

Warsaw University of Technology

Manuel utilisateur du banc-test pour cartes FEC

Jean-Marc Parraud / LPNHE

Remerciements à Andrzej Rychter / Warsaw University of Technology

Banc de test – vue du dessus

- Les 2 emplacements sur la carte FEM en place sont fonctionnels (slot #0 ou slot #1) pour tester une carte FEC. Pour les tests de la série de cartes FEC chez le fabricant, le slot #1 a été condamné.
 Seul le slot #0 est accessible. Si toutefois le slot #0 venait à ne plus fonctionner, il est possible de retirer le cache du slot #1 (2 vis) pour l'utiliser.
- Orientation des FEC → vérifier le logo LPNHE sur la carte FEC : il doit être positionné vers le bas du banc (photo)

Banc de test – connexion au PC

 Connecter la carte TDCM (au niveau inférieur du banc) avec le câble Ethernet, à relier à la prise RJ45 sur le flanc de droite de l'ordinateur portable

Le connecteur éthernet de la TDCM est situé près de la prise USB – s'aider de l'étiquette « Ethernet »

- 2. Vérifier que les 2 interrupteurs de mise sous tension du banc soient bien en position **OFF**
- 3. Brancher le câble d'alimention secteur AC 230V

Vue de côté du testeur de FEC : Alimentation électrique CiT + câble secteur

Branchement de la carte FEC sur le banc de test

- 1. Les interrupteurs TDCM et FEM/FEC doivent être sur OFF
- 2. Positionner la carte FEC avec les 8 connecteurs Hirose latéraux orientés vers le haut
- 3. Aligner les 4 trous aux coins de la FEC avec les 4 plots métalliques
- 4. Le logo LPNHE doit être orienté en bas
- 5. Presser **délicatement** sur le milieu de la carte FEC pour assurer une bonne connexion du connecteur Hirose central avec la carte FEM

4 plots en métal alignés avec les 4 trous aux coins de la FEC

Presser délicatement avec des gants antistatiques

Mise en route du PC portable

- L'ordinateur dédié aux tests est un PC DELL Latitude étiqueté LPNP387. Son système d'exploitation est Linux Ubuntu.
- Allumer le PC. Une session "lpnhe" doit s'afficher → OK Une demande de mot de passe s'affiche
- S'assurer que la touche "num lock" est allumée

→ rentrer le mot de passe : admin387 puis OK

• L'interface Linux s'affiche.

→ double-cliquer sur le programme "Windows10-32 bits"

• Une fenêtre de Windows10 virtuel s'ouvre.

Attendre environ 10 secondes Une fenêtre s'ouvre avec le message d'erreur :

"System program problem detected" → Cliquer sur "Cancel"

Mise en route du PC portable (suite) Lancement du programme de test

- Une fois affichée la photo d'ouverture Windows10, taper la touche "Enter" : le log-in d'ouverture de la session Windows s'affiche
- Rentrer les mêmes identifiants que précédemment :

session : *lpnhe* mot de passe : *admin387*

• La session de travail Windows s'ouvre

→ double-cliquer sur le dossier "fec_tester_software"

• Dans ce dossier se trouvent tous les fichiers nécessaires aux tests des cartes FEC et à l'archivage automatique des résultats.

Banc de test – Programme de test : vérification de la connexion à la carte FEM

 Mettre sur ON les interrupteurs d'alimentation des TDCM et FEM

Les 2 interrupteurs doivent être dans la position ON Vérifier que les LEDs sont allumées

- Double-cliquer sur l'icône startenv :
 → la fenêtre de ligne de commande venv s'ouvre

```
Sending command: fe 0 moni T 2
Response: 0 Tdcm(1) Fem(00) FEM_T: 26.219 degC
Sending command: fe 0 moni V 2
Response: 0 Tdcm(1) Fem(00) FEM_Vdd: 2.490 V
Sending command: fe 0 moni A 2
Response: 0 Tdcm(1) Fem(00) FEM_Vad: 4.766 V
Sending command: fe 0 moni I 2
Response: 0 Tdcm(1) Fem(00) FEM_I: 1.714 A
Sending command: fe 0 moni S 2
Response: 0 Tdcm(1) Fem(00) FEM_Serial: 580000024d742a26
Connection closed.
```

- Si la connexion est bien établie, on doit obtenir la sortie suivante
- S'il n'y a pas de connexion Ethernet (ex : TDCM n'est pas sous tension ...)
- Si la FEM n'est pas sous tension ou s'il y a un problème de communication (fibre optique)

```
No ethernet connection...
```

TDCM connection failed! No ehernet connection?

