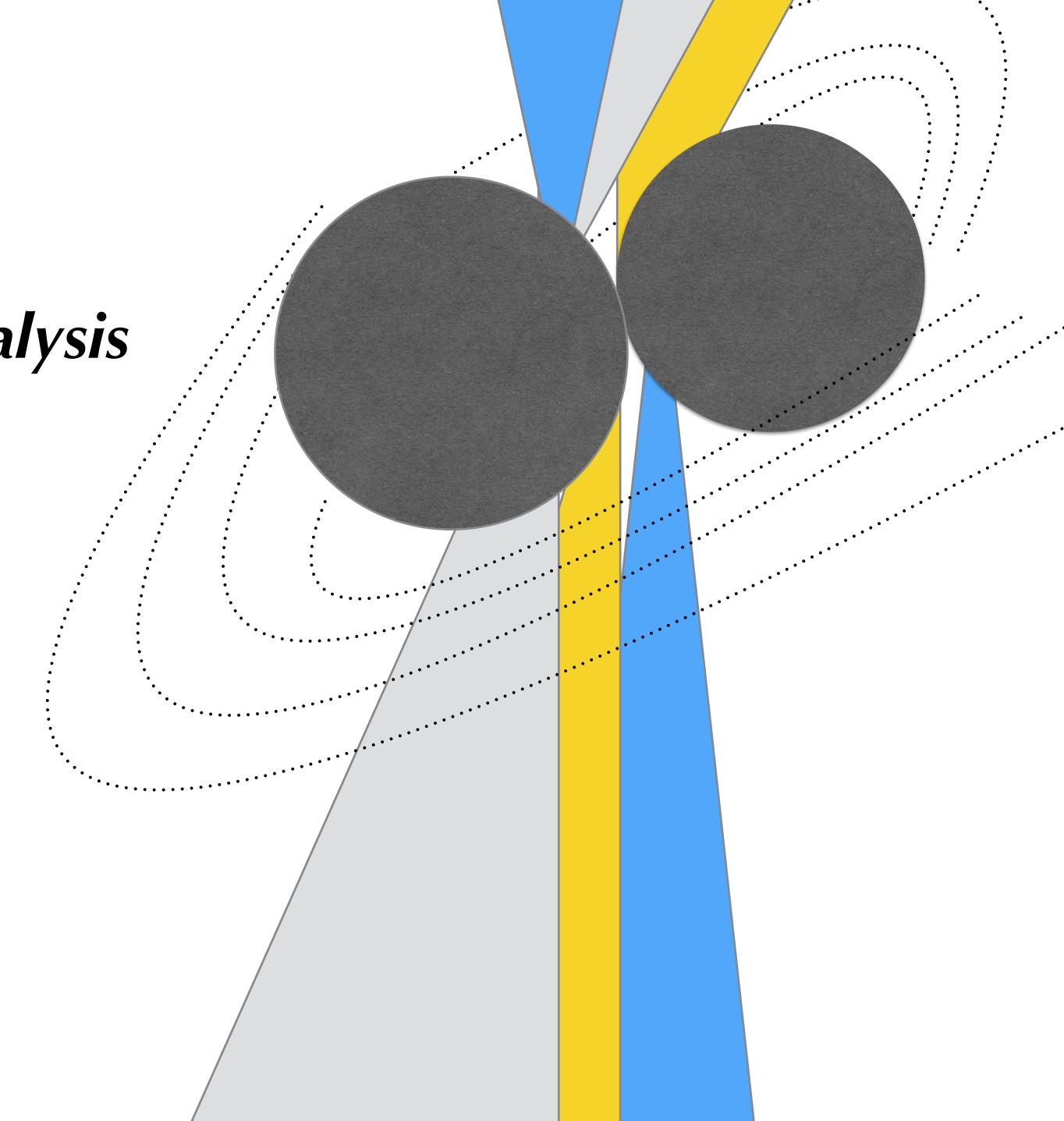
Deep learning for LISA data analysis

Natalia Korsakova SYRTE/Observatoire de Paris



INTERFEROMETER

SPACE

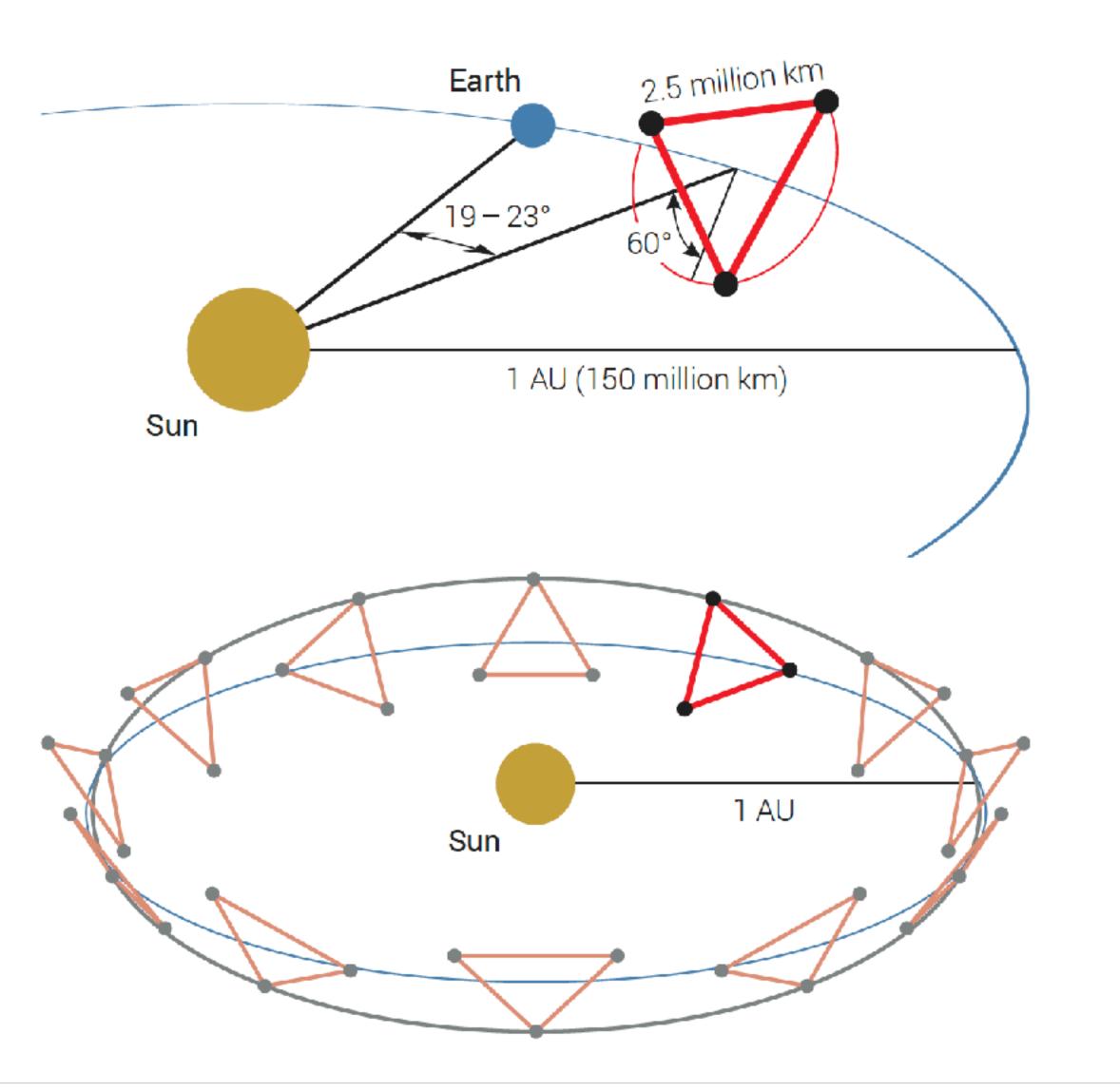


