

Laser Ablation ICP-MS technique for rare event experiments

Frédéric Perrot CENBG / IN2P3-CNRS / University of Bordeaux

GDR DUPhy, Kick-off meeting, June 1st, 2021

Outline

✓ Description of the ICPMS and Laser Ablation ICP-MS techniques

✓ Application to samples of interest for rare event experiments

Natural radioactivity : our main ennemy!

✓ Primordial radioactivity, cosmogenics, man-made radioactivity

 \rightarrow Complementary techniques to screen all the critical materials for rare event expts

Principle of the ICP-MS technique

Inductively coupled plasma mass spectrometry (ICP-MS)

- ✓ Sample usually dissolved by acids in ultrapure water (liquid phase)
- ✓ Liquid samples to formate aerosol in nebulizer
- ✓ Introduction of aerosols into an argon plasma at T>6000 K, decomposition of the molecules and ionization
- Ions extracted from the plasma into mass spectrometer region and detected by an electron multiplier sensor

Note: very difficult to measure ⁴⁰K due to ⁴⁰Ar used for plasma

- Ultra-pure deionized water, nitric acid, microwave digestion, ultrasonic cleaner...
- → it is critical to have ultra-clean vessel and acids for blank test in order to reach a sub-10⁻¹² g/g sensitivity for U/Th in critical materials
- → Not extensively developed in France for our field but several installation around the world (for example PNNL, USA)

Sample preparation and sensitivity

✓ Class 10000 clean room

sample without any contamination

Principle of Laser Ablation ICP-MS

Concept: to replace the chemical preparation of a sample by using a laser in ablation mode

Main advantages of LA-ICPMS: small risk of sample contamination and fast access to the spatial distribution of the U/Th radionuclides

A bit of history

F. Perrot, Laser Ablation ICPMS

Nano versus femto laser

- Thermal effects
- Systematical effects (larger size of particles, fractionation, redeposition)
- Uncertainties on depth/volume ablated
- No thermal effects
- Less systematical effects (small size of particles, negligible fractionation effect)
- High depth resolution

Shaping technique of the fs laser beam

Possibility to move in 2D the sample and/or the laser beam in order to fit with the morphology of the sample

- Size of the beam ~10 µm
- High repetition rate <100 kHz
- Translation speed < 2 m/s

F. Perrot, Laser Ablation ICPMS

Advantages of the UV fs LA-ICPMS

✓ Alternative method to classical ICPMS

- Direct and fast analysis without chemical preparation
- Smaller risk of sample contamination
- Access to the refractory matrix samples

✓ Poweful tool for micro-analysis

- Quasi non-destructive technique
- Micro-analysis from few µm to few 1000 µm
- 2D mapping to study the homogeneity of a given surface
- High precision depth profile (sub µm)

Bottleneck of LA-ICPMS: quantification

The mass of ablated sample depends on:

 the laser: energy, wavelength, duration of the pulse, rate of laser shots, beam diameter

✓ the sample: optical, mechanical and thermal properties

 \rightarrow using a UV fs laser is limiting strongly systematical effects (fractionation, small size of the particles for a more accurate atomization/ionization efficiency measurement,...)

 \rightarrow need of a reference material similar to the sample of interest

Collaboration between CENBG & IPREM

- CENBG involved for many years in neutrino physics with low background measurements expertize
- Collaboration initiated in 2019 with IPREM laboratory in Pau, worldwide experts in LA-ICPMS using fs lasers
- Goal: to use LA-ICPMS for quantitative ultra-low level measurements of U/Th and mapping of materials for rare event experiments

Tests performed on acrylic samples and µ-coaxial cable

Collaboration between CENBG & IPREM

UV fs laser ablation HR-ICPMS @ Pau

Unique in the world. 100% made in Aquitaine region (France)

ICPMS

- High Resolution ICPMS with jet interface (most sensitive ICPMS)
- m/Δm~300-10000
- Optimized for U/Th

Laser ablation cell (sample size limitation)

UV fs laser :

- λ=257 ns
- Pulse duration: 360 fs
- Energy per pulse: few µJ
- Frequency: 0-300 kHz
- Spot size: 5-10 µm
- Speed of the scan: <2 m/s

LA-ICPMS for acrylic samples

UV fs laser features :

- λ=257 nm
- Duration: 360 fs
- Energy: ~ µJ/pulse
- Frequency: ~few 100Hz
- Spot size: 8 µm

2D scan of a square of 600x600 μm^2 with a laser spot of 8 μm

What are the level of U and Th impurities on the surface and in the bulk of the acrylic sample ?

