

Cosmological probes of gravity

Julián Bautista Aix Marseille Université Centre de Physique des Particules de Marseille

École de GIF - Septembre 2021

Cosmological probes of gravity

Lecture 3

Observing the sky

The Hubble constant (H₀)

Big Bang Nucleosynthesis (BBN)

Type-la supernovae (SNIa)

Baryon acoustic oscillations (BAO)

Lecture 4

Cosmic microwave background (CMB) Redshift-space distortions (RSD) Weak gravitational lensing (WL)

The future

What is dark energy ?

What is causing the observed acceleration of the expansion of the Universe

Spoiler: we don't know yet

Model for the expansion General Relativity

Space-time

properties

Energy content of the Universe

+ smooth Universe

The only one causing acceleration of the expansion!

Model for the expansion General Relativity

Space-time properties

Energy content of the Universe

+ smooth Universe

No fundamental origin for Λ !

$$\Omega_{\Lambda}[a(t)]^{-3(1+w_0+w_a)} e^{3w_a[1-a(t)]}$$

dark energy (quintessence, phantom force)

70%

The only one causing acceleration of the expansion!

Physically motivated theory ? Alternatives or extensions of General Relativity

Review by Ezquiaga & Zumalacárregui 2018, Heisenberg 2018

What is dark energy ?

The acceleration problem

$$\Omega_{\Lambda}[a(t)]^{-3(1+w_0+w_a)} e^{3w_a[1-a(t)]}$$

dark energy (quintessence, phantom force)

70%

Observing the sky

The electromagnetic spectrum

Source: WikiMedia

Astroparticles

Photons

- gamma rays
- not great for large distances

Protons & co.

- astrophysics of black holes, supernovae, etc
- affected by magnetic fields

Neutrinos

- oscillations -> mass!
- supernovae
- cosmic background ?

Gravitational waves New since 2016!

- gravity probe
- distance estimator

Cosmological probes of gravity

The Hubble constant (H₀)

Big Bang Nucleosynthesis (BBN)

Type-la supernovae (SNIa)

Baryon acoustic oscillations (BAO)

Cosmic microwave background (CMB)

Redshift-space distortions (RSD)

Weak gravitational lensing (WL)

Based on observations of visible light (or almost)

Photometry or Spectroscopy

Observing (nearly-) visible light with photometry or spectroscopy

Source

Absorption by surroundings

Absorption by intergalactic medium

Absorption by Milky Way dust

Absorption by atmosphere

Wavelength

Source: WikiMedia

Observing (nearly-) visible light with photometry or spectroscopy

Source: <u>lsst.org</u>

Source: <u>lsst.slac.stanford.edu</u>

Examples of filters

Filter

Spectroscopy

Source

Wavelength

Spectroscopy

Wavelength

- 2D image, spatial information
- higher signal-to-noise
- no selection required
- rough spectral information

Spectroscopy

- 1D information
- requires large exposure times
- selection of targets required
- fine spectral information

Less selection effects (SNIa) Great for galaxy shapes (WL) Better redshifts for clustering (BAO, RSD) Better physical characterisation of galaxies/stars

Both are essential for cosmology

The Hubble Constant $D_n - \sigma$ SN Ia 100 Mpc SBF Tully-Fisher RGB 10 Mpc Tip NGC 4258 PNLF GCLF Local Group and Novae Maser HST Cepheids 1 Mpc Local Group RR Lyrae 100 kpc SN 1987A LMC Cepheids Light Echo Globular Cluster RR Lyrae Galactic RR Lyrae 10 kpc Statistical π Novae Cluster Cepheids Cepheid

Distance ladder

Standard sirens

B-W

RR Lyrae

B-W

Globular Cluster

Statistical π

1 kpc

LIGO & Virgo 2017

Strong lensing of variable quasars

(d) SDSS 1206+4332

(e) WFI2033-4723

(f) PG 1115+080

HOLiCOW (Wong et al. 2020)

Inverse distance ladder

The Hubble Constant H₀

Distance Ladder

Parallax of Cepheids in the Milky Way

NEW PARALLAR ILLARIA

Sun

Earth,
 Dècembér

Distance Ladder

Parallax of Cepheids in the Milky Way NEW PARALLAR

Earth, Dècembér

Sun

Galaxies hosting Cepheids and Type Ia supernovae

Source: ESA/Hubble

Distance Ladder

Source: ESA/Hubble

Parallax

A direct or absolute distance measurement

Gaia DR2 Luri et al. 2018

Source: Nature

Direct distance to NGC 4258

Radial and angular proper motions of water masers orbiting central black hole

 $D = 7.576 \pm 0.082$ (stat.) ± 0.076 (sys.) Mpc

1.5% direct distance measurement !

