Nonlinear aspects in galaxy clustering in modified gravity

Filippo Vernizzi
IPhT - CEA, CNRS, Paris-Saclay

with Euclid TH-WG WP7
and other collaborators

24 June 2021
Atelier Action Dark Energy 2021

Global picture

Initial Conditions
Large-Scale Structure

Global picture

Initial Conditions

Large-Scale Structure

$$
\zeta(\boldsymbol{x}, 0) \longrightarrow \delta(\boldsymbol{x}, \tau) \text { dark matter }
$$

$$
\delta_{g}(\boldsymbol{x}, \tau) \xrightarrow{\mathrm{RSD}} \delta_{g}(\theta, z) \text { galaxies }
$$

Standard perturbation theory + EFT of LSS

$$
\begin{gathered}
\delta(t, \vec{x})=\rho_{m}(t, \vec{x}) / \bar{\rho}_{m}(t)-1 \\
\left\langle\delta(\vec{k}) \delta\left(\vec{k}^{\prime}\right)\right\rangle=(2 \pi)^{3} \delta_{D}\left(\vec{k}+\vec{k}^{\prime}\right) P(k) \\
N_{\text {modes }} \sim 10^{6} \\
\delta=\delta^{(1)}+
\end{gathered}
$$

Long-wavelength DM fluctuations computed perturbatively + finite number of unknown coefficients (counterterms) parameterising the effect of short-wavelength physics on long-wavelength one, whose kdependence is dictated by symmetries

Standard perturbation theory + EFT of LSS

Dark matter described by continuity and Euler eqs. + Poisson eq.

$$
\begin{aligned}
& \dot{\delta}+\frac{1}{a} \partial_{i}\left((1+\delta) v^{i}\right)=0, \\
& \dot{v}^{i}+H v^{i}+\frac{1}{a} v^{j} \partial_{j} v^{i}+\frac{1}{a} \partial_{i} \Phi=-\frac{1}{a} \frac{1}{\rho_{m}} \partial_{j} \tau_{\text {short }}^{i j}, \quad \partial_{j} \tau_{\text {short }}^{i j} \rightarrow c_{\delta}^{2} \partial_{i} \delta
\end{aligned}
$$

$$
\frac{1}{a^{2}} \partial^{2} \Phi=\frac{3}{2} H^{2} \Omega_{m} \delta
$$

Baumann et al. 10
Carrasco, Hertzberg, Senatore 12

Power spectrum

$$
\begin{aligned}
& \left\langle\delta(\vec{k}) \delta\left(\vec{k}^{\prime}\right)\right\rangle=(2 \pi)^{3} \delta_{D}\left(\vec{k}+\vec{k}^{\prime}\right) P(k) \\
& \delta(\vec{k})=\delta^{(1)}(\vec{k})+\delta^{(2)}(\vec{k})+\delta^{(3)}(\vec{k})+\ldots
\end{aligned}
$$

One-loop solution

$$
P^{1-\text { loop }}(k)=P_{11}(k)+P_{22}(k)+P_{13}(k)+P_{13}^{c t}(k)
$$

Integrals

$$
\begin{array}{ll}
P_{22}(k)=2 \int \frac{d^{3} q}{(2 \pi)^{3}} P_{11}(q) P_{11}(|\vec{k}-\vec{q}|)\left[F_{2}(\vec{q}, \vec{k}-\vec{q})\right]^{2} & \\
P_{13}(k)=6 P_{11}(k) \int \frac{d^{3} q}{(2 \pi)^{3}} P_{11}(q) F_{3}(\vec{k}, \vec{q},-\vec{q}) & P_{13}^{c t}(k)=c_{\delta}^{2} \frac{k^{2}}{k_{\mathrm{NL}}^{2}} P_{11}(k)
\end{array}
$$

Global picture

Initial Conditions
Large-Scale Structure
 $\zeta(\boldsymbol{x}, 0) \longrightarrow \delta(\boldsymbol{x}, \tau)$ dark matter

Galaxy biasing

Long-wavelength fluctuations of galaxies are described as biased tracers of the long-wavelength fluctuations of DM + DM counterterms.

