Searching for neutrinoless double beta decay with Li_2MoO_4 scintillating bolometers

THE CUPID EXPERIMENT

Cuore Upgrade with Particle IDentification

A. Armatol, CEA/IRFU/DPhP

REMINDER : SEARCHING FOR 2β0v

- An hypothetical decay : $(A, Z) \rightarrow (A, Z + 2) + 2e^{-}$
- Leads to a peak in the sum of e^- energy spectrum Violates the lepton number conservation
- Could prove the Majorana nature of the neutrino ($v = \bar{v}$)
- Gives clues about matter/antimatter asymmetry and information on mass hierarchy

An experimental challenge :

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(\mathbf{Q},\mathbf{Z})|M^{0\nu}|^2 \frac{m_{\beta\beta}^2}{m_e^2}$$

- An extremely rare decay : $T_{1/2}^{0\nu} > 10^{25} 10^{26} yr$
- 35 isotopes able to do the $2\beta 2\nu$, observed for 12
- Requires almost 0 background event in the ROI

$$T_{1/2}^{0\nu} \propto a \times \epsilon \times \sqrt{\frac{M \times t}{b \times \Delta E}}$$

REMINDER : How to detect the $2\beta 0\nu$? The example of CUORE

The bolometric technique

- Cryogenic detectors : $\Delta T = \frac{E}{c}$ working around 15 mK - Detector = source

Ideal for $2\beta 0\nu$ search because of :

- High energy resolution (<5 keV FWHM in the ROI)
- Large masses achievable by using an array of crystals
 - High detection efficiency (80-90%)
- Large isotope choice for the absorber among the 2β0ν candidates

The CUORE experiment in LNGS

2β0v candidate : ^{130}Te ($Q_{\beta\beta}$ = 2527 keV)

- The LARGEST bolometric experiment ever : 988 5x5x5cm crystals of TeO_2 arranged in 19 towers Total mass : 742 kg (206 kg of ^{130}Te)

- One of the MOST SENSITIVE current experiment : Current limit : $T_{1/2}^{0\nu} > 2.2 \times 10^{25} yr$ $\rightarrow m_{\beta\beta} < 90 - 305 meV$ Expected limit after 5 years : $T_{1/2}^{0\nu} > 9 \times 10^{25} yr$ $\rightarrow m_{\beta\beta} < 60 - 280 meV$

«High sensitivity neutrinoless double-beta decay search with one tonne-year of CUORE data», CUORE Collaboration, arXiv:2104.06906v1 [nucl-ex] 14 Apr 2021

Performances and limitations of CUORE

- CUORE has proven that a ton-scale experiment is technically possible using bolometers.
- The cryostat holding the experiment shows excellent performances and a really good stability overtime.
- An energy resolution of ~7 keV FWHM is reached in the ROI, so really close to the objective.
- BUT ~50 background counts/year in the ROI, corresponding to $b \sim 10^{-2} ckky$
- Dominated by surface α events + $Q_{\beta\beta}$ of ^{130}Te < 2615 keV
- = Sensitivity limited by the background index

Necessity of an UPDATE to fully explore the inverted hierarchy region : Particle identification for α events rejection with luminescent bolometers - New isotope : <u>100</u>*Mo* $(Q_{\beta\beta} = 3034 \text{ keV} > 2615 \text{ keV})$ **CUPID**: Use of the already existing CUORE infrastructure but with both those improvements ($b < 10^{-4}$ ckky achievable)

-

FROM CUORE TO CUPID : Luminescent bolometers and isotope choice

Luminescent bolometers

- Scintillator used for the absorber

- Add of an auxilary Ge bolometer, acting as a scintillation light detector

- Two signal channels : light + heat \rightarrow dual read-out

Allows to reject >99% of α events ! <u>No more α background</u> First demonstrator using this technique : CUPID-0 with ZnSe crystals at LNGS

+ isotope choice : ${}^{100}Mo$ ($Q_{\beta\beta} = 3034 \text{ keV} > 2615 \text{ keV}$) <u>v</u> background reduced + easier to enriched

Tested and validated by CUPID-Mo using Li_2MoO_4 crystals at LSM

+ an excellent energy resolution : ~5-7 keV FWHM

"New Limit for Neutrinoless Double-Beta Decay of 100Mo from the CUPID-Mo Experiment", CUPID-Mo Collaboration, Phys. Rev. Lett. 126, 3 May 2021