<u>Herrnstein et al. 1999</u> <u>Reid et al. 2019</u>

The distance ladder

Cepheids in other galaxies

<u>Riess et al. 2016</u>

The distance ladder

Period-luminosity relations of Cepheids

The distance ladder

Alternative analysis, same data

"Unlike the SH0ES [Riess et al.] team, we do not enforce a universal color-luminosity relation to correct the near-IR Cepheid magnitudes."

Is the tension with CMB really there ?

The Hubble Constant $D_n - \sigma$ SN Ia 100 Mpc SBF Tully-Fisher RGB 10 Mpc Tip NGC 4258 PNLF GCLF Local Group and Novae Maser HST Cepheids 1 Mpc Local Group RR Lyrae 100 kpc SN 1987A LMC Cepheids Light Echo Globular Cluster RR Lyrae Galactic RR Lyrae 10 kpc Statistical π Novae Cluster Cepheids Cepheid

Distance ladder

Standard sirens

B-W

RR Lyrae

B-W

Globular Cluster

Statistical π

1 kpc

LIGO & Virgo 2017

Strong lensing of variable quasars

(d) SDSS 1206+4332

(e) WFI2033-4723

(f) PG 1115+080

HOLiCOW (Wong et al. 2020)

Inverse distance ladder

Strong lensing of variable quasars

Strong lensing of variable quasars

The Hubble Constant $D_n - \sigma$ SN Ia 100 Mpc SBF Tully-Fisher RGB 10 Mpc Tip NGC 4258 PNLF GCLF Local Group and Novae Maser HST Cepheids 1 Mpc Local Group RR Lyrae 100 kpc SN 1987A LMC Cepheids Light Echo Globular Cluster RR Lyrae Galactic RR Lyrae 10 kpc Statistical π Novae Cluster Cepheids Cepheid

Distance ladder

Standard sirens

B-W

RR Lyrae

B-W

Globular Cluster

Statistical π

1 kpc

LIGO & Virgo 2017

Strong lensing of variable quasars

(d) SDSS 1206+4332

(e) WFI2033-4723

(f) PG 1115+080

HOLiCOW (Wong et al. 2020)

Inverse distance ladder

Standard sirens Binary neutron star merger

LIGO & Virgo 2017

Source: ESO/N.R. Tanvir, A.J. Levan and the VIN-ROUGE collaboration

From full GR simulations + GW signal:

- chirp mass
$$\mathcal{M} = \sqrt[5]{(m_1 m_2)^3/(m_1 + m_2)} = 1.188^{+0.004}_{-0.002} M_{\odot}$$

- mass ratio
$$q = m_2/m_1 = 0.7 - 1.0$$

- spin
- luminosity distance $D_L = 40^{+8}_{-14}$ Mpc

From EM counterpart: **Redshift** $v_H = 3017 \pm 166$ km/s (removing peculiar velocities)

$H_0 = 70.0^{+12.0}_{-8.0}$ km/s (68 % C.L.)

THE LIGO SCIENTIFIC COLLABORATION AND THE VIRGO COLLABORATION, THE 1M2H COLLABORATION, THE DARK ENERGY CAMERA GW-EM COLLABORATION AND THE DES COLLABORATION, THE DLT40 COLLABORATION, THE LAS CUMBRES OBSERVATORY COLLABORATION, THE VINROUGE COLLABORATION, THE MASTER COLLABORATION, et al.

Nature 2017

The Hubble Constant H₀

Big Bang Nucleosynthesis (BBN)

Big Bang Nucleosynthesis (BBN)

Relic amounts of elements depends on battle between

Expansion rate : $H^2(z) \sim \rho_r(z) = \rho_{\gamma}(z) + \rho_{\nu}(z)$ (radiation-dominated era)

Reaction rates : nuclear cross-sections + baryon density $\rho_b(z)$

More than 20 hours of integration @ Keck Obs, Hawaii (10m) !

<u>Cooke et al. 2018</u>

Big Bang Nucleosynthesis (BBN)

Fit of hydrogen, deuterium and other metal lines yields:

 $\log_{10} N(\text{D}_{\text{I}})/N(\text{H}_{\text{I}}) = -4.622 \pm 0.015$

Baryon density $\omega_b = \Omega_b h^2$

 $100 \,\Omega_{\rm B,0} \,h^2(\rm BBN) = 2.166 \pm 0.015 \pm 0.011$

<u>Cooke et al. 2018</u>

Big Bang Nucleosynthesis (BBN)

Planck Collab VI 2020

Big Bang Nucleosynthesis (BBN)

The Lithium problem : observations and theory do not match !