Image: LISA White paper

Sources

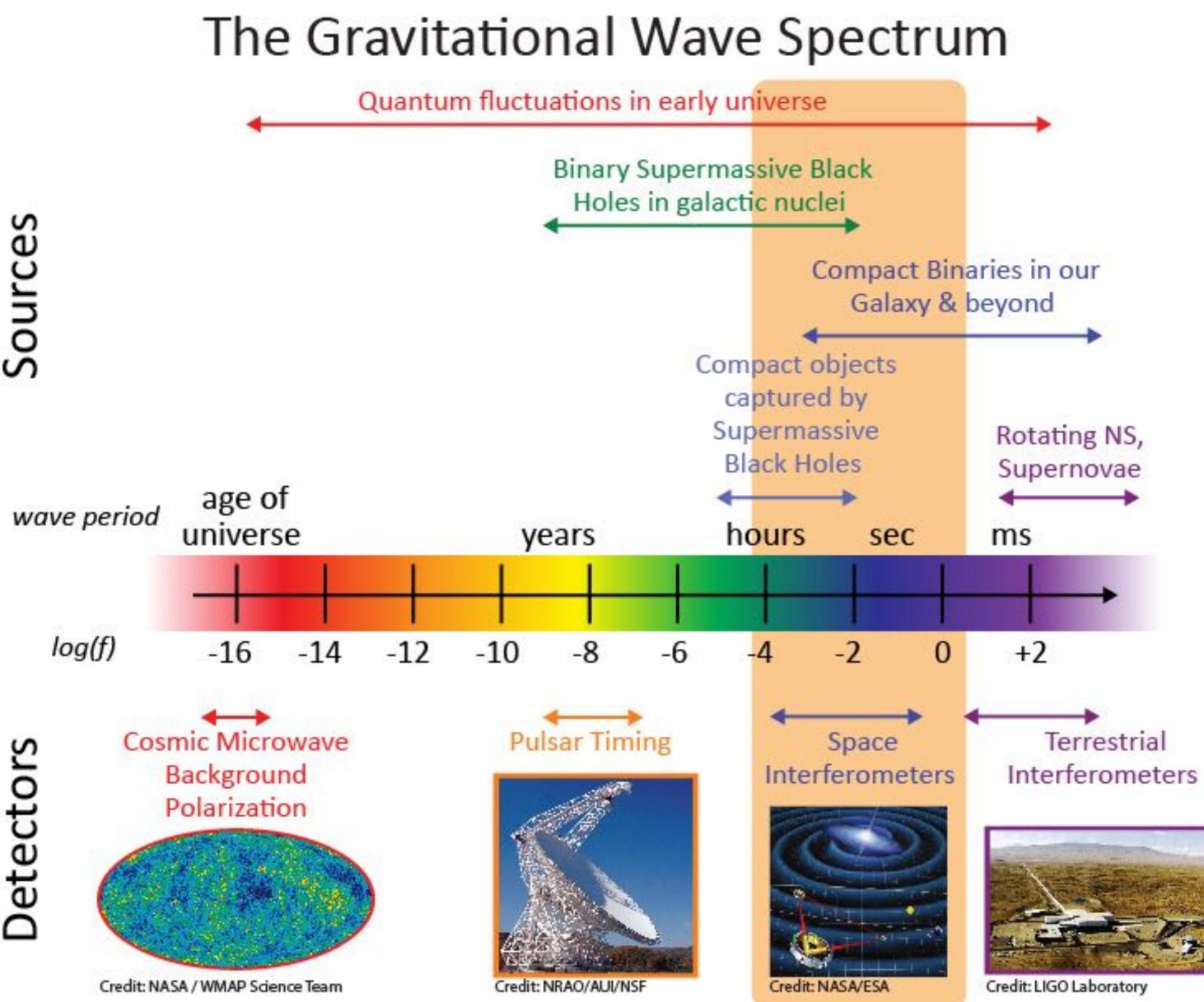


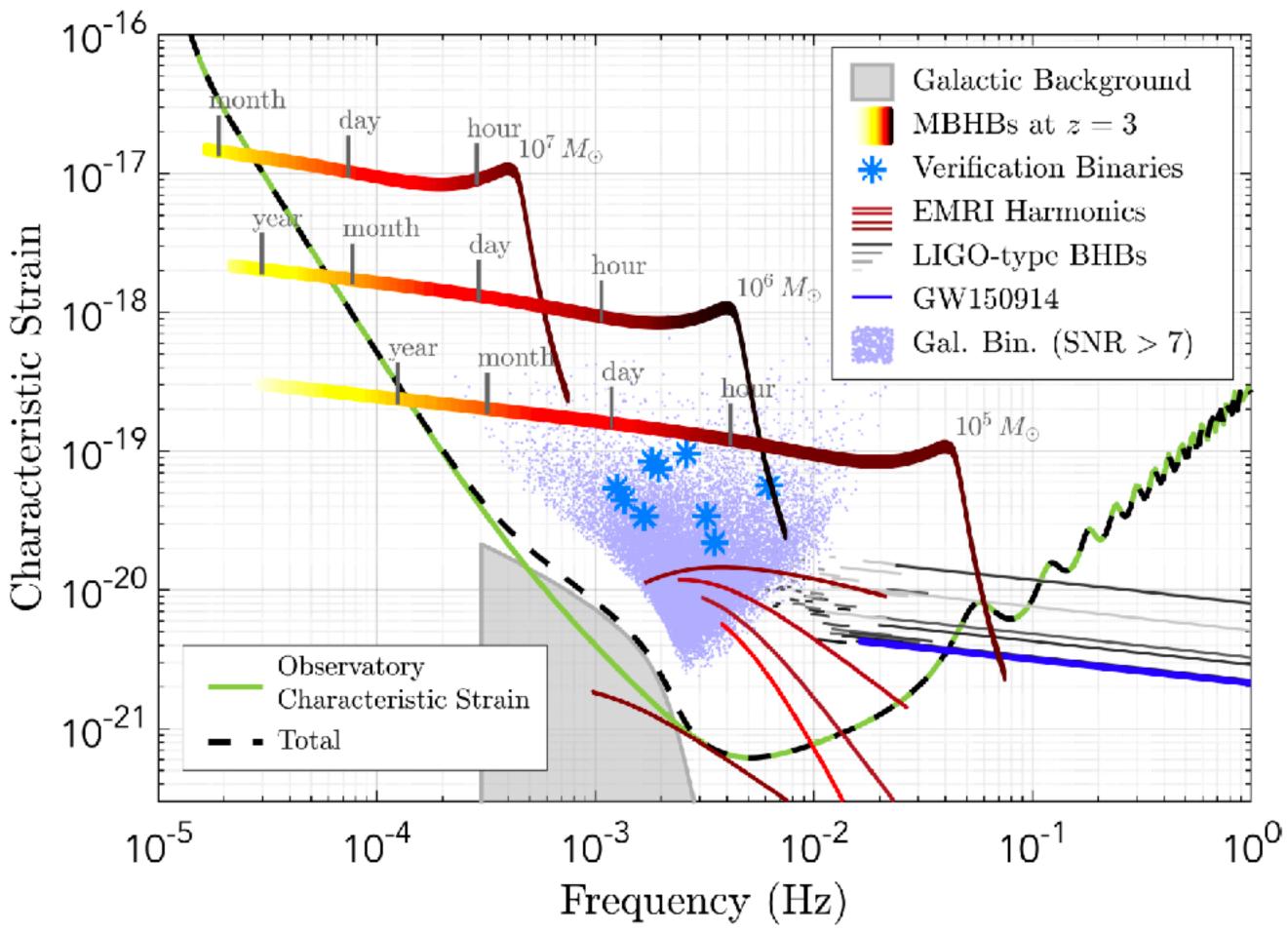
Image: NASA

LISA noise and sources

Signals observed:

- Massive Black Hole Binary -----
- Galactic Compact Binaries _
- Extreme Mass Ratio Inspirals -
- Stellar Origin Black Hole Binaries
- Cosmological Background _

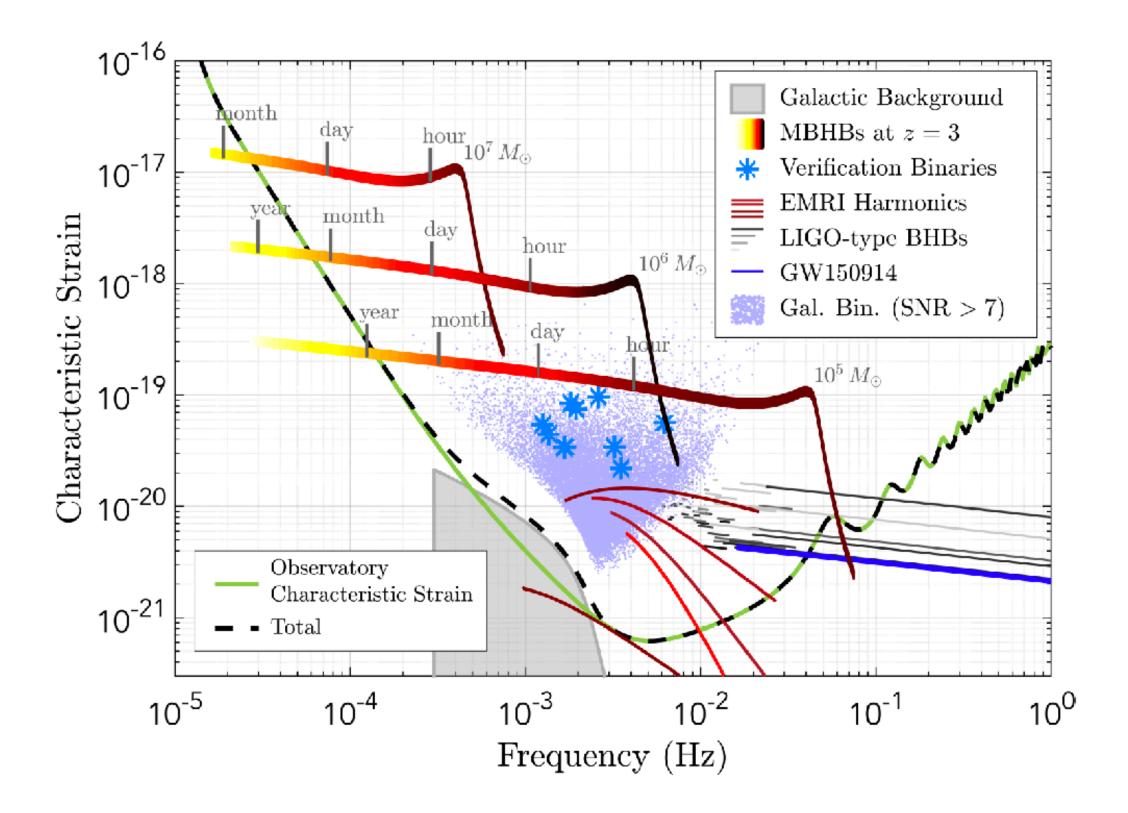
— . . .



Massive Black Hole Binaries

Signals from MBHB mergers observed by LISA depend on

- assumptions regarding MBH formation,
- the recipes employed for the black hole mass growth via merger and gas accretion
- 10 to 100 sources / year



Possible electromagnetic counterparts

Multiple authors suggest that the electromagnetic counterparts will be observed as a transient during merger or also during inspiral and merger.

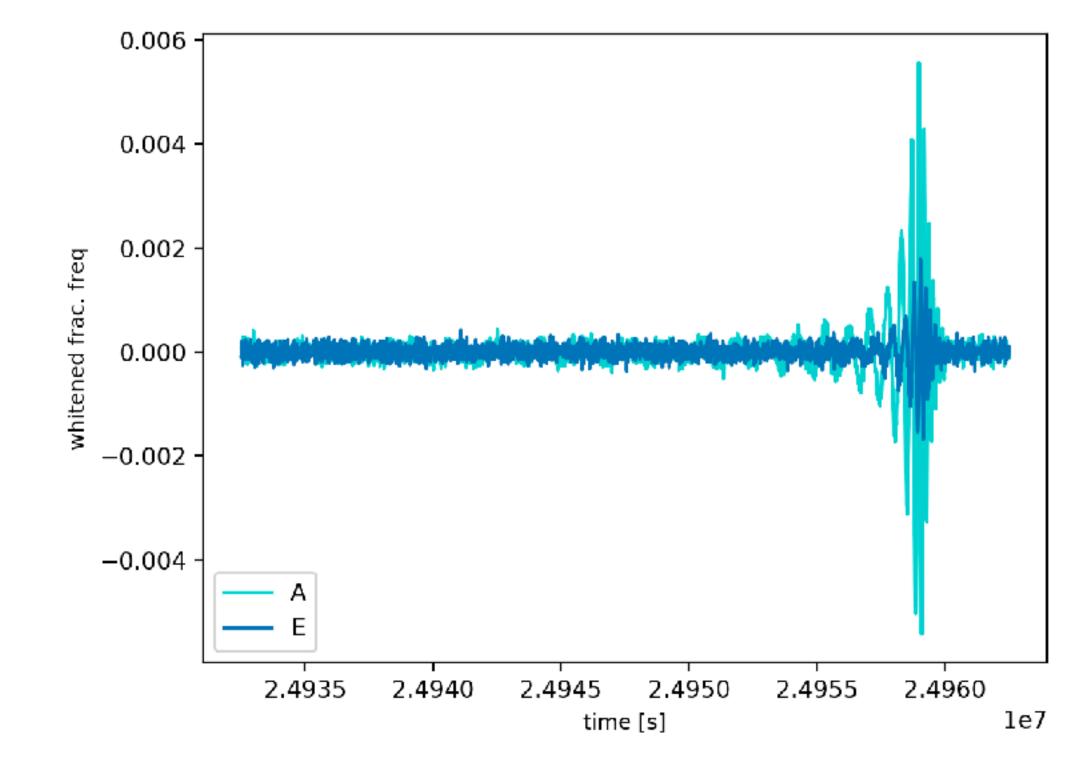
Electromagnetic counterparts will occur due to presence of

- matter or
- magnetic fields.

For example:

- Accretion during merger
- Jets produced by the external magnetic fields

. . .



