

Lepton Flavor violating (LFV), and FCNC in more general, are forbidden in the SM

→ Very promising process to look for New Physics

SM of Particle Physics

Physics after the electroweak epoch is described by the SM

A. Schöning, Heidelberg

Discovery of Neutrino Oscillations

• Neutrino Oscillations:

 $\mathbf{v}_1 \quad \mathbf{v}_2 \quad \mathbf{v}_3$

- solar neutrinos
- reactor neutrinos
- atmospheric neutrinos
- neutrino beams

(c) Kamioke Observatory, ICRR(Institute for Cosmic Ray Research), The University of Tokyo

The Fermion Masses in the SM

The Fermion Masses in the SM

Proton/Neutron: $m \approx 1 \text{ GeV/c}^2$

Elektron: m ≈ 0.5 MeV/c² Why Higgs couplings so different? Neutrinos: m ≈ 0.01 - 0.1 eV/c²

Physics Beyond the SM (BSM)

- Experimental Observations
- \bullet Matter-antimatter asymmetry in universe \rightarrow CP-Violation
- Observation Dark matter
- \rightarrow require new particles or interactions beyond the SM
- Fermion generations
- Nature of **neutrinos** (Dirac or Majorana?)
- Fermion masses (Yukawa couplings)
 - \rightarrow no explanation yet
- Problems

Unknowns

- Hierarchy "problem" (fine tuning)
- Stability of Higgs field, ...

A. Schöning, Heidelberg

Flavor Mixing

<u>Quarks</u>

<u>Leptons</u>

Cabibbo Kobayashi Maskawa (CKM)

$$\begin{vmatrix} d \\ s \\ s \\ b \end{vmatrix} = \begin{vmatrix} v_{ud} & v_{us} & v_{ub} \\ v_{cd} & v_{cs} & v_{cb} \\ v_{td} & v_{ts} & v_{tb} \end{vmatrix} \begin{vmatrix} d \\ s \\ b \end{vmatrix}$$

weak

mass

Pontecorvo Maki Nakagawa Sakata (PMNS)

$$\begin{vmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\mu} \end{vmatrix} = \begin{vmatrix} v_{e1} & v_{e2} & v_{e3} \\ v_{\mu 1} & v_{\mu 2} & v_{\mu 3} \\ v_{\tau 1} & v_{\tau 2} & v_{\tau 3} \end{vmatrix} \begin{vmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{vmatrix}$$

weak

mass

A. Schöning, Heidelberg

Lepton Mixing & Lepton Flavor Violation

A. Schöning, Heidelberg

Conservation of Lepton Flavor is an Accidental Symmetry!

Beyond the SM: $\mu^+ \rightarrow e^+e^+e^-$

loop diagrams (similar to $\mu \to e \; \gamma)$

- Supersymmetry
- Little Higgs Models
- Seesaw Models
- GUT models (Leptoquarks)
- many other models

tree diagram (Mu3e specific)

- Higgs Triplet Model
- New Heavy Vector bosons (Z')
- Extra Dimensions (KK towers)

Many models "naturally" generate lepton flavor violation!

Mu3e Experiment

Challenge Number 1: Rate

Goal \rightarrow **10¹⁶ muon decays**

- running time: ~3 years \rightarrow 3 · 10⁷s (experimental year ~ 10⁷s)
- detector acceptance: 30%
- required muon rate: $10^9 \mu/s \rightarrow defines technological challenge$

Detector has to stand high rates! \rightarrow e.g. silicon detectors for tracking

Challenge Number 2: Background

Number of grains of sand at all beaches in France ~ 10¹⁶ Find THE grain of sand which violates lepton flavor!

Irreducible Background

Radiative decay with internal conversion

$$B(\mu^+ \rightarrow e^+ e^+ e^- vv) = 3.4 \cdot 10^{-5}$$

Irreducible Background

Radiative decay with internal conversion

 $B(\mu^+ \rightarrow e^+ e^+ e^- vv) = 3.4 \cdot 10^{-5}$

very good momentum + total energy resolution required!