Fields 2010 (review)

Type la Supernovae (SNIa)

Constraints on dark-energy from the distance-redshift relation

$$H^{2}(z) \approx H_{0}^{2} \left[\Omega_{m}(1+z)^{3} + \Omega_{\text{DE}}(z) + \Omega_{k}(1+z)^{2} \right] \quad \text{(at } z < 100)$$

Transition from matter to dark-energy dominated eras : z ~ 0.4 SNIa can cover redshifts before and after : powerful probe

Constraints on dark-energy from the distance-redshift relation

$$H^{2}(z) \approx H_{0}^{2} \left[\Omega_{m}(1+z)^{3} + \Omega_{\text{DE}}(z) + \Omega_{k}(1+z)^{2} \right] \quad \text{(at } z < 100)$$

Transition from matter to dark-energy dominated eras : z ~ 0.4 SNIa can cover redshifts before and after : powerful probe

Comoving distance

Note that M_B and H_0 are degenerate

Luminosity distance

$$D_L(z) = (1+z)D_C(z)\operatorname{sinc}\left(\sqrt{-\Omega_k}\frac{D_C(z)}{D_H(z=0)}\right) \qquad D_L(z) = \frac{c}{H_0}(1+z)I(\Omega_x, z)\operatorname{sinc}\left(\sqrt{-\Omega_k}I(\Omega_x, z)\right)$$

Distance modulus

$$\mu(z) = 5 \log_{10} \frac{D_L(z)}{10 \text{ pc}} = -2.5 \log_{10} (f_B(z)/L_B) \qquad \mu(z) = 5 \log_{10} \frac{I(\Omega_x, z)}{10 \text{ pc}} + 5 \log_{10} H_0 = m_B(z) - M_B$$

Constraints on dark-energy from the distance-redshift relation

$$H^{2}(z) \approx H_{0}^{2} \left[\Omega_{m}(1+z)^{3} + \Omega_{\text{DE}}(z) + \Omega_{k}(1+z)^{2} \right] \quad \text{(at } z < 100)$$

Scolnic et al. 2018

How we derive distances ?

From the flux at the peak of the **light-curves** in the B band or m_B

Are light-curves sufficient to know it is a type la? No ! Need **spectroscopic** follow-up

Need spectroscopic redshift of the host-galaxy

Fit light-curves with a model (SALT2/3, SUGAR, etc..) to **standardise** them

Hubble residuals reduce from 40% to **15% intrinsic scatter**

Scolnic et al. 2018

Why is it complicated ?

Physics of explosion ? Orientation effects ? Local environment of explosion ? Dust in our Galaxy ?

Smearing by our atmosphere ?

Optical distortions or light contaminations ?

Can CCDs count precisely the number of photons ?

Calibration: convert CCD counts into physical fluxes ?

Can we compare fluxes between several (very) different telescopes/observations ?

Selection effects ?

Systematic uncertainties are comparable to statistical uncertainties !

in the transverse and radial directions

SDSS BAO Distance Ladder

*assuming a value for r_d

Baryon Acoustic Oscillations (BAO)

What does it measure ?

What does it measure ?

BAO as powerful as SNIa, and independently showing acceleration !

Why is it hard ?

1000 simulated surveys used to test methods, covariance, systematic errors

Systematic errors are well below current statistical errors

The Hubble Constant $D_n - \sigma$ SN Ia 100 Mpc SBF Tully-Fisher RGB 10 Mpc Tip NGC 4258 PNLF GCLF Local Group and Novae Maser HST Cepheids 1 Mpc Local Group RR Lyrae 100 kpc SN 1987A LMC Cepheids Light Echo Globular Cluster RR Lyrae Galactic RR Lyrae 10 kpc Statistical π Novae Cluster Cepheids Cepheid Globular Cluster RR Lyrae B-W 1 kpc Statistical π B-W

Distance ladder

Strong lensing of variable quasars

(d) SDSS 1206+4332

(e) WFI2033-4723

(f) PG 1115+080

HOLiCOW (Wong et al. 2020)

Inverse distance ladder

Standard sirens

LIGO & Virgo 2017

Inverse distance ladder

eBOSS Collab 2021

Inverse distance ladder

Dataset	Cosmological model	$H_0 ({\rm kms^{-1}Mpc^{-1}})$
CMBT & P + BAO + SN	$ow_0 w_a CDM$	67.91 ± 0.87
BBN + BAO	ΛCDM	67.33 ± 0.98
CMB T&P	ΛCDM	67.28 ± 0.61
CMB T&P	οΛCDΜ	$54.5^{+3.3}_{-3.9}$
Lensing time delays	ΛCDM	73.3 ± 1.8
Distance ladder	3• (3• (3•)	74.0 ± 1.4
GW sirens	• • •	70 ± 10
TRGB	3• (3• (3•)	69.6 ± 1.9
TFR	• • •	76.2 ± 4.3
Maser galaxies	2.● 2.3.● 2.5.● 2	73.9 ± 3.0

Cosmic Microwave Background (CMB)

Redshift-Space Distortions (RSD)

Weak Gravitational Lensing (WL)