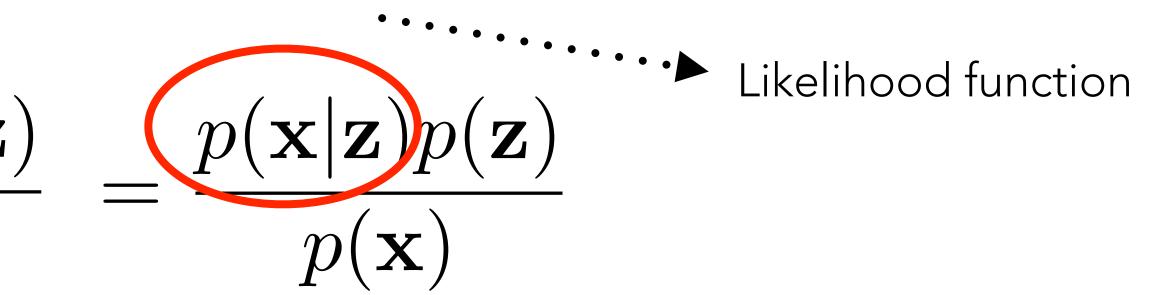
Inference

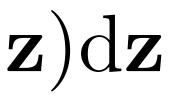
By inference we mean computing the **posterior distribution** of the parameter given the observed data:

$$p(\mathbf{z}|\mathbf{x}) = \frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})}$$

The problem is that we have to compute marginal likelihood for the observation:

$$p(\mathbf{x}) = \int p(\mathbf{x},$$





Parameter estimation

It is not possible to perform exact inference for the general problem. We have to introduce some simplifications.

We can use approximate inference:

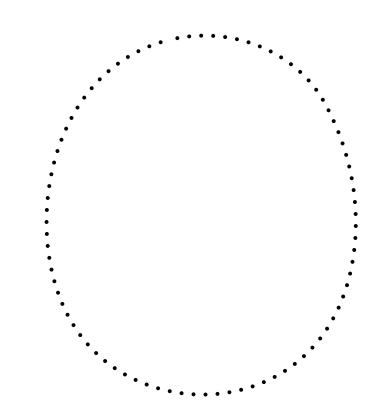
- Markov Chain Monte Carlo/Nested Sampling: sample from the exact posterior

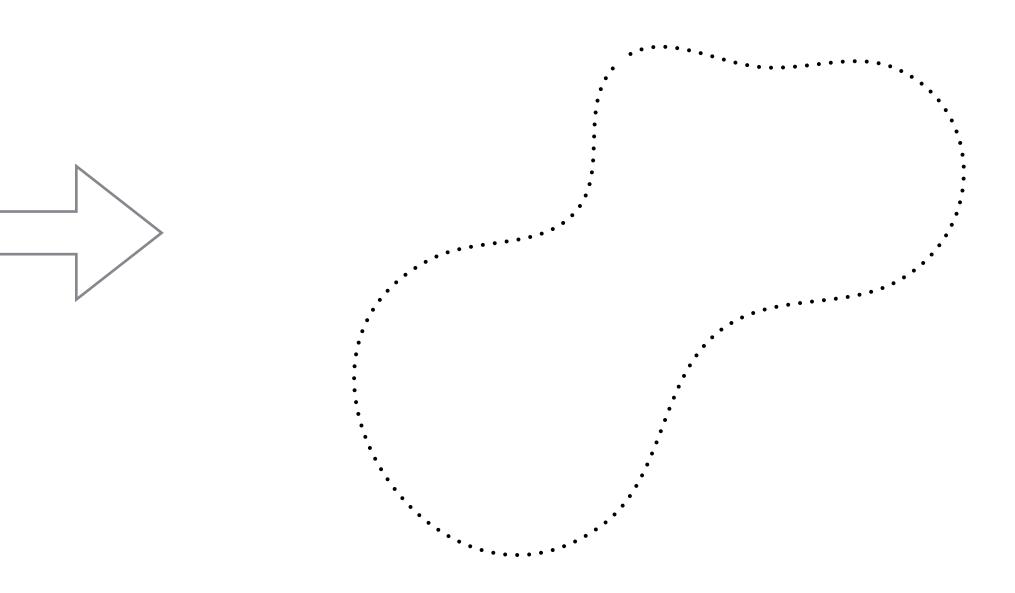
There are some exceptions for the models with some simplifications:

- Gaussian mixture models
- Invertible models

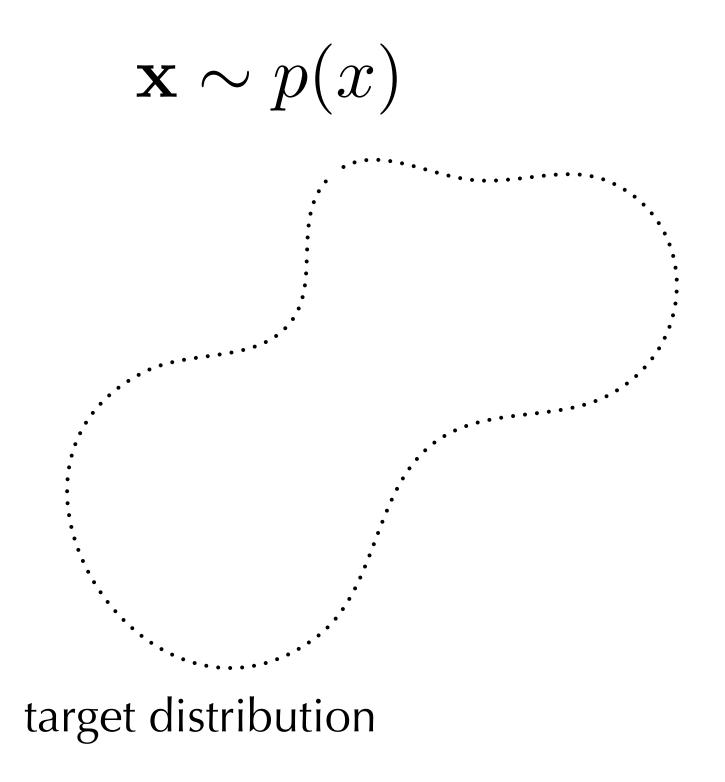
- Variational Inference: approximate the posterior distribution with a tractable distribution

We want to make a deterministic map from the simple and easy to sample distribution to a complex one