Banc de test – Programme de test : test de la carte FEC

- 1. Mettre OFF les alimentations électriques des TDCM et FEM
- Taper la commande : python fec_test.py qui lance le programme de test complet des cartes FEC
- 3. Entrer les informations demandées
 - Numéro du slot FEM (0 ou 1) utilisé
 - Nom de l'opérateur-testeur
 - Numéro de série de la FEC présent sur l'etiquette
- Mettre ON les alimentations électriques des TDCM et FEM
- 5. Le test prend environ 3 minutes et produit de multiples lignes...
- Quand le test est terminé, on doit obtenir le message suivant _____
 Le résultat doit être "Success" ou "Failed"
- 7. Mettre OFF les alimentations électriques des TDCM et FEM
- Vérifier le rapport de test dans le dossier "out"

Les 2 interrupteurs doivent être dans la position OFF Vérifier que les LEDs sont éteintes

(venv) D:\tmp\test2\source>python fec_test.py Loaded settings from settings\json_fectest_settings.txt Enter fem slot (0 or 1): 0 Enter tester name: Andrzej Enter fec label: 003 Reset TDCM/FEM power and press Enter to start...

Les 2 interrupteurs doivent être dans la position ON Vérifier que les LEDs sont allumées

Quand le test est terminé, on doit obtenir le message suivant

> <u>Note</u> : si ce n'est pas le cas et que le programme est bloqué après les 3 minutes, relancer la procédure de test à partir de 1.

Les 2 interrupteurs doivent être dans la position OFF Vérifier que les LEDs sont éteintes

Banc de test – Résultats des tests

1. Tous les résultats sont sauvegardés dans le dossier " *out* "

fectest_report_fec_003_2020_10_21_15_08_16.pdf
fectest_report_fec_003_2020_10_21_15_02_53.pdf

fectest_report_fec_003_2020_10_21_15_08_16

fectest_report_fec_003_2020_10_21_15_02_53

 Le fichier de rapport PDF est au nom suivant : fectest_report_fec_XXX_YYY

où :

- XXX est le N° de série de la FEC
- YYY est la date+heure du test

Ce fichier est celui qui sert de référence pour la validation des cartes FEC

- 3. Un dossier avec le même nom contient :
 - Des fichiers txt avec les commandes envoyées et reçues pour les 5 runs de tests
 - Des fichiers d'images dans le sousdossier " data "
 - Graphiques des piédestaux pour chaque AFTER (moyenne + RMS)
 - Graphiques des tests de patterns pour l'ADC
 - Graphiques des tests du générateur d'impulsion calibrée