The CUPID configuration

- Use of the CUORE cryostat at LNGS (available in ~2024)
- **I 596** 45x45x45mm *Li*₂*MoO*₄ crystals of ~280g each
 - Arranged in 57 towers of 14 floors
- Total mass : ~240 kg of ¹⁰⁰Mo thanks to a >95% enrichment
- SEVERAL TESTS DONE AND ON GOING FOR THE BASELINE DESIGN :

light detectors

CUPID BACKGROUND MODEL

Using the results and acquired knowledge from CUORE and CUPID R&D demonstrators :

+ * Neutron background : $b < 10^{-5}$ ckky, * Muon background : $b \sim 10^{-4}$ ckky, can be reduced with a veto

***** Random coïncident 2v2β events :

Once again due to ${}^{100}Mo$ « fast » 2β2v decay \rightarrow Approximately b~3.10⁻⁴ × $\tau[ms]$ ckky with τ the temporal resolution between 2 signals.

WORK IN PROGRESS TO IMPROVE au : Increase sampling rate, reduce baseline noise, new rejection parameters, exploit the

light channel.. + Offline rejection \rightarrow Last results : 90% rejection efficiency for PU with $\Delta t > 2ms$

CUPID sensitivity and discovery potential

CUPID : What's next ?

- CUPID is one of the most promising next generation experiment for the $2\beta 0\nu$ search thanks to the bolometers
- The first phase is **technically ready** : Li_2MoO_4 are well known and it is proven that they fulfill the requirements of CUPID (excellent energy resolution, mass production, radiopurity, good light yield for α rejection...)
- The cryogenic infrastructure already exists and is well-tested and optimized since it is used for CUORE
- A background index of $10^{-4} ckky$ expected in the ROI with a robust background model
- Cost effective
- Aims to fully explore the inverted mass hierarchy region of neutrino masses

1. A. Armatol et al. [CUPID Collaboration], *Characterization of cubic Li*₂¹⁰⁰*MoO*₄ *crystals for the CUPID experiment*, Eur.Phys.J.C **81**, 104 (2021) <u>https://doi.org/10.1140/epjc/s10052-020-08809-8</u>

2. A. Armatol et al. [CUPID and CROSS Collaborations], A CUPID Li₂¹⁰⁰MoO₄ scintillating bolometer tested in the CROSS underground facility, JINST **16**, P02037 (2021); https://doi.org/10.1088/1748-0221/16/02/P02037

3. [CUPID Collaboration], A novel technique for the study of pile-up events in cryogenic bolometers <u>https://arxiv.org/abs/2011.11726</u>

4- CUPID pre-CDR: <u>https://arxiv.org/abs/1907.09376</u>

CEA is looking for a POST-DOC in the CUPID group !! Contact <u>claudia.nones@cea.fr</u> for more infos

BACK UP SLIDE : PILE UPS REJECTION

BRUT FORCE METHOD

SURGICAL METHOD

- Injecting mean pulses on a background from a real measurement in Canfranc
- Simulate a x70 decay rate (0.2Bq) and ~7 years of data taking (1.8 To)
- The PU spectrum is appearing, allows to apply cuts and to test rejection efficiency
- Obtain the b[ckky] by normalizing the spectrum
- Draw two energies in the DBD spectrum for a sum energy at the $Q_{\beta\beta} \pm 50 \ keV$ value
- Build a PU event with a known Δt
- Inject the PU on a real background
- Test cut for each Δt
- Obtain the b[ckky]

BACK UP SLIDE : PILE UPS REJECTION

2 parameters combined are showing a good rejection efficiency : PSD and Fast Integral (FI)

With BRUT FORCE method :

With SURGICAL method :

The two methods give similar results !!

$\parallel \Delta t (ms)$	0.0	0.1	0.2	0.3	0.4	0.5	1.0	1.5	2.0	2.5	3.0
$ \begin{array}{ c c } PSD \ cut \\ FIP \ cut \\ PSD + FIP \end{array} $	$0.91 \\ 0.94 \\ 0.87$	$0.91 \\ 0.95 \\ 0.86$	$0.87 \\ 0.84 \\ 0.75$	$0.84 \\ 0.69 \\ 0.58$	$0.88 \\ 0.59 \\ 0.52$	$0.90 \\ 0.55 \\ 0.49$	$0.83 \\ 0.06 \\ 0.05$	$0.63 \\ 0.08 \\ 0.04$	$\begin{array}{c} 0.28 \\ 0.16 \\ 0.05 \end{array}$	$\begin{array}{c} 0.03 \\ 0.18 \\ 0.003 \end{array}$	$\begin{array}{c c} 0.005 \\ 0.14 \\ 0.0007 \end{array}$