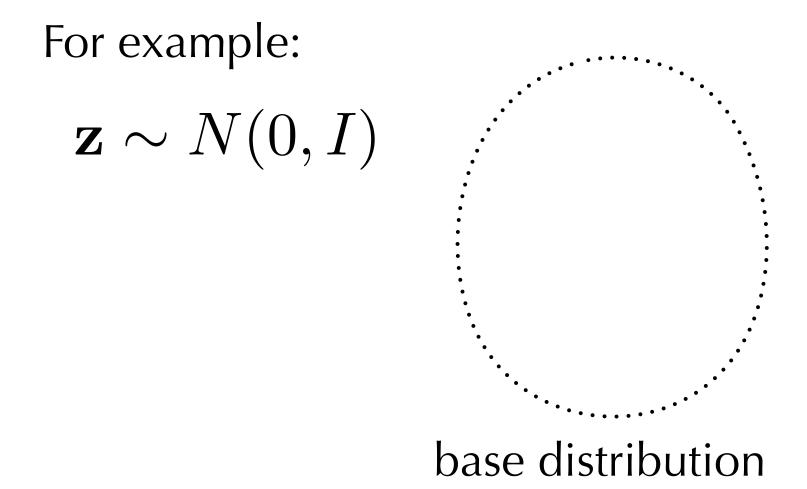


The variable transformed with the mapping

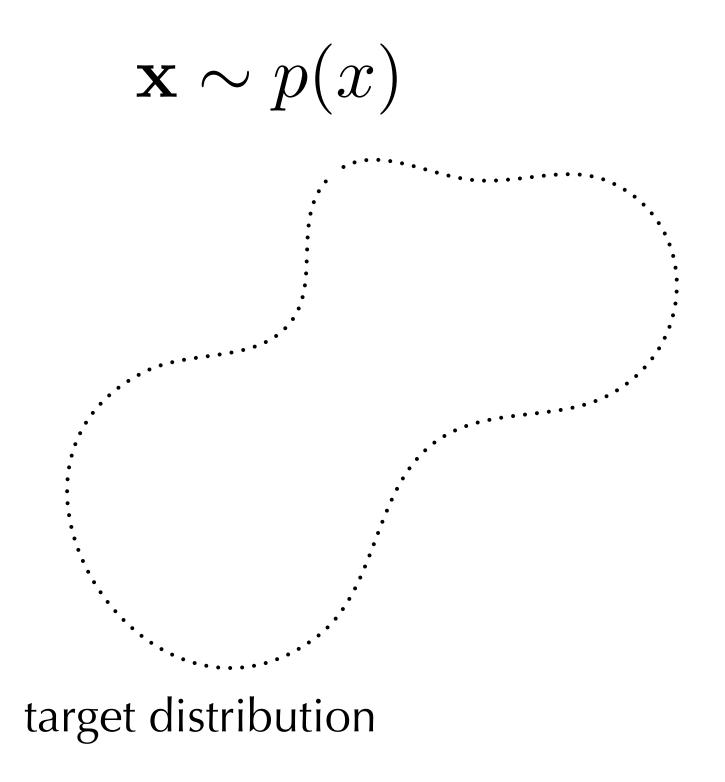


We take a random variable

$$\mathbf{z} \sim q(z)$$

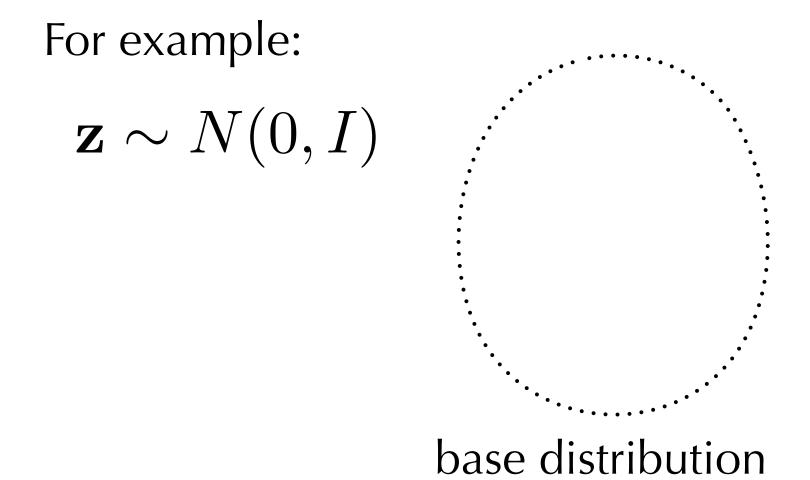


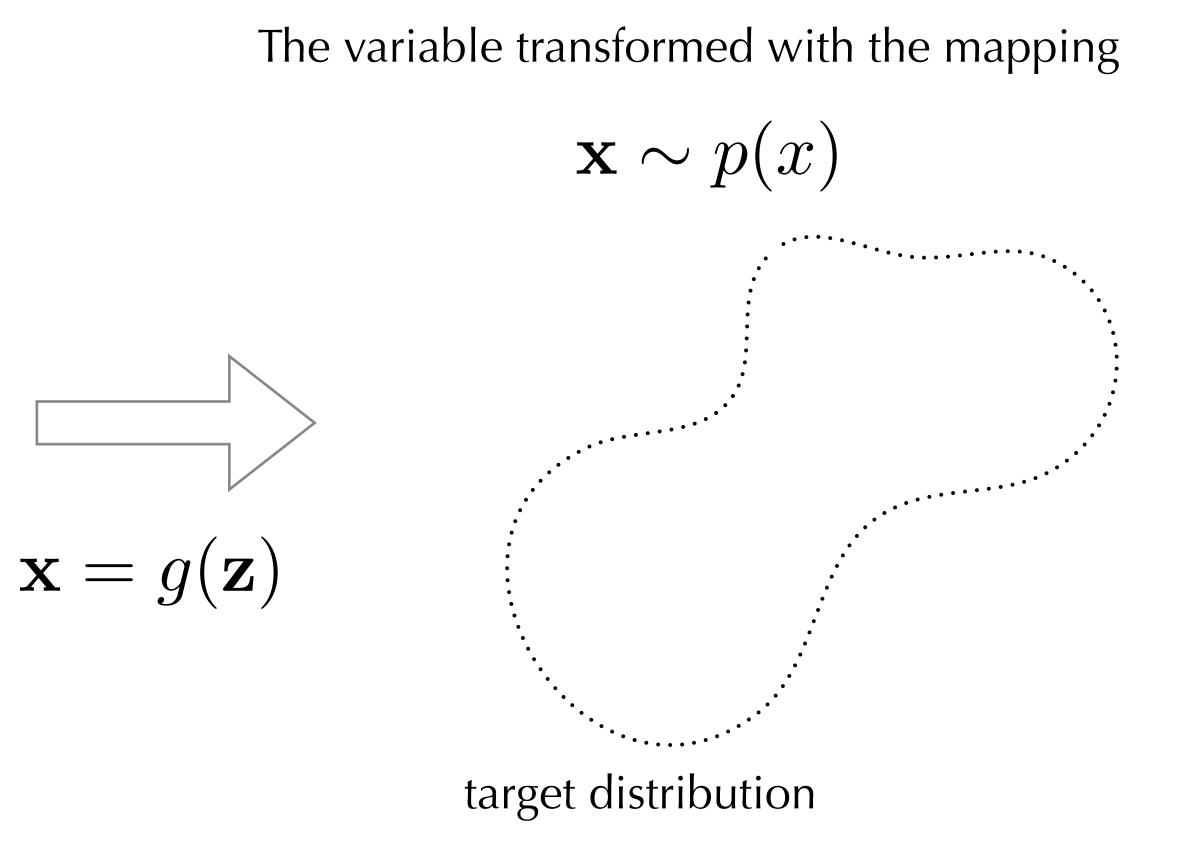
The variable transformed with the mapping