Dat	te: 2020-10-29	12:11:16			
Tes	ster name: And	rzej			
Test	t#1 Monitoring value	s	Passe	d	
0	FEC label		002		OK
1	FEC DC2438 ID		660000024d631	OK	
2	FEC_T (to 35°C)		31.031	OK	
3	FEC_Vdd (3.2V to 3.4V)		3.290	OK	
4	FEC_I (1.1A to 1.5A)		1.177		ОК
5	FEC_Vad (1.9V to 2	.0V)	1.950		OK
Tes	#2 Slow control regi	isters:	Passe	d	
Test	#3 Pedestal run:		Passe	d	
Mear	n in range (245.0:255.0)	rms < 8.0 (fpn 4.0)			
0	After chip #0	Mean OK		STDDEV OK	OK
1	After chip #1	Mean OK		STDDEV OK	ОК
2	After chip #2	Mean OK		STDDEV OK	ок
3	After chip #3	Mean OK		STDDEV OK	ОК
4	After chip #4	Mean OK		STDDEV OK	ок
5	After chip #5	Mean OK		STDDEV OK	OK
6	After chip #6	Mean OK		STDDEV OK	OK
7	After chip #7	Mean OK		STDDEV OK	OK
Test	t#4 AD9637 test pat	tems	Passe	d	
0	ADC channel #0	P#1 (Midscale short 2018	3)	MAX 2018 MIN 2018	OK
1	ADC channel #1	P#2 (+Full-scale short 40	P#2 (+Full-scale short 4095)		ок
2	ADC channel #2	P#4 (Checkerboard 1385	P#4 (Checkerboard 1385 to 2730 toggle)		ОК
3	ADC channel #3	P#7 (One/zero word togg	P#7 (One/zero word toggle)		OK
4	ADC channel #4	P#1 (Midscale short 2046	3)	MAX 2048 MIN 2048	ок
5	ADC channel #5	P#2 (+Full scale short 40	95)	MAX 4095 MIN 4095	ОК
6	ADC channel #6	P#4 (Checkerboard 1365	i to 2730 toggle)	MAX 2730 MIN 1365	ок
/	ADC channel #7	P#7 (One/zero-word togg	(al;	MAX 4095 MIN 0	OK
Test	t#5 Pulser run		Passe	d	
0	After chip #0	DAC: 483 G(120) ADC(2	980 to 3200)	ADC AMPL: 3006	ОК
1	After chip #1	DAC: 483 G(120) ADC(2	980 to 3200)	ADC AMPL: 3095	ОК
2	After chip #2	DAC: 483 G(120) ADC(2	980 to 3200)	ADC AMPL: 2994	ОК
3	After chip #3	DAC: 483 G(120) ADC(2	980 to 3200)	ADC AMPL: 3066	OK
1	After chip #1	DAC: 483 G(120) ADC(2	980 to 3200)	ADC AMPL: 3004	OK
5	After chip #5	DAC: 483 G(120) ADC(2	980 to 3200)	ADC AMPL: 3025	ок
6	After chip #6	DAC: 483 G(120) ADC(2	980 to 3200)	ADC AMPL: 3148	OK
7	After chip #7	DAC: 483 G(120) ADC(2	980 to 3200)	ADC AMPL: 3017	OK

Résultats des tests – Le rapport PDF

Fec test report:

Date: 2020-10-29 12:11:16

Le rapport PDF se compose des pages suivantes:

Page de résumé avec les résultats de 5 tests

- 1. Valeurs de monitoring
- 2. Registres de slow control
- 3. Run de piédestaux
- 4. Patterns de test de l'ADC
- 5. Test du générateur d'impulsion

La décision finale "Passed" ou "Failed" est en bas de la page

2.	Pages 2 à 5 : tableaux avec les			
	commandes envoyées et reçues			
	pour chaque test:			

- Page 6 : tableau des piédestaux avant égalisation des mesures de piédestaux
- Page 7 : tableau des piédestaux après égalisation des piédestaux

