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LISA noise and sources

Signals observed: 

- Massive Black Hole Binary 

- Galactic Compact Binaries 

- Extreme Mass Ratio Inspirals 

- Stellar Origin Black Hole Binaries 

- Cosmological Background 

- … 



Massive Black Hole Binaries

Signals from MBHB mergers observed by LISA depend on  

    - assumptions regarding MBH formation, 
 
    - the recipes employed for the black hole mass growth via 
       merger and  gas accretion

   — 10 to 100 sources / year 



Possible electromagnetic counterparts

Multiple authors suggest that  
the electromagnetic counterparts will be observed 
as a transient during merger or also during inspiral and  
merger.

For example: 
 - Accretion during merger  
 - Jets produced by the external magnetic fields 
 - …

Electromagnetic counterparts will occur 
due to presence of  
- matter or  
- magnetic fields.



Inference

By inference we mean computing the posterior distribution of the parameter given the observed data: 

The problem is that we have to compute marginal likelihood for the observation:

p(z|x) = p(x, z)

p(x)

p(x) =

Z
p(x, z)dz

=
p(x|z)p(z)

p(x)

Likelihood function



Parameter estimation

It is not possible to perform exact inference for the general problem. 
We have to introduce some simplifications. 

We can use approximate inference: 
- Markov Chain Monte Carlo/Nested Sampling: sample from the exact posterior 
- Variational Inference: approximate the posterior distribution with a tractable distribution 

There are some exceptions for the models with some simplifications: 
- Gaussian mixture models 
- Invertible models



We want to make a deterministic map from the simple and easy to sample distribution  
to a complex one 

Learning a map



Learning a map

The variable transformed with the mapping 

x ⇠ p(x)

target distribution



Learning a map

We take a random variable The variable transformed with the mapping 

z ⇠ N(0, I)

z ⇠ q(z)

base distribution

target distribution

x ⇠ p(x)

For example:



Learning a map

We take a random variable The variable transformed with the mapping 

For example:

z ⇠ N(0, I)

z ⇠ q(z) x ⇠ p(x)

base distribution

target distribution

x = g(z)



Learning a map

We take a random variable The variable transformed with the mapping 

For example:

z ⇠ N(0, I)

z ⇠ q(z) x ⇠ p(x)

base distribution

target distribution

z = f(x)

x = g(z) = f�1(z)



Learning a map

How to estimate the map?

x = f�1(z)



Learning a map

How to estimate the map?
Easy in 1D case:

x = f�1(z)
p(x)dx = q(z)dz



Learning a map

How to estimate the map?
Easy in 1D case:

x = f�1(z)

Multidimensional case:

Parameterise a map by  
the Neural Network

p(x) = q(f(x))
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Condition on the Waveform

Condition map on the simulated data:

d = h(x) + n

x ⇠ p(x)

Samples from a prior of a physical parameter

Therefore we have access to the joint sample: p(d,x) = p(x)p(d|x)



Evaluation of Jacobian

The calculation of determinant Jacobian will take 
To make it faster we have to ensure that the Jacobian is triangular 
Because the determinant of the triangular matrix is just a product of the diagonal elements
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Affine transformations

⌧(zi;hi) = ↵izi + �i hi = {↵i,�i}
location-scale transformation

Invertibility for ↵i 6= 0

log|detJf (z)| =
NX

i=1

log|↵i|

log-Jacobian becomes



Combining transformations

xz0 z1 zkzk�1. . .

f1(z0)

z0 ⇠ p0(z0)

fk+1(zk)



Learned transformation 
conditioned on real data 

(LISA Data Challenge)

Example



New way to do Bayesian Inference for the Gravitational Wave data analysis

Conclusions

Time consuming calculations are done at the training time