Protocol of measurement

- Only 30 seconds to scan a square of 600x600 µm²
- Background measurement performed just after during a similar duration

Acrylic: polished or not polished ?

Example of two acrylic samples measured:

- one with polishing process applied on the top surface
- one without polishing

 \rightarrow very powerful tool to measure the U/Th contamination and to choose the best surface treatment of a given material

Depth profile of U/Th concentration

Good reproducibility of the ablated volume after several scans

How to be quantitative in g/g?

$$C_m(U) = \frac{m(U)}{m(sample)} = \frac{M(U)/N_A \times N_{ions}/\varepsilon}{\rho \times V_{ablated}}$$

- ✓ To know precisely the background in order to derive the net count N_{ions} of U/Th ions
- ✓ To have a reference material at known low U/Th concentration → to measure the overall efficiency ϵ from ablation to ion counting
- ✓ To know precisely the ablated mass → by confocal microscopy to measure *a posteriori* the depth and thus the ablated volume $V_{ablated}$

Sensitivity of LA-ICPMS technique

- \checkmark Assuming 0.2% efficiency, 2 $\mu g/mn$ of ablated mass of acrylic
- Minimum detectable activity in g/g vs time (proportionnal to mass) for different background rates

Uranium MDA for different background rates

→ sub-10⁻¹² g/g level reached within 10 mn @ 1 ion/s background rate

- → sub-10⁻¹³ g/g level reached within 1 h @ 0.1 ion/s background rate
- → Opportunity to measure tens of samples per day at the sub-ppt level with LA-ICPMS !

2D mapping of a µ-coaxial cable

 μ -coaxial cable produced by the AXON company (France) a

- λ=257 ns
- Duration: 360 fs
- Energy per pulse: few µJ
- Frequency/cadence: few 10 Hz
- Spot size: 8 µm

What is the U/Th mapping impurities on the section of the cable ?

2D mapping of a µ-coaxial cable

U contamination observed in some of the copper wires !

Complementarity of the techniques:

- fs LA HR-ICPMS able to identify where the contamination comes from
- classical ICPMS able to measure it more quantitatively

Summary

- ✓ fs laser ablation ICPMS is a complementary technique to ICPMS
 - No chemical preparation
 - Fast analysis
 - Spatial information for micro-analysis
- Promising applications of LA-ICPMS to measure low U/Th concentrations in various samples of interest
 - A tool to select the best surface treatment
 - A tool to scan the surfacic homogeneity in U/Th of the sample and to identify possible contaminated region/material
 - A tool to map the U/Th concentration in 3D
 - Achievable sensitivity at the sub-10⁻¹² g/g level with only few tens of µg (precise quantification methods still in development)

- ESR-EquipEx+ application PLATTO (PLatform for elemental and isotopic ATTO-trace analysis) submitted in 2020 by CENBG/IPREM institutes to develop new instruments for several applications (including rare event experiments) → unfortunately not successful
- Discussion needed in our community to promote these techniques (ICPMS and LA-ICPMS especially) in the future at CNRS in France for dark matter searches, neutrinoless double beta decay and solar neutrino experiments

Thank you for your attention

Comparison of the techniques

Techniques	Typical time (day)	Mass (g)	Typical limit of detection for U/Th (10 ⁻¹² g/g)	Chemical preparation	Sensitive to surface contamination	Mapping in 2D	Sensitive to secular equib.	Comments
Ultra low γ spectrometry	~30	~10 ³	10	No	No	No	Yes	Sensitive to short-lived isotopes Limited sensitivity
Neutron Activation Analysis (NAA)	~10-30	~10-100	0.1-1	No	Yes/No	No	No	Possibility to irradiate several samples Sensitive to ⁴⁰ K <u>Sensitive to</u> interferences
ICPMS	~0.5	~0.1-10	0.1-1	Yes	Yes/No	No	No	Very mature technique Chemical preparation Not sensitive to ⁴⁰ K
LA-ICPMS	~0.1	~10-4	0.1-1	No	Yes	Yes	No	2D spatial mapping Possibility to measure ten samples/day Not sensitive to ⁴⁰ K

Mass spectrometry vs $\gamma/\alpha/\beta$ spectroscopy

✓ Mass spectrometry: well-suited for long-lived isotopes to reach concentration <10⁻¹² g/g

✓ Gamma spectroscopy: well-suited for short-lived isotopes to reach activity >10 µBq/kg