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Principle of directional detection
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The MIMAC detector



MIMAC - Principle of directional detection
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= Anisotropy of the WIMP flux

= Measuring the direction of the nuclear recoil
—> Enable to overpass the neutrino floor
—> Unambiguous detection

Arbitrary unit

Galactic map of the WIMP

<= Principle of directional detection angular distribution
Tao et al., 2003.11812
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MIMAC - The detector (1/3)

MIMAC = Mlcro-TPC MAtrix of Chambers

= Directional detector

= Gaseous detector — adapt the properties (target mass, spin, pressure)
= Low pressure (~ 30 mbar)

= Measure simultaneously the energy and the 3D track

= Ex € [50eV,30MeV]

= Based on a Micromegas with a pixelated anode

ﬁ — cthode
mesh
\ anode readout

PCB

© Paul Serrano

- Micromegas concept -
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MIMAC - The detector (2/3)
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MIMAC - The detector (2/3)
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MIMAC - The detector (2/3)
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MIMAC - The detector (2/3)
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MIMAC - The detector (2/3)
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MIMAC - The detector (3/3)

Flash Derivative 3D track reconstruction
g g
% 1200 g
= 2 £
H 5 2
£ LI N
51
] 000 % K -
i 5 ]
4 Zo e
800] 40 PSS
: —
. H Do
= - . =
NEE
10| =N
400]
0
| | L L ), L
0 40 e 8 100 120
Time [timeslice]
‘Anode projection XY Anode projection XZ Anode projection YZ
: e f s
> sof x > ®f
S
164
E . 2F
163 l
E 2 - 2
27 D 161] 27]
26f- 1e0E 2|
159F
25 25
158 1
2f L 2
llopnflnellnaneflnonsl naf ool lononl o] I I | I L I N I I L L L L L
2o 57158 158 160 161 162 163 164 163, 166 5 FE I R R R R I S RN S N
X{stip] Time (imesice] Time (tmesice]

Example of a proton recoil of 6keVee (8.6 keVy,)

— Sampling at 50 MHz (20 ns) ,
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MIMAC - Comimac

Comimac = source of ions and electrons of controlled kinetic energy coupled to a
MIMAC chamber

Faraday cup
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Directionality on nuclear recoils at high
gain




Directionality at high gain - Diffusion and angular resolution (1/2)

Low-mass WIMP = Low-energy recoils (Er S 20keV) = Few directional information

<= High-gain to detect all the charges
<= Challenging!

Examples of track lengths before diffusion
(SRIM):
= 10keV YF — 320 um

= 10keV proton — 2.7mm

7. [timeslice]

The diffusion enlarges the size of the primary X [strip|
cloud by about one order of magnitude

—> Distorts the cloud...

—> ... but opens the window for detection
of sub-mm tracks

3D track reconstruction of a 6.32 keV
fluorine
Tao et al., 1903.02159
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Directionality at high gain - Diffusion and angular resolution (2/2)
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Measured and simulated angular resolution at 0°
Tao et al., 2003.11812

For fluorine ions, we measured an angular resolution below 10° for Ex > 10keV
—> Twice better than requirements for a directional detector
(Billard et al., 1110.6079)

= 0° is the optimal configuration, the resolution must now be determined at any
angle
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Directionality at high gain - SimuMimac (1/2)

At high-gain, measurements and simulations used to strongly disagree

u

* SimuMimac ®
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Measured and simulated fluorine track lengths

We developed SimuMimac (C.Beaufort 2021), a simulation tool based on SRIM and
Garfield++ to model the physics of the detector from the primary electron cloud to the

signal formation

= SimuMimac agrees with the measurements
= Main difference with standard simulation code = takes into account the current
induced by the motion of the ions 9/ 15



Directionality at high gain - SimuMimac (2/2)

= Current induced by the charges (Ramo theorem):
i(t) = Zk:i’e qx Ewi - Vi with ve ~ 102 v;
= lons induce smaller currents than electrons but they remain longer in the gap
= At large gain, the ionic contribution
— is non-negligible
— elongates the signal

Charge on the central strip (#127)
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Next step: to deconvolve the ionic signal
— should improve the directional performances 10 /15



Low energy electrons




Electrons - 3D tracks (1/2)

MIMAC can measure 3D electrons tracks and study the complexity of the low-energy
background

Flash Derivative 3D track reconstruction
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Electrons - 3D tracks (2/2)

Flash Derivative 3D track reconstruction
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Example of a 150€V (!) electron track
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Electrons - Fluctuation of the number of primary electrons (1/2)

For low energy electrons (here 250eV) we observe several populations with Gaussian
energy distributions
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The number of primary electrons, p, follows a Conway-Maxwell-Poisson distribution
—> we observe one population for each value of u
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Electrons - Fluctuation of the number of primary electrons (2/2)

The gain per primary electron is linear
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—> MIMAC is sensitive to each primary electrons when operating at high-gain
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Conclusion

= MIMAC searches for low-mass WIMPs using the directional information to
discriminate the background

= The directional information is difficult to access for fluorine recoils with energies
below 10 keV
— Diffusion seems to improve the resolution for short tracks

= At high gain, the large number of ions accumulated in the gap distorts the
signal
—> We developed SimuMimac that correctly describes the physics of the detector
—> We must find a way to deconvolve the ionic contribution to improve the

angular resolution

= MIMAC can study low energy electrons

— sensitive to the fluctuation of the number of primary electrons
— the 3D tracks down to 150 eV can help in understanding the background
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Backup




Figure 12. From left to right : WIMP angular distribution, WIMP-induced recoil angular distribu-
tion with perfect resolution and with finite resolution (15°). Top: Pure halo component model with
r = 0.0. Bottom: Two-component model with » = 0.5.

Tao, Beaufort et al., 2003.11812
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Gain curve
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Mimac 2m?

Module for a 2m? detector

35 cm Micromegas
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Kaluza-Klein axions

a — 7y SIGNATURE:

= 2 photons of same energy emitted back-to-back = photoelectric effect
= Search for 2 electrons of same energy (~ 4keV) close to each other
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—> Unambiguous signature, almost no background event can reproduce such signal

— From Monte Carlo simulations, we estimate 70% of efficiency of detection 15/ 15



Comimac and lonization Quenching Factor

Faraday cup
CoOMIMAC = source of ions and electrons of

known kinetic energy

A G C
» Ex €[150eV, 30keV] : J_
: s
= Accurate tool: 6Ex ~ 1% : ource
= Developed at LPSC MIMAC TR Foousing
detector electrodes

USED FOR:
= Calibration

= Physical measurements (track length,
straggling, diffusion)

= lons/electrons comparison
QUENCHING FACTOR:
* Q= Eioni/Ex = f(Ex, Z, p, gas)

= Crucial measurements to determine
the kinetic energy of a recoil from the

measured ionization energy 5 5
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