Controlled expansion (in perturbation theory and in derivatives)

$$
\begin{aligned}
\delta_{g}(x, t) & =\sum_{n} \int d t^{\prime} K_{n}\left(t, t^{\prime}\right) \tilde{\mathcal{O}}_{n}\left(x_{\mathrm{f}}, t^{\prime}\right) \\
& =\sum_{n, m} b_{n, m}(t) \mathcal{O}_{n, m}(x, t)
\end{aligned}
$$

For the one-loop power spectrum we need

$$
\delta_{g}=b_{1} \delta+\frac{b_{2}}{2} \delta^{2}+b_{\mathcal{G}_{2}} \mathcal{G}_{2}+b_{\nabla^{2} \delta} \nabla^{2} \delta, \quad \mathcal{G}_{2} \equiv\left(\frac{\partial_{i} \partial_{j}}{\nabla^{2}} \delta\right)^{2}-\delta^{2}
$$

Global picture

Initial Conditions
Large-Scale Structure
$\zeta(\boldsymbol{x}, 0) \longrightarrow \delta(\boldsymbol{x}, \tau)$ dark matter

$$
\delta_{g}(\boldsymbol{x}, \tau) \xrightarrow{\mathrm{RSD}} \delta_{g}(\theta, z) \text { galaxies }
$$

Redshift-Space Distortions

Galaxies are measured in redshift space but we can relate the density in redshift space and real space by mass conservation

$$
\begin{aligned}
1+\delta_{s}\left(\vec{x}_{s}\right) & =\left[1+\delta\left(\vec{x}\left(\vec{x}_{s}\right)\right)\right]\left|\frac{\partial \vec{x}_{s}}{\partial \vec{x}}\right|_{\vec{x}\left(\vec{x}_{s}\right)}^{-1} \\
\vec{x}_{s} & =\vec{x}+\frac{\vec{v} \cdot \hat{z}}{H_{0}} \hat{z}
\end{aligned}
$$

One-loop power spectrum

$$
\begin{aligned}
P_{g}(k, \mu) & =Z_{1}(\mu)^{2} P_{11}(k) \\
& +2 \int \frac{d^{3} q}{(2 \pi)^{3}} Z_{2}(\boldsymbol{q}, \boldsymbol{k}-\boldsymbol{q}, \mu)^{2} P_{11}(|\boldsymbol{k}-\boldsymbol{q}|) P_{11}(q) \\
& +6 Z_{1}(\mu) P_{11}(k) \int \frac{d^{3} q}{(2 \pi)^{3}} Z_{3}(\boldsymbol{q},-\boldsymbol{q}, \boldsymbol{k}, \mu) P_{11}(q) \\
& +2 Z_{1}(\mu) P_{11}(k)\left(c_{\mathrm{ct}} \frac{k^{2}}{k_{\mathrm{M}}^{2}}+c_{r, 1} \mu^{2} \frac{k^{2}}{k_{\mathrm{M}}^{2}}+c_{r, 2} \mu^{4} \frac{k^{2}}{k_{\mathrm{M}}^{2}}\right) \\
& +\frac{1}{\bar{n}_{g}}\left(c_{\epsilon, 1}+c_{\epsilon, 2} \frac{k^{2}}{k_{\mathrm{M}}^{2}}+c_{\epsilon, 3} f \mu^{2} \frac{k^{2}}{k_{\mathrm{M}}^{2}}\right) .
\end{aligned}
$$

Fast loop evaluation

Scan parameter space with MCMC: need to compute loop-integrals quickly

$$
\begin{gathered}
P_{22}(k)=2 \int \frac{d^{3} q}{(2 \pi)^{3}} P_{11}(q) P_{11}(|\vec{k}-\vec{q}|)\left[F_{2}(\vec{q}, \vec{k}-\vec{q})\right]^{2} \\
F_{2}(\vec{q}, \vec{k}-\vec{q})=\frac{5}{14}+\frac{3 k^{2}}{28 q^{2}}+\frac{3 k^{2}}{28|\vec{k}-\vec{q}|^{2}}-\frac{5 q^{2}}{28|\vec{k}-\vec{q}|^{2}}-\frac{5|\vec{k}-\vec{q}|^{2}}{28 q^{2}}+\frac{k^{4}}{14|\vec{k}-\vec{q}|^{2} q^{2}}
\end{gathered}
$$