	FEC label	00	12		OK
r	FEC IDC2438 ID		bb000024db31626		OK
2	FEC 1 (b) 35/01		31 031		OK
3	FEC_1 (0.35%)		2 200		OK
1	FEC_V00 (3.2V 10 3.4V)		5.250		OK
5	EEC_Vad (1.9V to 2.0V)		1.950		OK
· Test#2	2 Slow control registe	,	Passe	d	
Test#3	3 Pedestal run:		Passe	d	
Mean in	1 range (245.0:255.0). rm	s < 8.0 (fpn 4.0)	1 0000	•	
)	After chip #0	Mean OK		STDDEV OK	ок
1	After chip #1	Mean OK		STDDEV OK	ОК
2	After chip #2	Mean OK		STDDEV OK	OK
3	After chip #3	Mean OK		STDDEV OK	ок
4	After chip #4	Mean OK		STDDEV OK	ок
5	After chip #5	Mean OK		STDDEV OK	ок
3	After chip #6	Mean OK		STDDEV OK	OK
7	After chip #7	Mean OK		STDDEV OK	ок
Test#4	4 AD9637 test patterr	ns	Passe	d	
0	ADC channel #0	P#1 (Midscale short 2048)		MAX 2048 MIN 2048	ок
1	ADC channel #1	P#2 (+Full-scale short 4095)		MAX 4095 MIN 4095	OK
2	ADC channel #2	P#4 (Checkerboard 1365 to 2730 toggle)		MAX 2730 MIN 1365	OK
3	ADC channel #3	P#7 (One/zero-word toggle)		MAX 4095 MIN 0	OK
4	ADC channel #4	P#1 (Midscale short 2048)		MAX 2048 MIN 2048	ок
5	ADC channel #5	P#2 (+Full-scale short 4095)		MAX 4095 MIN 4095	OK
6	ADC channel #6	P#4 (Checkerboard 1365 to 2730 toggle)		MAX 2730 MIN 1365	OK
7	ADC channel #7	P#7 (One/zero-word toggle)	MAX 4095 MIN 0	OK
Test#	5 Pulser run		Passe	d	
0	After chip #0	DAC: 483 G(120) ADC(298	10 to 3200)	ADC AMPL: 3006	ок
1	After chip #1	DAC: 483 G(120) ADC(298	10 to 3200)	ADC AMPL: 3095	OK
2	After chip #2	DAC: 483 G(120) ADC(298	10 to 3200)	ADC AMPL: 2994	OK
3	After chip #3	DAC: 483 G(120) ADC(298	10 to 3200)	ADC AMPL: 3066	OK
1	After chip #4	DAC: 483 G(120) ADC(298	10 to 3200)	ADC AMPL: 3004	OK
5	After chip #5	DAC: 483 G(120) ADC(298	10 to 3200)	ADC AMPL: 3025	OK
5	After chip #6	DAC: 483 G(120) ADC(298	10 to 3200)	ADC AMPL: 3148	OK
7	After chip #7	DAC: 483 G(120) ADC(298	10 to 3200)	ADC AMPL: 3017	OK

Monitoring test					
NO	Command	Error	Response		
0	fe fec_enable 1	0	0 Tdcm(1) Fem(00) Reg(1) <- 0x40000		
1	fe 0 moni T 0	0	0 Tdcm(1) Fem(00) FEC_T: 24.312 degC		
2	fe 0 moni V 0	0	0 Tdcm(1) Fem(00) FEC_Vdd: 3.270 V		
3	fe 0 pulser 0 model T2K2	0	0 Tdcm(1) Fem(00) pulser_DAC <- 3 (T2K2)		
4	fe 0 pulser 0 base 0x3FFF	0	0 Tdcm(1) Fem(00) Pulser_Base <- 0x3fff		
5	fe 0 pulser 0 load	0	0 Tdcm(1) Fem(00) Reg(1) <- 0x0 GEN_GO pulsed		
6	fe 0 moni A 0	0	0 Tdcm(1) Fem(00) FEC_Vad: 1.950 V		
7	fe 0 moni I 0	0	0 Tdcm(1) Fem(00) FEC_I: 1.426 A		
8	fe 0 moni S 0	0	0 Tdcm(1) Fem(00) FEC_Serial: 3c0000024da1b926		

Extinction du banc de test

En fin de phase de tests, pour éteindre le banc et son ordinateur, procéder comme suit :

 Sur le banc, s'assurer que les alimentations TDCM + FEM sont bien éteintes → OFF

Les 2 interrupteurs doivent être dans la position OFF Vérifier que les LEDs sont éteintes

- Sur le PC, fermer les fenêtres de test à l'intérieur de la fenêtre de Windows10 virtuel
- Clore la session de Windows10
 virtuel par le menu déroulant "File"
 → Close
- Dans la fenêtre qui s'ouvre, choisir l'option :
 "Power off the machine" → OK
- Clore la session Linux Ubuntu : dans le menu déroulant en haut à droite (flèche) cliquer sur l'icône puis sur *Power off* Le PC s'éteint

