Cosmological probes of gravity

Lecture 3

Observing the sky

The Hubble constant (H₀)

Big Bang Nucleosynthesis (BBN)

Type-la supernovae (SNIa)

Baryon acoustic oscillations (BAO)

Lecture 4

Summary of first lecture

Cosmic microwave background (CMB)

Redshift-space distortions (RSD)

Weak gravitational lensing (WL)

The future

Based on "Modern Cosmology" by <u>Dodelson & Schmidt 2019</u> "Observational probes of cosmic acceleration" by <u>Weinberg et al. 2013</u>

Summary of first lecture

The expansion is accelerating and we do not know why

 $\Omega_{\Lambda}[a(t)]^{-3(1+w_0+w_a)} \mathrm{e}^{3w_a[1-a(t)]}$ dark energy (quintessence, phantom force) 70%

or

eBOSS Collab 2021

Most of the information we receive is in electromagnetic form but we have a new way of "observing gravity" !

+ a bunch of different measurements of H_0

Baryon Acoustic Oscillations (BAO)

Constraints on dark-energy from the distance-redshift relation

$$H^{2}(z) \approx H_{0}^{2} \left[\Omega_{m}(1+z)^{3} + \Omega_{\text{DE}}(z) + \Omega_{k}(1+z)^{2} \right] \quad \text{(at } z < 100)$$

BAO as powerful as SNIa, and independently showing acceleration !

Cosmology with Type Ia Supernovae (SNIa)

Constraints on dark-energy from the distance-redshift relation

$$H^{2}(z) \approx H_{0}^{2} \left[\Omega_{m}(1+z)^{3} + \Omega_{\text{DE}}(z) + \Omega_{k}(1+z)^{2} \right] \quad \text{(at } z < 100)$$

Scolnic et al. 2018

eBOSS Collab 2021

What is dark energy ?

The acceleration problem

$$\Omega_{\Lambda}[a(t)]^{-3(1+w_0+w_a)}e^{3w_a[1-a(t)]}$$

dark energy (quintessence, phantom force)

70%

Cosmic Microwave Background (CMB)

Cosmic Microwave Background (CMB)

How do we observe it ?

Planck satellite

Télescope : miroir primaire • • de 1,5 m de diamètre

 Plan Focal
contenant les instruments scientifiques refroidis

Plate-forme : • • Avionique (Contrôle d'attitude, gestion des données) • Puissance électrique • Télécommunications et instruments électroniques

> Panneau solaire • et module de service

4,2 m

How do we observe ?

Bolometers

What do we observe ?

Low energy photons

The microwave emission of the sky

The Planck one-year all-sky survey

The microwave emission of the sky

Removing foreground emission

Temperature

The cleaned CMB

Polarisation

The cleaned CMB

Lensing potential

The absolute temperature of the CMB

The dipole of the CMB

mili Kelvin fluctuations

Temperature angular power spectrum

E mode polarisation angular power spectrum

Need a model : perturbation theory !

BAO: sound waves propagating in the baryon+photon plasma Dark matter fluctuations keep growing Large-scale structures bend light from CMB Hot gas in clusters boost CMB photons (tSZ)

Integrated Sachs-Wolf effect

Model for the CMB

Propagate photons Apply lensing Absorb a fraction $e^{-\tau}$ Add ISW Convert to angular power spectrum

Angular sound horizon

$$\begin{aligned} \theta_* &\equiv r_* / D_{\mathrm{M}} & r_s(z) = \int_0^{\eta(z)} \frac{\mathrm{d}\eta'}{\left[3\left(1 + \frac{3\rho_b(z)}{4\rho_\gamma(z)}\right)\right]^{1/2}} & \longrightarrow \Omega_b h^2, \Omega_\gamma h^2 \\ 100\theta_* &= 1.04109 \pm 0.00030 \\ \text{(3 parts in 10,000 !)} \end{aligned}$$

$$D_M(z) = D_C(z) \operatorname{sinc}\left(\sqrt{-\Omega_k} \frac{D_C(z)}{D_H(z=0)}\right) \longrightarrow H_0, \Omega_m, \Omega_{\mathrm{DE}}, \Omega_k$$

Geometrical degeneracy!

Main constraints assume a flat Λ CDM model !

Baryon and cold dark-matter densities

Information from relative heights of the acoustic peaks

 $\Omega_{\rm c}h^2 = 0.1200 \pm 0.0012$

(68%, *Planck* TT,TE,EE+lowE+lensing). Some information from total matter from CMB lensing

1% precision !
Optical depth and primordial amplitude

Degeneracy:
$$A_s e^{-2\tau}$$
 $\mathcal{P}_{\mathcal{R}}(k) = A_s \left(\frac{k}{k_0}\right)^{n_s-1}$

Reionization free-electrons scatter CMB photons and damp scales smaller than the horizon Relative amplitudes of large-scale temperature and polarization CMB anisotropies

$$A_{\rm s} = (2.101^{+0.031}_{-0.034}) \times 10^{-9}$$
 (68%, TT,TE,EE+lowE).

