LAWRENCE BERKELEY NATIONAL LABORATORY

DIRECT DARK MATTER SEARCHES WITH THE LZ EXPERIMENT

UPDATE AND STATUS

WEDNESDAY, JUNE 2, 2020 - GDR DUPHY

QUENTIN RIFFARD

LIQUID XENON TIME PROJECTION CHAMBER

- High ionization yield ($W \sim 13.7 \,\mathrm{eV}$)
- High scintillation yield (> 50,000 photons/MeV)
- **Transparent** to its own scintillation light
- **Self-shielded**
- High intrinsic radio-purity
- **Axion Like Particles**
- Exotic Dark Matter candidates (mirror dark matter, solar axions, ...)
- Neutrino physics & astrophysics

Liquid Xenon is a good target for **WIMP Dark Matter searches...**

High density

... but not only

- $0\nu\beta\beta$ search using ¹³⁴Xe & ¹³⁶Xe

LIQUID XENON TIME PROJECTION CHAMBER

Liquid Xenon TPC

- Type of signals
 - S1: Primary scintillation (light)
 - S2: Secondary scintillation (charge)
- 3D position reconstruction
 - XY position: $\mathcal{O}(mm)$ from S2 light pattern
 - Z position: $\mathcal{O}(\mu m)$ from S1-S2 timing

LZ TPC

- 1.5 m in diameter and height
- 10 tonnes of total mass, 7 tonnes active and 5.6 tonnes fiducial volume
- Electric field: 300 V/cm
- 247 (top) + 247 (bottom) PMTs to monitor the TPC

LZ TIME PROJECTION CHAMBER IN PICTURES

LZ DETECTOR SYSTEMS

- 4850 feet (1.48 km) underground
- Muon flux reduced by $\mathcal{O}(10^7)$

LZ DETECTOR SYSTEMS

Water tank in the Davis cavern at SURF

LZ VETO SYSTEMS

LZ has two veto systems

- Two tonnes of LXe surrounding the TPC
 - PMTs at top and bottom of the skin region
 - Lined with PTFE to maximize light collection efficiency
- Anti-coincidence detector for γ-rays

Outer Detector

- 17 tonnes Gd-loaded liquid scintillator in acrylic vessels
 - 120 8" PMTs mounted in the water tank
 - Anti-coincidence detector for γ-rays and neutrons
 - Observe $\sim 8 \,\text{MeV} \,\gamma$ -rays from thermal neutron capture

- **Geant4-based simulation** for background studies (Astro.Phys. 125 102480 (2020))

BACKGROUND REDUCTION

Signal/Background discrimination

ER and NR events can be distinguished from their different S2/S1 ratio

1000 days run

- Before discrimination 1131 ER events and 10.4 NR events
- After discrimination 5.97 ER events and 0.51 NR events (with 99.5% ER discrimination, 50% NR efficiency)

BACKGROUND REDUCTION

Fiducialisation and Veto cut (NR background)

Before veto cuts

12.31 cts / 1000 days

After veto cuts

1.03 cts / 1000 days

WIMP DARK MATTER PROJECTED SENSITIVITY

LZ sensitivity Paper (Phys. Rev. D 101, 052002)

$0\nu\beta\beta$ Decay of 136 Xe

- **No enrichments** (8.8%)
- ¹³⁶Xe $Q_{\beta\beta} = 2458 \,\text{keV}$
- Fiducial volume: 1 tonne
- $T_{1/2}(90 C.L.) > 1.06 \times 10^{26}$ years in 1000 live days

Projected sensitivity to the $0\nu\beta\beta$ decay of ¹³⁶Xe (Phys. Rev. C 102, 014602 (2020))

SUMMARY

Good progress in assembly and integration of detector and associated systems

- **Expecting first data later this year**
- **Dark Matter detection**
 - WIMP projected sensitivity: $1.4 \times 10^{-48} \text{ cm}^2$ at 40 GeV/c^2
 - Low mass WIMPs sensitivity (arXiV:2101.08753)
 - Sensitivity to new physics via low-energy electron recoils (arXiv:2102.11740)
- **Neutrino physics**
 - $0\nu\beta\beta$ decay of ¹³⁶Xe (Phys. Rev. C 102, 014602 (2020))
 - $2\nu\beta\beta$ and $0\nu\beta\beta$ decays of ¹³⁴Xe (arXiv:2104.13374)

Stay tuned!

THE LZ (LUX-ZEPLIN) COLLABORATION

34 Institutions: 250 scientists, engineers, and technical staff

- Black Hills State University
- Brandeis University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Wisconsin, Madison

Thanks to our sponsors and participating institutions!

U.S. Department of Energy Office of Science

Science and Technology Facilities Council

@lzdarkmatter

THANK YOU

U.S. Department of Energy Office of Science

Thanks to our sponsors and 34 participating institutions!