A. Schöning, Heidelberg

Accidental Backgrounds

- Overlays of two ordinary µ⁺ decays with a (fake) electron (e⁻)
- Electrons from: Bhabha scattering, photon conversion, mis-reconstruction

Need excellent:

- Vertex resolution
- Timing resolution
- Kinematic reconstruction

example for Bhabha pileup

Mu3e Design (Phase I)

10⁸ muons per second (phase I)

 ultra thin silicon pixel detector (HV-MAPS) with 1 per mill radiation length / layer for vertexing

• **fast timing** detectors (**scintillating fibers**) → time coincidence

 ultra thin silicon pixel detector (HV-MAPS) with 1 per mill radiation length / layer for outer tracking layers → momentum information

Mu3e Design (Phase I)

• **recurl** stations with **silicon pixel detector** (HV-MAPS) → increased acceptance

Mu3e Design (Phase I)

recurl stations with extra **scintillating tiles** \rightarrow very precise timing

Tracking Resolution + Multiple Scattering

• Muon decay (m=105.6 MeV):

- → electrons in low momentum range p < 53 MeV/c
- Multiple scattering is dominant!

 Need thin, fast and high resolution tracking detectors operated at high rate (>10⁹ particles/s @ phase II)

$$\Theta_{MS} \sim rac{1}{P} \sqrt{X/X_0}$$

Momentum Resolution

- requires large lever arm
- Iarge bending angle Ω

- best precision for half turn tracks
- measure recurlers

electrons with p~33 MeV/c make roughly semi-circles!

Momentum Resolution (Simulation)

Mu3e Phase I Design

Technical Challenges:

- multiple Coulomb scattering
- high particles **rates**
- compact design

- → ultra-thin tracking layers
 - → highly granular detectors and fast online reconstruction
 - → high integration level (sensors, readout ASICs)

Mu3e Phase I Design

Innovative Technologies:

- High Voltage Monolithic Active Pixel Sensors (HV-MAPS) for tracking
- gaseous helium cooling system (<400mW/cm²) and ultra-thin pixel modules $(0.1 \% X_0)$
- MuTrig readout ASIC for timing detectors with ~30 ps time resolution
- Online filter farm based on Graphical Processing Units

A. Schöning, Heidelberg

Paul-Scherrer Institute (CH)

High intensity Proton Accelerator (HiPA) \rightarrow 2.4 mA protons at 590 MeV (1.5 MW)

Muon Beam:

- World's most intense continuous muon beam
- Low momentum muons ~28 MeV/c
- PiE5 beamline shared between **MEGII** and **Mu3e**
- > expect 1.4·10⁸ µ⁺/s at I_p = 2.4 mA
- > about half is stopped on µ-stopping target

→ Mu3e Phase I

PiE5: Compact Muon Beamline for Mu3e

Mu3e Collaboration

Germany

- University Heidelberg (KIP)
- University Heidelberg (PI)
- Karlsruhe Institute of Technology
- University Mainz

Switzerland

- University of Geneva
- Paul Scherrer Institute
- ETH Zurich
- University Zurich
- [University of Applied Sciences Northwestern Switzerland] associated partner

United Kingdom

- Bristol
- Liverpool
- Oxford
- UC London

about 70 members; ~15 PhD students

HV-MAPS Detector Technology

High Voltage-Monolithic Active Pixel Sensor (HV-MAPS)

I.Peric et al., NIM A 582 (2007) 876

- active sensor:
 - \rightarrow hit finding + digitisation + readout
- HV-CMOS 180nm: 60-120 V
- low cost process (AMS, **TSI**)
- thinned to ~50 μ m (~ 0.0005 X₀)

MuPix10 prototype ladder

sensor: $20 \times 20 \text{ mm}^2$ pixel: $80 \times 80 \text{ }\mu\text{m}^2$

MuPix prototypes characterized in lab and in several test beams

- efficiency (>99%) & noise
- time resolution (<20 ns)
- high rates (radiation hardness)
- temperature-dependence
 - specifications fulfilled

Preliminary Mupix10 Efficiency (PSI)

