ⌧) is separable in k and ⌧ . This holds in the same way for the scale-dependent growth induced by
free-streaming massive neutrinos (Sec. 8.1). From Eq. (8.26) we infer that, in the scalar-tensor example,
the scale dependence will appear at k ⇠ am(⌧). Since a general bias expansion should be able to describe
the special case of a conserved, initially locally biased tracer, we clearly see that, in the case of a modified
gravity scenario with scale-dependent growth, additional terms need to be included in the bias expansion
already at linear order.

In full generality, a scale-dependent growth factor D(k, ⌧) that is not separable in k and ⌧ precludes
us from constructing a rigorous bias expansion in terms of a finite set of bias parameters. Recall that this
construction relied on modes evolving at the same rate on large scales, so that time derivatives could be
reordered to be successively higher order in perturbation theory. This no longer holds for a general D(k, ⌧).
However, as shown by Eq. (8.26), on scales much larger than the Compton length of the additional degree
of freedom, we can perform a perturbative expansion in k2/(am)2. E↵ectively, higher-derivative biases then
absorb the e↵ects of the fifth force consistently.

Viable modified gravity models typically include screening mechanisms which suppress the additional
degrees of freedom in dense regions to satisfy Solar System constraints on gravity (see [700] for a general
discussion). These are nonlinear mechanisms and hence need to be taken into account for nonlinear bias.
Screening mechanisms provide motivation to use low-mass or low-density tracers such as dwarf galaxies or
voids to probe gravity. For screening of the chameleon or symmetron types, we have to include � itself in
the bias expansion, since the screening threshold depends on the ambient field value. Note that for k ⌧ am,
�(k) ⇠ k2/(am)2�(k) is proportional to the density, rather than the potential. Models that invoke screening
of this type have a Compton wavelength that is constrained to be less than ⇠ 10 h�1 Mpc in order to satisfy
Solar System tests [706]. Thus, this dependence on � can be taken into account via the higher derivative
terms mentioned above. For screening of the MOND or k-essence type, the relevant variable is @i�/a0, where
a0 ⇠ H0 is the MOND acceleration scale. Thus, the lowest-order contribution from MOND-type screening
to the galaxy density is (@i�)2/a2

0
, which is of order (v/c)2 . 10�4 and thus expected to have a very small

impact numerically. Finally, for models with screening of the Vainshtein type, the screening depends on
@i@j�. This does not lead to new terms in the bias expansion, since @i@j� is already captured by including
@i@j� and @ivj (as well as their time derivatives) separately.
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Growth depends on scale:

Two regimes:
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Bias expansion should be scale dependent
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Captured by higher-order operators?
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Figure 7. Redshift-space power spectrum monopole, quadrupole, and hexadecapole for halo cata-
logue 1 (1012 < Mh < 4.5⇥ 1012M�h

�1) at redshift z = 0.5.

Before discussing the results, we first begin with a brief overview of the N -body sim-
ulations we compare with, which are the Extended LEnsing PHysics using ANalaytic ray
Tracing ELEPHANT simulations [36, 79], that were performed with a modified version of the
RAMSES code, the ECOSMOG module [120, 121]. The ⇤CDM runs correspond to the following
set of parameters {⌦m,⌦⇤, h, ns,�8,⌦b} = {0.281, 0.719, 0.697, 0.971, 0.848, 0.046}, while 3
instances of the HS n = 1 f(R) model were simulated, corresponding to three variations of
|f̄R0 | = {10�6

, 10�5
, 10�4

}. Furthermore, each scenario has been run using 5 different initial
random seeds, that we average over. For the purposes of simplicity, we refer to these sce-
narios as GR, F6, F5, and F4, respectively, and we will also focus on snapshots at z = 0.5
and z = 1. The simulations span a cubic volume of Vbox = (1024Mpch�1)3, with 10243

dark matter particles, while gravitationally bound haloes were identified using the publicly
available code ROCKSTAR [122]. Further details about the simulations can be found at [36, 79].

To generate RSD outputs from the simulated dark matter and halo catalogues, we dis-
place the particle (and halo) positions with their peculiar velocities, in accordance with the
mapping (4.1), choosing the line of sight n̂ along the ẑ axis. We utilize the publicly avail-
able code NbodyKit8 in order to extract the first 3 nonvanishing multipoles of the mat-
ter and halo PS, P0(k), P2(k), P4(k), evaluated at 512 equally spaced k bins in the range
0.00614 < k < 3.135Mpc�1

h. In the halo case, we extract two separate sub-samples, span-
ning halo mass ranges of 12 < log10Mh < 12.65 and 12.65 < log10Mh < 13 in units of
M�h

�1, that we will refer to as halo catalogue 1 and 2, respectively, from now on. Upon

8https://nbodykit.readthedocs.io/en/latest/index.html
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Figure 8. Redshift-space power spectrum multipoles for halo catalogue 2 (4.5⇥1012 < Mh < 1⇥1013

M�h
�1) at redshift z = 0.5.

the extraction of the clustering statistics from the halo catalogues, we include both main and
satellite haloes in our calculation. We further note that one could alternatively only work
with the main gravitationally bound structures identified by the halo finder, as was e.g. done
in [51], in which case our model would still be applicable, and the agreement with the simula-
tions would likely be better. Given however that the former scenario is more realistic, we did
choose to include the sub-halos and still found good agreement with our model’s predictions,
as we will see shortly.