Bottleneck is the power spectrum shape. Solution FFTLog: decompose it as Fourier series of log(k)

$$
\begin{gathered}
\bar{P}_{\operatorname{lin}}\left(k_{n}\right)=\sum_{m=-N / 2}^{m=N / 2} c_{m} k_{n}^{\nu+i \eta_{m}} \quad \text { Cosmology dependent } \\
\int_{\boldsymbol{q}} \frac{1}{q^{2 \nu_{1}}|\boldsymbol{k}-\boldsymbol{q}|^{2 \nu_{2}}} \equiv k^{3-2 \nu_{12}} \frac{1}{8 \pi^{3 / 2}} \frac{\Gamma\left(\frac{3}{2}-\nu_{1}\right) \Gamma\left(\frac{3}{2}-\nu_{2}\right) \Gamma\left(\nu_{12}-\frac{3}{2}\right)}{\Gamma\left(\nu_{1}\right) \Gamma\left(\nu_{2}\right) \Gamma\left(3-\nu_{12}\right)}
\end{gathered}
$$

Loop-integrals become matrix multiplications

Controlled accuracy

Smooth and clustering dark energy

Dark matter described by continuity and Euler equations + Poisson eq.

$$
\begin{aligned}
& \dot{\delta}+\frac{1}{a} \partial_{i}\left((1+\delta) v^{i}\right)=0 \\
& \dot{v}^{i}+H v^{i}+\frac{1}{a} v^{j} \partial_{j} v^{i}+\frac{1}{a} \partial_{i} \Phi=-\frac{1}{a} \frac{1}{\rho_{m}} \partial_{j} \tau_{\text {short }}^{i j}, \quad \partial_{j} \tau_{\text {short }}^{i j} \rightarrow c_{\delta}^{2} \partial_{i} \delta \\
& \frac{1}{a^{2}} \partial^{2} \Phi=\frac{3}{2} H^{2} \Omega_{m} \delta
\end{aligned}
$$

Smooth dark energy component: $\quad c_{s}^{2} \simeq 1, \quad w \geq-1$ no DE perturbation, same PT.
Clustering dark energy component: $\quad c_{s}^{2} \ll 1, \quad w \neq-1 \quad$ comoving fluids, same PT.

$$
\begin{aligned}
& \dot{\delta}_{m}+\frac{1}{a} \partial_{i}\left(\left(1+\delta_{m}\right) v^{i}\right)=0 \\
& \dot{\delta}_{Q}-3 w H \delta_{Q}+\frac{1}{a} \partial_{i}\left(\left(1+w+\delta_{Q}\right) v^{i}\right)=0 \\
& \frac{1}{a^{2}} \partial^{2} \Phi=\frac{3}{2} H^{2} \Omega_{m}\left(\delta_{m}+\frac{\Omega_{Q}}{\Omega_{m}} \delta_{Q}\right)
\end{aligned}
$$

Perturbation theory, biasing and RSD essentially the same (except exact time dependence vs Einstein-deSitter approximation)

MG: Scale independent models

Scale independent models: nDGP, Galileons, Horndeski, beyond Horndeski, etc.

$$
m_{\phi} \ll k_{\mathrm{f} . \mathrm{m} .} / a
$$

Ex: braiding (kinetic mixing) $\quad \mathcal{L} \supset \dot{\Psi} \dot{\pi}, \partial \Psi \partial \pi$

Scalar field clustering on short scales:

$$
\nabla^{2} \pi=\alpha \cdot 4 \pi G \delta
$$

Quasi-static approximation on short scales

MG: Scale independent models

Scale independent models: nDGP, Galileons, Horndeski, beyond Horndeski, etc.

$$
m_{\phi} \ll k_{\mathrm{f.m.}} / a
$$

Ex: braiding (kinetic mixing) $\quad \mathcal{L} \supset \dot{\Psi} \dot{\pi}, \partial \Psi \partial \pi$