- Ihreshold 42mV (~670 e⁻)
- average efficiency ~ 99.85% (noise & rate dependent \rightarrow dead time)
- no pixels masked!
- no TDAC tuning of individual pixels
- ${\scriptstyle \bullet}$ O(10) noisy pixel out of 64000 ${\rightarrow}$ lead to some deadtime losses

noisy pixel (not masked)

Pixel Tracking Detector

A. Schöning, Heidelberg

Pixel Tracking Detector Prototype

uses PCBs instead of High Density Interconnects (HDI)

Scintillating Fibres

Scintillating Fibre Detector

- Scintillating fibres: Kuraray SCSF-78MJ (multi-clad)
- SiPM Hamamatsu S13552-HRQ
- MuTrig TDC ASIC (Heidelberg-KIP) for readout
 - very challenging space constraints
 - → time resolution ~250 ps
 - → thickness X/X₀ 0.2%

prototype ladder

Hamamatsu S13552-HRQ

A. Schöning, Heidelberg

SciFi detector

double SciFi ladder

Scintillating Tiles Timing Detectors

Scintillating Tiles

- tiles ~ $6.5 \times 6.5 \times 5$ mm³
- SiPM 3 x 3 mm²
- Readout with MuTrig ASIC (Heidelberg-KIP)
- time resolution < 100ps

A. Schöning, Heidelberg

Data Acquisition and Filter Farm

Seminar LPNHE, 3. May 2021

Mu3e Mass Plot (Simulation)

Expecte Sensitivity versus Time

A. Schöning, Heidelberg

Summary

- Mu3e has an unique discovery potential for New Physics
- Technical Design Report published in 2020 (https://arxiv.org/abs/2009.11690)
- First Integration Run with all detector systems planned for May/June 2021
 - > production readiness
 - > construction phase of about two years
- Start of data taking in 2023 \rightarrow goal for Phase I $B(\mu^+ \rightarrow e^+e^+e^-) \leq 5 \cdot 10^{-15}$ (90% CL)

Mu3e Phase II and High Intensity Muon Beamline (HiMB)

Goal: deliver ~10¹⁰ muons/s to two experiments (Mu3e, muSR)

Mu3e Phase II and High Intensity Muon Beamline (HiMB)

Goal: deliver 10¹⁰ muons/s to two experiments (Mu3e, muSR)

- Mu3e Phase II: $B(\mu^+ \rightarrow e^+e^-) \le 10^{-16}$ (90% CL)
- HiMB Physics Case Workshop 6.-9. April 2021 (https://indico.psi.ch/event/10547/)

Backup

A. Schöning, Heidelberg

History of LFV Decay experiments

A. Schöning, Heidelberg

$\mu^+ \rightarrow e^+e^+e^-$ Diagrams

LFV-Effective Field Theory

A.Crivellin et al., PSI-PR-16-15

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QED}+\text{QCD}} + \frac{1}{\Lambda} \sum_{k} C_k^{(5)} Q_k^{(5)} + \frac{1}{\Lambda^2} \sum_{k} C_k^{(6)} Q_k^{(6)} + \mathcal{O}\left(\frac{1}{\Lambda^3}\right)$$

Representation by Wilson coefficients and higher-dimensional operators:

$$O_L^D = e \, m_\mu \left(\bar{e} \sigma^{\mu\nu} P_L \mu \right) F_{\mu\nu},$$

$$O_{ff}^{V \ LL} = \left(\bar{e} \gamma^\mu P_L \mu \right) \left(\bar{f} \gamma_\mu P_L f \right),$$

$$O_{ff}^{V \ LR} = \left(\bar{e} \gamma^\mu P_L \mu \right) \left(\bar{f} \gamma_\mu P_R f \right),$$

$$O_{ff}^{S \ LL} = \left(\bar{e} P_L \mu \right) \left(\bar{f} P_L f \right),$$

$$O_{ff}^{S \ LR} = \left(\bar{e} P_L \mu \right) \left(\bar{f} P_R f \right),$$

$$O_{ff}^{T \ LL} = \left(\bar{e} \sigma_{\mu\nu} P_L \mu \right) \left(\bar{f} \sigma^{\mu\nu} P_L f \right),$$