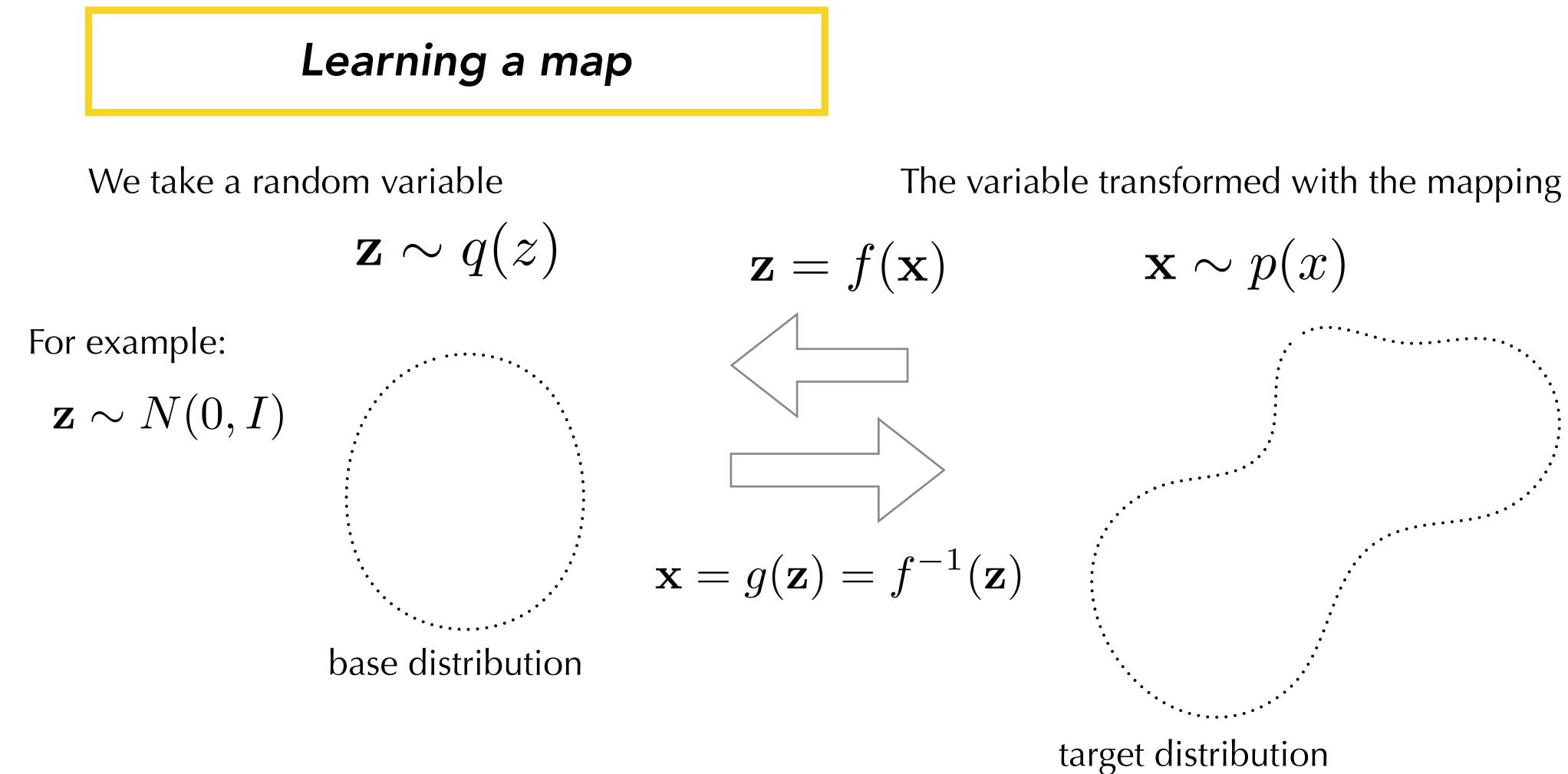


We take a random variable

$$\mathbf{z} \sim q(z)$$





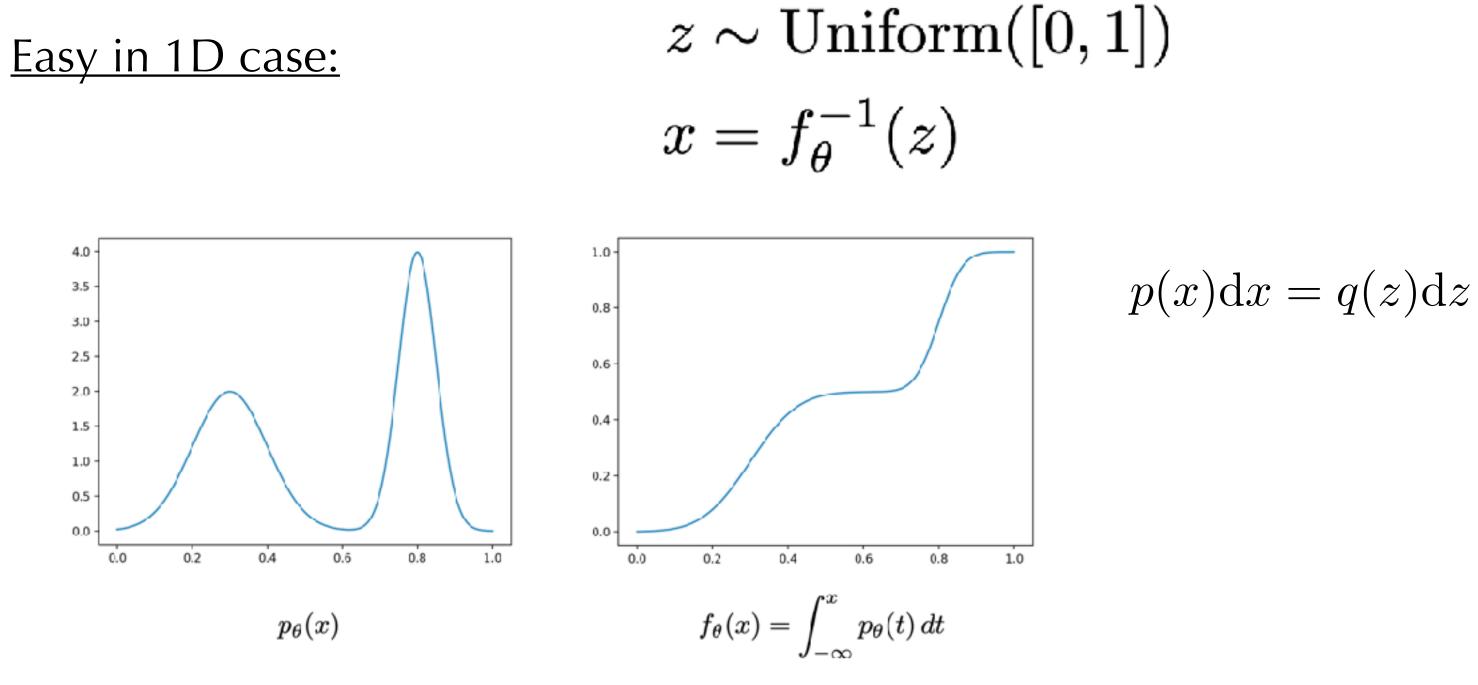


How to estimate the map?

$$\mathbf{x} = f^{-1}(\mathbf{z})$$

How to estimate the map?