Same equations for the dark matter fluid (continuity + Euler). Poisson equation modified:

$$
\begin{aligned}
& k^{2} \Phi=4 \pi G_{\text {eff }} \delta+\int \frac{d^{3} k_{1} d^{3} k_{2}}{(2 \pi)^{6}} \delta\left(\vec{k}-\vec{k}_{1}-\vec{k}_{2}\right) M_{2}\left(\vec{k}_{1}, \vec{k}_{2}\right) \Phi\left(\vec{k}_{1}\right) \Phi\left(\vec{k}_{2}\right) \\
&+\int \frac{d^{3} k_{1} d^{3} k_{2} d^{3} k_{3}}{(2 \pi)^{9}} \delta\left(\vec{k}-\vec{k}_{1}-\vec{k}_{2}-\vec{k}_{3}\right) M_{3}\left(\vec{k}_{1}, \vec{k}_{2}, \vec{k}_{3}\right) \Phi\left(\vec{k}_{1}\right) \Phi\left(\vec{k}_{2}\right) \Phi\left(\vec{k}_{3}\right) \\
& \text { NEW PT nonlinear couplings }
\end{aligned}
$$

$$
\begin{aligned}
& G_{\mathrm{eff}}=G_{\mathrm{eff}}(a) \\
& M_{2}\left(\vec{k}_{1}, \vec{k}_{2}\right)=\mu_{2}(a)\left(k_{1}^{2} k_{2}^{2}-\left(\vec{k}_{1} \cdot \vec{k}_{2}\right)^{2}\right) \\
& M_{3}\left(\vec{k}_{1}, \vec{k}_{2}, \vec{k}_{3}\right)=\ldots
\end{aligned}
$$

MG: Scale independent models

NEW PT nonlinear couplings
$G_{\text {eff }}=G_{\text {eff }}(a)$ Theory dependent
$M_{2}\left(\vec{k}_{1}, \vec{k}_{2}\right)=\mu_{2}(a)\left(k_{1}^{2} k_{2}^{2}-\left(\vec{k}_{1} \cdot \vec{k}_{2}\right)^{2}\right)$
$M_{3}\left(\vec{k}_{1}, \vec{k}_{2}, \vec{k}_{3}\right)=\ldots$

EFT of Dark Energy

Bridge models and observations
 in a minimal and systematic way

EFT of Dark Energy

Bridge models and observations
in a minimal and systematic way

$$
\begin{aligned}
\mu & =\mu\left(k ; \alpha_{1}(t), \alpha_{2}(t), \ldots\right) & \nabla^{2} \Phi & =4 \pi G \mu \delta \rho_{\mathrm{m}} \\
\Sigma & =\Sigma\left(k ; \alpha_{1}(t), \alpha_{2}(t), \ldots\right) & \nabla^{2}(\Phi+\Psi) & =8 \pi G \Sigma \delta \rho_{\mathrm{m}}
\end{aligned}
$$

Symmetries

Structure of PT kernels dictated by symmetries (e.g. translation, rotations, Bose, mass and momentum conservation, etc.)

D'Amico et al., in preparation

$$
\delta_{\mathbf{k}}^{(n)}(\eta) \equiv \frac{1}{n!} \int \frac{d^{3} q_{1}}{(2 \pi)^{3}} \cdots \frac{d^{3} q_{n}}{(2 \pi)^{3}}(2 \pi)^{3} \delta_{D}\left(\mathbf{k}-\sum_{i=1}^{n} \mathbf{q}_{i}\right) F^{(n)}\left(\mathbf{q}_{1}, \cdots, \mathbf{q}_{n} ; \eta\right) \varphi_{\mathbf{q}_{1}}(\eta) \cdots \varphi_{\mathbf{q}_{n}}(\eta)
$$

Time-dependent translation symmetry (Equivalence Principle)

$$
\begin{aligned}
& \tilde{x}^{i}=x^{i}+n^{i}(t), \quad \tilde{t}=t \\
& \tilde{\varphi}_{a}\left(\tilde{x}^{j}, t\right)=\varphi_{a}\left(x^{j}, t\right)+h_{\varphi_{a}}^{i}(t) \tilde{x}^{i} \\
& \tilde{\delta}\left(\tilde{x}^{j}, t\right)=\delta\left(x^{j}, t\right), \\
& \tilde{v}^{i}\left(\tilde{x}^{j}, t\right)=v^{i}\left(x^{j}, t\right)+a \dot{n}^{i}(t),
\end{aligned}
$$

Same symmetries for tracers (excluding mass and momentum conservation): same PT structure for bias and RSD

Horndeski vs beyond Horndeski

Horndeski theories: time-dependent translation symmetry (EP)
PT kernels, bias, RSD enjoy the same structure as Standard Perturbation Theory. Example:

$$
F_{2}(\vec{k}, \vec{q})=\left(1+c_{0}\right) \frac{17}{21}+\frac{\mu}{2}\left(\frac{k}{q}+\frac{q}{k}\right)+\left(1+c_{2}\right)\left(\mu^{2}-\frac{1}{3}\right), \quad \mu \equiv \hat{k} \cdot \hat{q}
$$

