DUPhy GDR Kickoff meeting

Directionality and 3D tracks in the (sub)keV range with the MIMAC detector

In the framework of searches for $\ensuremath{\mathsf{WIMP}}$ and $\ensuremath{\mathsf{ALP}}$

Cyprien Beaufort, O. Guillaudin, J.-F. Muraz, F. Naraghi, N. Sauzet, D. Santos - 31 May 2021 -

In collaboration with CPPM and CEA-Saclay

The MIMAC detector	 Principle of directional detection The detector
DIRECTIONALITY ON NUCLEAR RECOILS AT HIGH GAIN	 Diffusion and angular resolution SimuMimac
Low-energy electrons	3D tracksNumber of primary electrons

The MIMAC detector

MIMAC - Principle of directional detection

- Anisotropy of the WIMP flux
- Measuring the direction of the nuclear recoil
 - \implies Enable to overpass the neutrino floor
 - \implies Unambiguous detection
- \iff Principle of directional detection

Galactic map of the WIMP angular distribution Tao *et al.*, 2003.11812

MIMAC = MIcro-TPC MAtrix of Chambers

- Directional detector
- Gaseous detector \rightarrow adapt the properties (target mass, spin, pressure)
- Low pressure (~ 30 mbar)
- Measure simultaneously the energy and the 3D track
- $E_K \in [50 \,\mathrm{eV}, 30 \,\mathrm{MeV}]$
- Based on a Micromegas with a pixelated anode

CG A70% $CF_4 + 28\% CHF_3 + 2\% C_4H_{10}$. WIMP

$$\label{eq:commac} \begin{split} \text{Comimac} &= \text{source of ions and electrons of controlled kinetic energy coupled to a} \\ \text{MIMAC chamber} \end{split}$$

Directionality on nuclear recoils at high gain

Low-mass WIMP \Rightarrow Low-energy recoils ($E_R \lesssim 20 \text{ keV}$) \Rightarrow Few directional information

↔ High-gain to detect all the charges↔ Challenging!

Examples of track lengths before diffusion (SRIM):

- $10 \text{ keV} \ ^{19}\text{F} \longrightarrow \ 320 \,\mu\text{m}$
- $10 \,\mathrm{keV}$ proton $\longrightarrow 2.7 \,\mathrm{mm}$

The **diffusion** enlarges the size of the primary cloud by about one order of magnitude

 \implies Distorts the cloud...

 $\implies \dots$ but opens the window for detection of sub-mm tracks

3D track reconstruction of a 6.32 keVfluorine Tao *et al.*, 1903.02159

Measured and simulated angular resolution at 0° Tao et al., 2003.11812

For fluorine ions, we measured an angular resolution below 10° for $E_K > 10 \text{ keV}$

⇒ Twice better than requirements for a directional detector

(Billard et al., 1110.6079)

 $\Longrightarrow 0^\circ$ is the optimal configuration, the resolution must now be determined at any angle

At high-gain, measurements and simulations used to strongly disagree

Measured and simulated fluorine track lengths

We developed SimuMimac (C.Beaufort 2021), a simulation tool based on SRIM and Garfield++ to model the physics of the detector from the primary electron cloud to the signal formation

- SimuMimac agrees with the measurements
- Main difference with standard simulation code = takes into account the current induced by the motion of the ions

Directionality at high gain - SimuMimac (2/2)

• Current induced by the charges (*Ramo theorem*):

$$i(t) = \sum_{k=i,e} \, q_k \, \mathbf{E}_{w,k} \cdot \mathbf{v}_k \quad \text{with } \mathbf{v}_e \sim 10^3 \, \mathbf{v}_i$$

- lons induce smaller currents than electrons but they remain longer in the gap
- At large gain, the ionic contribution
 - is non-negligible
 - elongates the signal

Next step: to deconvolve the ionic signal \implies should improve the directional performances

10 / 15

Low energy electrons

 MIMAC can measure 3D electrons tracks and study the complexity of the low-energy background

Example of a $12 \, \rm keV$ electron track

Electrons - 3D tracks (2/2)

Example of a $150 \, \mathrm{eV}$ (!) electron track

Electrons - Fluctuation of the number of primary electrons (1/2)

For low energy electrons (here $250\,{\rm eV})$ we observe several populations with Gaussian energy distributions

Corresponding energies of the populations

The number of primary electrons, μ , follows a Conway-Maxwell-Poisson distribution \implies we observe one population for each value of μ

The gain per primary electron is linear

Gain per primary electron

 \implies MIMAC is sensitive to each primary electrons when operating at high-gain

Conclusion

Conclusion

- MIMAC searches for low-mass WIMPs using the directional information to discriminate the background
- The directional information is difficult to access for fluorine recoils with energies below $10 \rm \, keV_{nr}$

 \implies Diffusion seems to improve the resolution for short tracks

• At high gain, the large number of ions accumulated in the gap distorts the signal

 \Longrightarrow We developed SimuMimac that correctly describes the physics of the detector

 \Longrightarrow We must find a way to deconvolve the ionic contribution to improve the angular resolution

- MIMAC can study low energy electrons
 - sensitive to the fluctuation of the number of primary electrons
 - the 3D tracks down to $150\,\mathrm{eV}$ can help in understanding the background

Backup

Directionality

Figure 12. From left to right : WIMP angular distribution, WIMP-induced recoil angular distribution with perfect resolution and with finite resolution (15°). Top: Pure halo component model with r = 0.0. Bottom: Two-component model with r = 0.5.

Tao, Beaufort et al., 2003.11812

Gain curve

Tao, Beaufort et al., 1903.02159

Mimac $2m^3$

35 cm Micromegas

Module for a $2m^3\ {\rm detector}$

MIMAC $2m^3=$ 16 bi-chamber modules of $2*35*35*52\,{\rm cm}^3$ New anode technology

Kaluza-Klein axions

- $a \rightarrow \gamma \gamma$ signature:
 - 2 photons of same energy emitted back-to-back \implies photoelectric effect
 - Search for 2 electrons of same energy $(\sim 4\,{
 m keV})$ close to each other

 \implies Unambiguous signature, almost no background event can reproduce such signal \implies From Monte Carlo simulations, we estimate 70% of efficiency of detection 15

Comimac and Ionization Quenching Factor

$$\label{eq:COMIMAC} \begin{split} & \mathrm{COMIMAC} = \text{source of ions and electrons of} \\ & \text{known kinetic energy} \end{split}$$

- $E_K \in [150 \,\mathrm{eV}, \, 30 \,\mathrm{keV}]$
- Accurate tool: $\delta E_K \sim 1\%$
- Developed at LPSC

USED FOR:

- Calibration
- Physical measurements (track length, straggling, diffusion)
- lons/electrons comparison

Quenching factor:

- $Q = E_{ioni}/E_K = f(E_K, Z, p, \text{gas})$
- Crucial measurements to determine the kinetic energy of a recoil from the measured ionization energy