The final missing piece in order to compare against the simulations pertains to the deter-
mination of the model free parameters, consisting of a total of 4 bias parameters {b1, b2, bs2 , b3nl}
and 4 additional EFT parameters {c0, c2, c4, c̃}, with c` the multipoles of the factor (↵0 +
↵2µ

2 + · · · ) in eq. (4.59). We keep the shot-noise Poissonian, such that Pshot = 1/n̄, with
n̄ the mean number density of halos. Although one has the liberty to let this parameter
free, or even adding a dependence on µ

2
k
2 [73, 100, 101], we find that the Poissonian noise

gives accurate results for our simulated data. We will further reduce the number of indepen-
dent parameters from 8 to 6, since bs2 and b3nl can be expressed in terms of b1, from EdS
co-evolution [78], as

bs2 = �
4

7
(b1 � 1), (5.1)

b3nl =
32

315
(b1 � 1). (5.2)

These expressions assume that the initial, Lagrangian bias is only local and that the velocity
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3 Bias expansion

This section closely follows the work of McDonald and Roy [77], see also [78, 84], slightly
adapted to account for the effects of cosmologies beyond ⇤CDM. It is well known that for
theories with extra degrees of freedom even linear bias becomes scale-dependent, for example
in MG [85] or in the presence of massive neutrinos, particularly when biasing the total matter
field [86–90]. Our first assumption is the existence of higher-curvature bias operators r

2
�,

r
4
�, ..., that effectively encapsulate the effects of a function A(k) that is scale-dependent;

see for example section 8 of [91] and [83]. We expand the tracers’ density in terms of a set of
operators, including the leading curvature operators, labeled with “m” to make reference to
matter fields, as

�(x) = c��m + cr2�r
2
�m +

1

2
c�2�

2
m +

1

2
cs2s

2

+
1

6
c�3�

3
m +

1

2
c�s2�s

2 + c  + cstst+
1

2
cs3s

3
, (3.1)

✓(x) = ✓m + cr2✓r
2
✓m. (3.2)

We note however that the above bias expansion is not complete since the linear growth
function cannot be factorized in time and scale dependent pieces. But by expanding A(k)
in powers of k

2 we can partially tame the new scale introduced in beyond ⇤CDM models
with curvature operators [91]. In the MG models studied here, the parameter expansion is
the inverse squared of the mass of the associated scalar field (that can be identified from
eq. (B.11) as m

2 = M1/3), so we expect that our modeling better fits for length scales larger
than the inverse of this mass [83, 91].

In eq. (3.1), we have used the standard definitions s2 = sijsij , st = sijtij , s
3 = sijsjkski,

sij(k) =
✓
kikj

k2
�

1

3
�ij

◆
�m(k), tij(k) =

✓
kikj

k2
�

1

3
�ij

◆
⌘(k), (3.3)
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where the LHS defines the operator T̂ [82], and

f(k, t) =
d logD+(k, t)

d log a(t)
(2.16)

is the scale and time dependent growth rate. We choose f0(t) ⌘ f(k = 0, t), such that at large
scales one recovers the linear order solution ✓ = �, valid in ⇤CDM; which is natural since at
very large scales many MG theories reduce to GR, at least in the quasi-static approximation.

In SPT, the n-th order velocity and density fields are written as weighted convolutions
of n linear density fields,

�
(n)(k, t) =

Z

k1···n=k

Fn(k1, · · · ,kn; t)�L(k1, t) · · · �L(kn, t), (2.17)

✓
(n)(k, t) =

Z

k1···n=k

Gn(k1, · · · ,kn; t)�L(k1, t) · · · �L(kn, t) (2.18)

with SPT kernels Fn and Gn and we have written explicitly their temporal dependence. For
linear order, the kernels can be read from eqs. (2.13) and (2.14), giving

F1(k) = 1, G1(k) =
f(k)

f0
. (2.19)

Higher order kernels can be found by solving eqs. (2.10) and (2.11) iteratively. However, this
approach is lengthy, especially for third order kernels, and we found it more efficient to obtain
them by means of mappings from LPT known kernels. This is done in appendix C (see also
[83]), where we obtain

F2(k1,k2) =
1

2
+

3

14
A+

✓
1

2
�

3

14
B

◆
(k1 · k2)2

k
2
1k

2
2

+
k1 · k2

2k1k2

✓
k2

k1
+

k1

k2

◆
, (2.20)