Fixed by symmetries

Beyond Horndeski theories: time-dependent transtation symmetry (EP)
New features in PT kernels, bias, RSD, loops...

$$
F_{2}(\vec{k}, \vec{q})=\left(1+c_{0}\right) \frac{17}{21}+\left(1+c_{1}\right) \frac{\mu}{2}\left(\frac{k}{q}+\frac{q}{k}\right)+\left(1+c_{2}\right)\left(\mu^{2}-\frac{1}{3}\right), \quad \mu \equiv \hat{k} \cdot \hat{q}
$$

Anomalous dipole

MG: Scale dependent models

Scale dependent models: $\mathrm{f}(\mathrm{R})$, chameleon, etc. $\quad m_{\phi} \gtrsim k_{\mathrm{f} . \mathrm{m} .} / a$
Growth depends on scale:

$$
\frac{d^{2}}{d \tau^{2}} D(k, \tau)+\mathcal{H} \frac{d}{d \tau} D(k, \tau)-\frac{3}{2} \Omega_{m}(a) \mathcal{H}^{2}\left[1+\alpha(\tau) \frac{k^{2}}{k^{2}+a^{2} m^{2}(\tau)}\right] D(k, \tau)=0
$$

Two regimes:

$$
\begin{array}{crr}
k / a \gg m_{\phi} & 1+\alpha & \text { enhancement } \\
k / a \ll m_{\phi} & \mathrm{GR} &
\end{array}
$$

Bias expansion should be scale dependent

$$
\delta_{g}(\mathbf{k}, t)=\sum_{n} b_{n}(k, t) \mathcal{O}_{n}(\mathbf{k}, t)
$$

Captured by higher-order operators?

$$
f \equiv \frac{d \ln D}{\ln a}
$$

$$
\nabla^{2} \delta, \quad \nabla^{4} \delta, \ldots
$$

$f(R)$: One-loop galaxy PS

PT kernels are non-standard but can be computed straightforwardly:

$$
\begin{gathered}
F_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)=\frac{1}{2}+\frac{3}{14} \mathcal{A}+\frac{\mathbf{k}_{1} \cdot \mathbf{k}_{2}}{2 k_{1} k_{2}}\left(\frac{k_{2}}{k_{1}}+\frac{k_{1}}{k_{2}}\right)+\left(\frac{1}{2}-\frac{3}{14} \mathcal{B}\right) \frac{\left(\mathbf{k}_{1} \cdot \mathbf{k}_{2}\right)^{2}}{k_{1}^{2} k_{2}^{2}} \\
\mathcal{A}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, t\right)=\frac{7 D_{\mathcal{A}}^{(2)}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, t\right)}{3 D_{+}\left(k_{1}, t\right) D_{+}\left(k_{2}, t\right)}, \quad \mathcal{B}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, t\right)=\frac{7 D_{\mathcal{B}}^{(2)}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, t\right)}{3 D_{+}\left(k_{1}, t\right) D_{+}\left(k_{2}, t\right)},
\end{gathered}
$$

Full calculation on one-loop PS in redshift space with EFT counterterms:
Aviles et al. 2012.05077

Conclusions and challenges

LCDM, smooth and clustering DE

- Galaxy clustering in the mildly nonlinear regime modelled by perturbation theory + finite number of free parameters, with controlled accuracy.
- Challenge: Going beyond one loop (two loops). Slower calculations, more EFT parameters, etc. Higher accuracy required.

Scale independent MG model:

- Above standard methods (with new PT kernels) can be applied to Horndeski/EFT of DE models. Symmetries are the same!
- New phenomenology (yet to explore fully) in broken time-dep. translation symmetry (beyond Horndeski).
- Challenge: Many DE/MG (time-dependent) parameters. How to parametrise them? Degeneracies with EFT of LSS parameters.

Scale dependent MG model:

- Above methods can be extended to scale-dep. models. Work in progress.
- Challenge: How to include scale-dependence in loop integrals in a fast way (FFTLog)?
- Challenge: How to include scale-dependence in bias expansion? Are higher-order bias term sufficient? How scale dependence affect EFT of LSS parameters and their scale-dependence?