$$\mathbf{x} = f^{-1}(\mathbf{z})$$

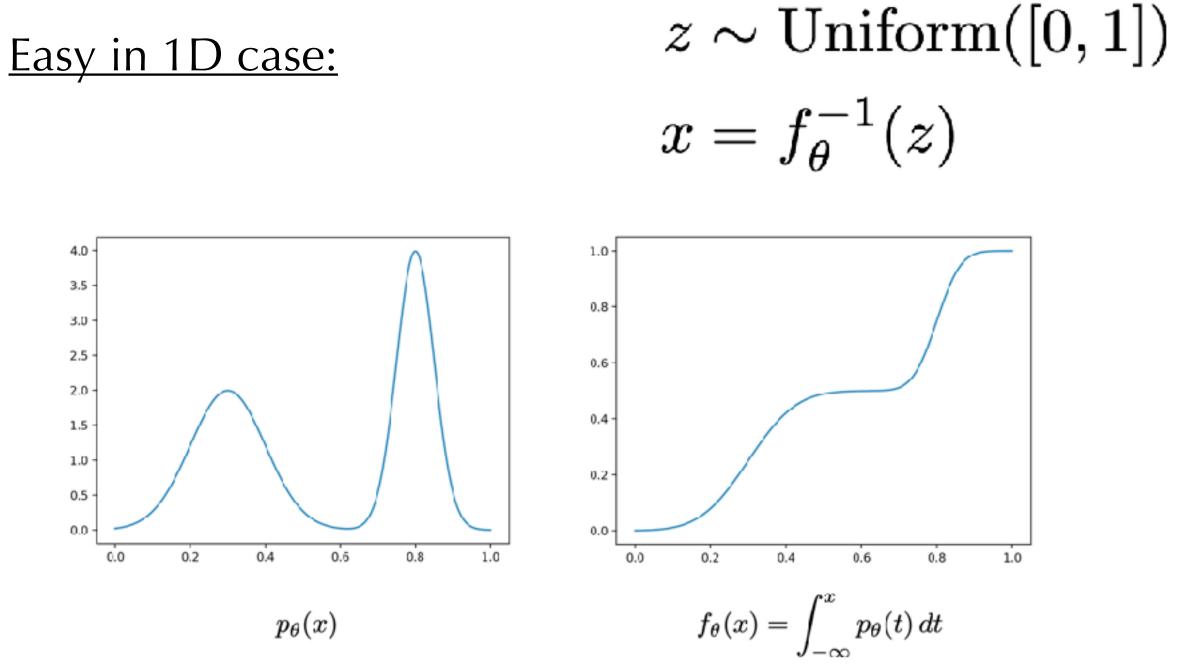


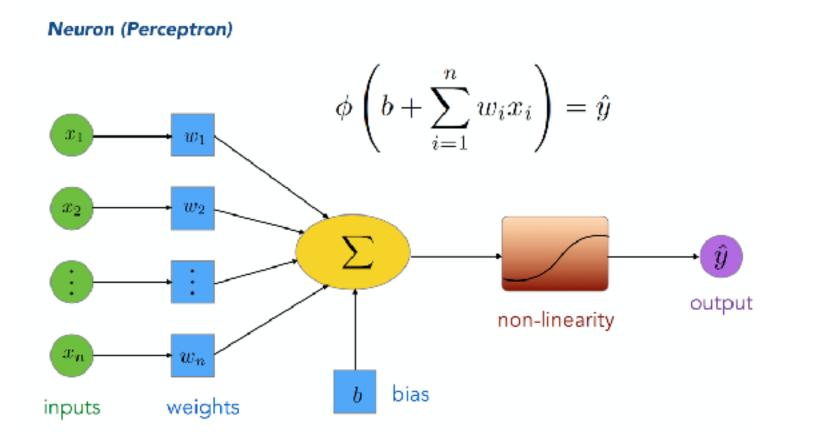
How to estimate the map?

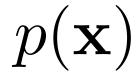
$$\mathbf{x} = f^{-1}(\mathbf{z})$$

Multidimensional case:

Parameterise a map by the Neural Network

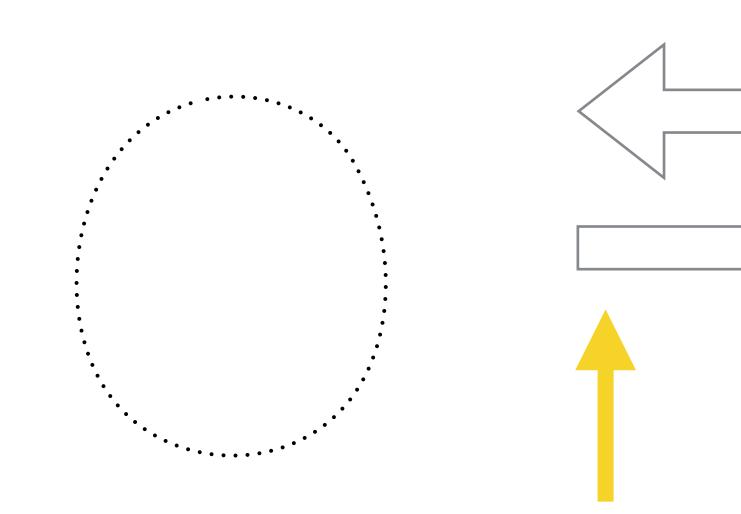






$$= q(f(\mathbf{x})) \left| \det \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \right|$$

Condition on the Waveform

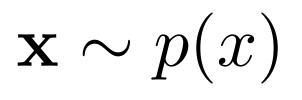


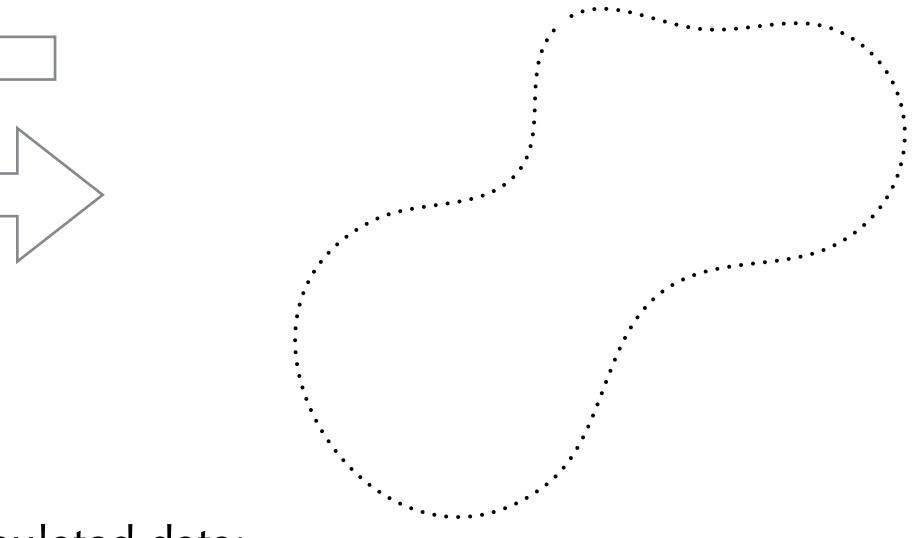
Condition map on the simulated data:

$$\mathbf{d} = h(\mathbf{x}) + \mathbf{n}$$

Therefore we have access to the joint sample:

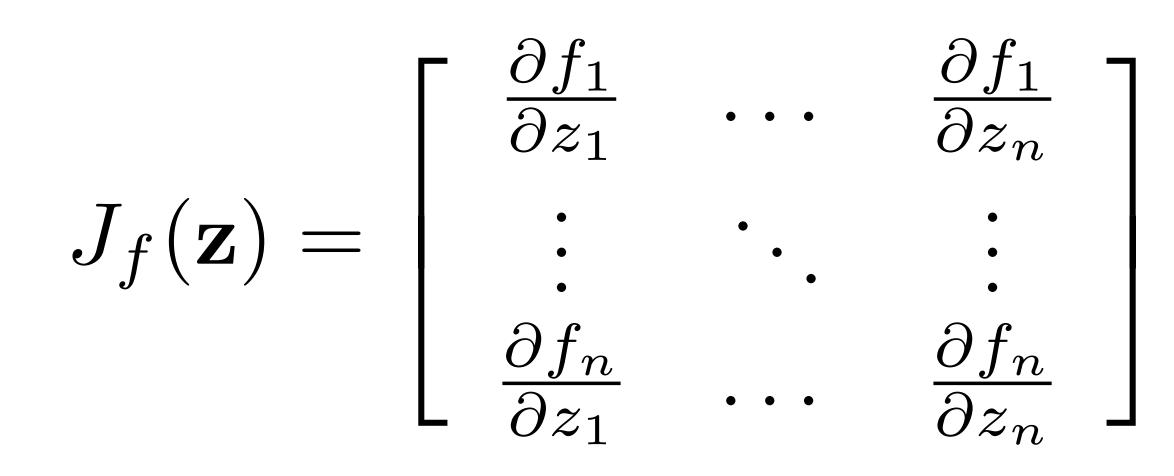
Samples from a prior of a physical parameter



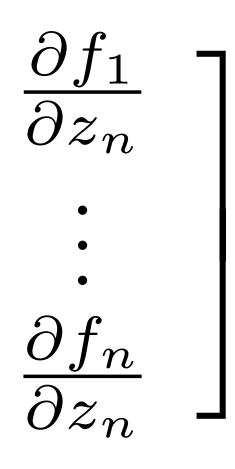


 $p(\mathbf{d}, \mathbf{x}) = p(\mathbf{x})p(\mathbf{d}|\mathbf{x})$

Evaluation of Jacobian



The calculation of determinant Jacobian will take $O(n^3)$ To make it faster we have to ensure that the Jacobian is triangular Because the determinant of the triangular matrix is just a product of the diagonal elements



Affine transformations

location-scale transformation

 $\tau(z_i; \mathbf{h}_i) = \alpha_i z_i + \beta_i \qquad \mathbf{h}_i = -$

Invertibility for
$$\alpha_i
eq 0$$

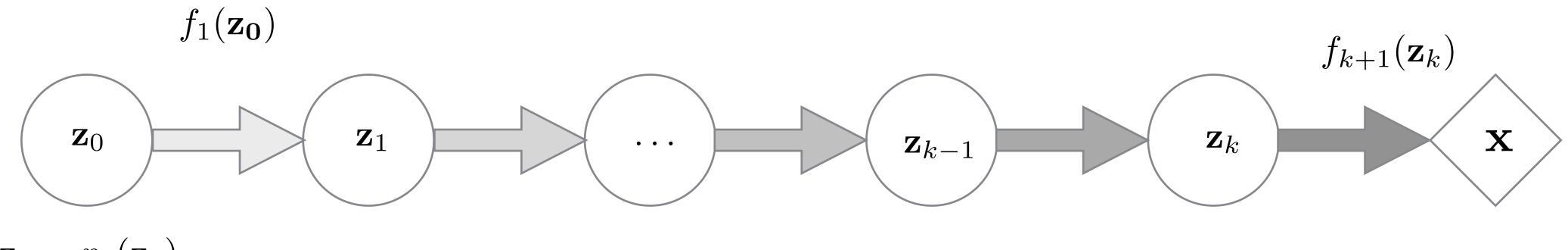
log-Jacobian becomes

$$\log |\det J_f(\mathbf{z})| = \sum_{i=1}^N \log$$

 $\mathbf{h}_i = \{\alpha_i, \beta_i\}$

$|lpha_i|$

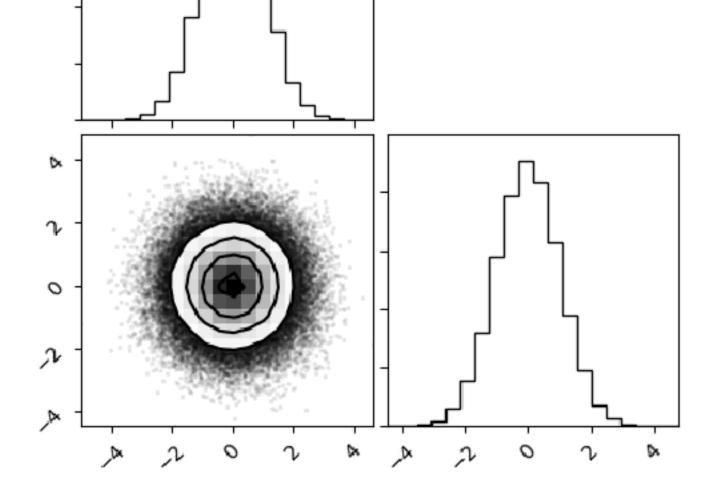
Combining transformations

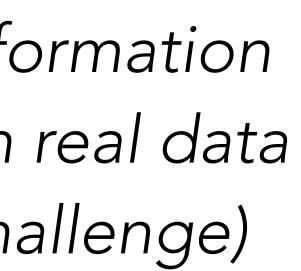


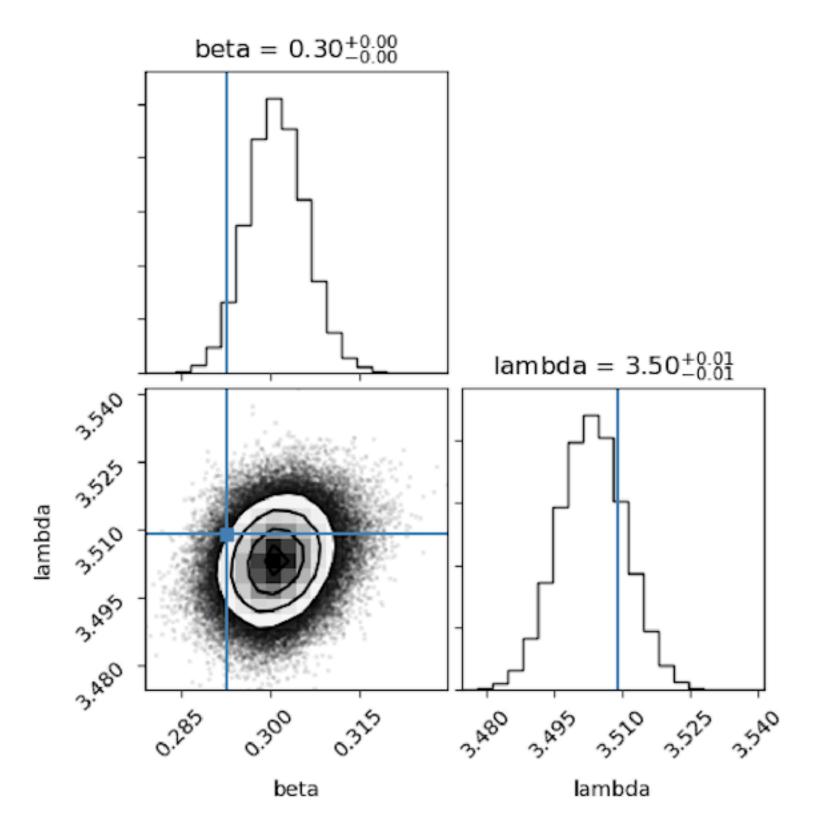
 $\mathbf{z}_0 \sim p_0(\mathbf{z}_0)$

Example

Learned transformation conditioned on real data (LISA Data Challenge)







New way to do Bayesian Inference for the Gravitational Wave data analysis

Time consuming calculations are done at the training time