

Rare event physics

Our ambitious mission:

- Show the **state of the art** of the physics of rare events
- Cover for both experimental and theoretical aspects
- Provide hints for the exploration of next generation experiments (link with <u>WG5</u>)
- Provide a guideline for experimental and technological efforts, like constraints for low cosmo- and radio-purity techniques(<u>WG2</u>), for detection methods (<u>WG3</u>) and analysis tools (<u>WG4</u>)
- Being inclusive to any other scientific field that would profit of deep underground sites

Two major axes

1. Dark Matter

We will keep a particular eye on direct search of dark matter :

- Scoping the whole zoology of models (WIMP, WISP, axions, ...), nucleo- or lepto-philic
- Exploring a wide (and experimentally accessible) range of masses/energies (>GeV, sub-GeV, down to µeV)
- Looking for any trace of daily and seasonal modulation
- Using a plethora of targets and combinations of energy losses
- Complementarity with colliders (new particles) and indirect evidences (annihilation)

Two major axes

WG1

2. Neutrinoless double beta decay

We will keep an eye on the search for the intimate nature of neutrinos:

- Nature of neutrino (Majorana/Dirac)
- Fixing the neutrino mass scale and possible mass scenarii
- Proof of a lepton number violation
- Neutrino hierarchy
- Impact on baryon asymmetry of the Universe via Leptogenesis

... and more

Many other challenges and synergies, some of them scoping physics beyond Standard Model:

- Double electron capture
- Proton stability
- Solar neutrino flow
- Coherent elastic neutrino-nucleon scattering
- Contribution to detection and study of supernovae properties
- Geo-neutrinos
- Sterile neutrinos

Links with other communities

Our mission naturally includes the connection with other communities :

- GDR Neutrinos (http://gdrneutrino.in2p3.fr/) for 0vββ and any other low background physics
- GDR RESANET (http://resanet.in2p3.fr/) for nuclear physics processes
- GDR Terascale ((http://terascale.in2p3.fr/) for particle physics beyond Standard Model
- Accelerator physics
- Cosmology
- Anything else related to underground physics (geology, biology, chemistry, ...)
- Finally, involving other institutes and countries

Deliverables

Practically speaking, we plan to :

- Encourage people, especially young ones, to present freshly new theoretical and experimental results
- Coordinate the efforts for the preparation of a biennial summary document (ideally early 2023 and 2025) with the state of the art of the field (form to be defined: short communication, activity report, ...)
- Develop and maintain a web page (in GDR web site or linked to it) with a collection of the existing experimental results (as a form of publications, oral talks and summary plots)
- Promote round tables, seminars, outreach events

We count on <u>you</u>
to have this WG
active and stimulating

WG1

Please contact <u>us</u>
to propose us reviews
and scientific news
to present at next
meetings