A. Schöning, Heidelberg

Other Possible Searches with Mu3e

- Search for $\mu \rightarrow e\gamma$ (LFV) with converted photons
 - better reduction of accidental BG than MEG
- Search for familons
 - > pseudo Goldstone bosons of spontaneously broken flavor symmetry
 - > dark matter candidate

Search for Familons $\mu^{\scriptscriptstyle +} \!\!\! \to e^{\scriptscriptstyle +} X$

A. Schöning, Heidelberg

Side Remark: Exotic LFV Decays

<u>Weakly Interaction Slim Particles (WISP)</u>

- light axions are theoretically well motivated
- axions X could be LFV familons
 - > pseudo-Nambu-Goldstein boson of spontaneously broken family asymmetry
 - > addressing dark matter
- X could weakly couple to SM particles: $\mu^+ \rightarrow e^+ X$ ($\mu^+ \rightarrow e^- \gamma X$)
- X would be long-living or decay in detector: $X \rightarrow e^+e^-$, vv

Search for Dark Photons in A' $\rightarrow e^+e^-$

A. Schöning, Heidelberg

Mu3e Phase I Simulation, 3 recurlers

A. Schöning, Heidelberg

r LPNHE, 3. May 2021

PiE5 Beamline + Experimental Region

mockup for Mu3e solenoid

Compact Muon Beamline was successfully commissioned providing up to 10⁸ muons/s

Tuesday 16/12/2014 ompact Muon Beam Line" Test Setup achieved "Proof-of-Principle" 1 10**8 Muons/s at Mu3e Solenoid Injection Point

A. Schöning, Heidelberg

Experimental Cage & Services

Intro, Mu3e

PSI, BVR 52, January 25, 2021

Mupix10 Design & Specifications

Pixel Matrix

Specification from TDR

sensor dimensions $[mm^2]$	$\leq 21 \times 23$
sensor size (active) $[mm^2]$	$\approx 20 \times 20$
thickness [µm]	≤ 50
spatial resolution µm	≤ 30
time resolution [ns]	≤ 20
hit efficiency [%]	≥ 99
#LVDS links (inner layers)	1 (3)
bandwidth per link [Gbit/s]	≥ 1.25
power density of sensors $[mW/cm^2]$	≤ 350
operation temperature range [°C]	0 to 70

Beam Test Results and Mupix10 Telescope

- Telescope: 3+1 (DUT) layers
- DESY & PSI testbeams (despite Corona)
- MuPix works fine in general!

Note, all following results are very first results and preliminary!

Mupix10: Noise and Efficiency Scan

- wide efficiency plateau!
- efficiency > 99% for thresholds< 80 mV</p>
- noise is rather flat and it includes here many scattered beam particles (~90%)
- noise < 0.1 Hz/pixel after beam particle and hot pixel removal (~10 out of 64000) (→ not shown)

2-Comparators

Motivation of 2-comparator design

- use lower threshold for reducing time walk (ToA)
- use higher threshold for hit validation
- use higher threshold for measuring falling edge more precisely \rightarrow better ToT

Two methods to measure ToT:

- → rising and falling edge from single or high threshold ("high")
- → rising lower edge and falling higher threshold ("mix") \rightarrow not yet tested

MuPix10 Delay Circuit

Issue:

- Hits should be read out after completion of ToT measurement
- ToT measurement depends on pulse height \rightarrow disturbs chronological order of hits
- Solution: read hits after adjustable fixed delay

Challenges:

- Handling of overflows (~huge pulses) is required \rightarrow counter stops
- Delay dispersion of pixels should be small

Mupix10: Pixel Tuning

(a) Untuned pixel threshold distribution.

- 3 bit tune dac (TDAC) per pixel
- tune with charge injection
- significant dispersion reduction measured

(b) Tuned pixel threshold distribution.

Mu3e Timeline

Schedule

	2021	2022	2023	2024	2025	2026	2027	2028	2029 and after
Mu3e Phase I	construction & commissioning first data							8	
					operation & high sensitivity preparation HiMB				
Mu3e Phase II		R&D)			R	&D	ŝ	upgraded and extended experiment at HiMB

HiMB = High Intensity Muon Beamline

 \rightarrow delivers more than 10⁹ muons per second