G2(k1,k2) =
3A(f1 + f2) + 3Ȧ/H

14f0
+

 
f1 + f2

2f0
�

3B(f1 + f2) + 3Ḃ/H

14f0

!
(k1 · k2)2

k
2
1k

2
2

+
k1 · k2

2k1k2

✓
f2

f0

k2

k1
+

f1

f0

k1

k2

◆
, (2.21)

where f1,2 = f(k1,2). The functions A and B are scale and time dependent:

A(k1,k2, t) =
7D(2)

A
(k1,k2, t)

3D+(k1, t)D+(k2, t)
, B(k1,k2, t) =

7D(2)
B

(k1,k2, t)

3D+(k1, t)D+(k2, t)
, (2.22)

with second order growth functions D
(2)
A,B are solutions of the linear second order differential

equations [29]:

�
T̂ �A(k)

�
D

(2)
A

=

"
A(k) + (A(k)�A(k1))

k1 · k2

k
2
2

+ (A(k)�A(k2))
k1 · k2

k
2
1

+ S
(2)(k1,k2)

#
D+(k1)D+(k2), (2.23)

�
T̂ �A(k)

�
D

(2)
B

=
h
A(k1) +A(k2)�A(k)

i
D+(k1)D+(k2), (2.24)
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PT kernels are non-standard but can be computed straightforwardly:

Full calculation on one-loop PS in redshift space with EFT counterterms:
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14f0

!
(k1 · k2)2

k
2
1k

2
2

+
k1 · k2

2k1k2

✓
f2

f0

k2

k1
+

f1

f0

k1

k2

◆
, (2.21)

where f1,2 = f(k1,2). The functions A and B are scale and time dependent:

A(k1,k2, t) =
7D(2)

A
(k1,k2, t)

3D+(k1, t)D+(k2, t)
, B(k1,k2, t) =

7D(2)
B

(k1,k2, t)

3D+(k1, t)D+(k2, t)
, (2.22)

with second order growth functions D
(2)
A,B are solutions of the linear second order differential

equations [29]:

�
T̂ �A(k)

�
D

(2)
A

=

"
A(k) + (A(k)�A(k1))

k1 · k2

k
2
2

+ (A(k)�A(k2))
k1 · k2

k
2
1

+ S
(2)(k1,k2)

#
D+(k1)D+(k2), (2.23)

�
T̂ �A(k)

�
D

(2)
B

=
h
A(k1) +A(k2)�A(k)

i
D+(k1)D+(k2), (2.24)

– 6 –

where the LHS defines the operator T̂ [82], and

f(k, t) =
d logD+(k, t)

d log a(t)
(2.16)

is the scale and time dependent growth rate. We choose f0(t) ⌘ f(k = 0, t), such that at large
scales one recovers the linear order solution ✓ = �, valid in ⇤CDM; which is natural since at
very large scales many MG theories reduce to GR, at least in the quasi-static approximation.

In SPT, the n-th order velocity and density fields are written as weighted convolutions
of n linear density fields,

�
(n)(k, t) =

Z

k1···n=k

Fn(k1, · · · ,kn; t)�L(k1, t) · · · �L(kn, t), (2.17)

✓
(n)(k, t) =

Z

k1···n=k

Gn(k1, · · · ,kn; t)�L(k1, t) · · · �L(kn, t) (2.18)

with SPT kernels Fn and Gn and we have written explicitly their temporal dependence. For
linear order, the kernels can be read from eqs. (2.13) and (2.14), giving

F1(k) = 1, G1(k) =
f(k)

f0
. (2.19)

Higher order kernels can be found by solving eqs. (2.10) and (2.11) iteratively. However, this
approach is lengthy, especially for third order kernels, and we found it more efficient to obtain
them by means of mappings from LPT known kernels. This is done in appendix C (see also
[83]), where we obtain

F2(k1,k2) =
1

2
+

3

14
A+

✓
1

2
�

3

14
B

◆
(k1 · k2)2

k
2
1k

2
2

+
k1 · k2

2k1k2

✓
k2

k1
+

k1

k2

◆
, (2.20)

G2(k1,k2) =
3A(f1 + f2) + 3Ȧ/H
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Conclusions and challenges

• Challenge: How to include scale-dependence in loop integrals in a fast way (FFTLog)?

• New phenomenology (yet to explore fully) in broken time-dep. translation symmetry (beyond 
Horndeski).

Scale independent MG model:

Scale dependent MG model:

• Challenge: How to include scale-dependence in bias expansion? Are higher-order bias term 
sufficient? How scale dependence affect EFT of LSS parameters and their scale-dependence?

LCDM, smooth and clustering DE

• Galaxy clustering in the mildly nonlinear regime modelled by perturbation theory + finite number of 
free parameters, with controlled accuracy.

• Above standard methods (with new PT kernels) can be applied to Horndeski/EFT of DE models. 
Symmetries are the same!

• Challenge: Going beyond one loop (two loops). Slower calculations, more EFT parameters, etc. 
Higher accuracy required.

• Above methods can be extended to scale-dep. models. Work in progress.

• Challenge: Many DE/MG (time-dependent) parameters. How to parametrise them? Degeneracies 
with EFT of LSS parameters.