Solutions :

 $\tau = 0.0544^{+0.0070}_{-0.0081}$ (68%, TT, TE, EE+lowE). $z_{reion} = 7.68 \pm 0.79$

 $n_{\rm s} = 0.9649 \pm 0.0042$ (68%, *Planck* 8-sigma from TT,TE,EE+lowE+lensing), scale-invariant

Lensing of the CMB

Late-time structures bring information and break some geometrical degeneracy

Consistencies : Low-ℓ versus high-ℓ

Some one-parameter extensions

Ground based CMB experiments: ACT and SPT

Better resolution, smaller sky -> higher ell

Primordial gravitational waves

Primordial gravitational waves

Bicep, Keck, SPTPol Collaborations 2021

B-mode power spectrum

Redshift-Space Distortions (RSD)

Structures of the Universe

Illustris TNG simulation <u>https://www.tng-project.org/</u>

Model for the structures

Model for the structures

 $\ddot{\delta}(\vec{x},t) + 2H(z)\dot{\delta}(\vec{x},t) - \frac{3}{2}\Omega_m H_0^2 (1+z)^3 \delta(\vec{x},t) = 0$ (GR + linear)

Smooth Universe

 $\Omega_{\Lambda}[a(t)]^{-3(1+w_0+w_a)}e^{3w_a[1-a(t)]}$ dark energy (quintessence, phantom force) **70%** Expansion-rate and growth-rate can **break degeneracies** between Λ and alternatives to general relativity

Structures

Statistics of the structures

Higher-order: $\langle \delta(\mathbf{x_1}) \delta(\mathbf{x_2}) \dots \delta(\mathbf{x_n}) \rangle$ also very interesting

-120 -60

60

 $r_{\perp} [h^{-1} \text{ Mpc}]$

120

Redshift-space distortions (RSD)

We measure redshifts : peculiar velocities affect our distance inferences

RSD - Redshift-space distortions

Growth rate of structures f(z)

Modifications or alternatives to General Relativity

Redshift-space distortions (RSD)

Real positions Observed positions $\Delta z_{\rm true}$ $\Delta z_{\rm obs}$ Velocities "flatten" the structures radially Growth rate of structures in general relativity $f(z) \sim \left[\Omega_m(z)\right]^{\gamma=0.55}$ $\Delta \theta$ $\Delta heta$ Else: $\gamma \neq 0.55$ Modifications or alternatives to **General Relativity**

Redshift-space distortions (RSD)

State-of-the-art measurements from galaxy surveys

Uncertainties are still large to see deviations from GR

How to model the galaxy clustering ?

How to model the galaxy clustering ?

Growth rate of structures

Estimate D_M/r_d , D_H/r_d and $f\sigma_8$ from the full-shape of the correlation function or power spectrum

Two examples models:
Two examples a models:
Two examples the second second

$$P_{g}^{s}(k,\mu) = D(k\mu\sigma_{v}) \left[P_{gg}(k) + 2\mu^{2} f P_{g\theta} + \mu^{4} f^{2} P_{\theta\theta}(k) + C_{gg}(k,\mu,f,h_{0}) + C_{gg}(k,\mu,f,h_{0}) \right]$$

$$\begin{split} 1 + \xi_{\rm X}(r_{\perp}, r_{\parallel}) &= \int \frac{1}{\sqrt{2\pi \left[\sigma_{12}^2(r) + \sigma_{\rm FoG}^2\right]}} [1 + \xi_{\rm X}(r)] \\ &\times \exp\left\{-\frac{[r_{\parallel} - y - \mu v_{12}(r)]^2}{2 \left[\sigma_{12}^2(r) + \sigma_{\rm FoG}^2\right]}\right\} \mathrm{d}y, \end{split}$$

Systematic errors

Туре	Model	$\sigma_{lpha_{\perp}}$	$\sigma_{lpha_{\parallel}}$	$\sigma_{f\sigma_8}$
Modelling	CLPT-GS	0.004	0.009	0.010
	TNS	0.004	0.006	0.009
Fid. cosmology	CLPT-GS	0.009	0.010	0.014
	TNS	0.005	0.008	0.012
Obs. effects	CLPT-GS	0.009	0.012	0.017
	TNS	0.010	0.014	0.018
$\sigma_{\rm syst}$	CLPT-GS	0.013	0.018	0.024
	TNS	0.012	0.017	0.023
	P_ℓ	0.012	0.013	0.024
$\sigma_{\rm stat}$	CLPT-GS	0.020	0.028	0.045
	TNS	0.018	0.031	0.040
	P_ℓ	0.027	0.036	0.042
$\sigma_{\rm syst}/\sigma_{\rm stat}$	CLPT-GS	0.66	0.63	0.54
	TNS	0.65	0.55	0.58
	P_ℓ	0.43	0.37	0.58
$\sigma_{\rm tot} = \sqrt{\sigma_{\rm syst}^2 + \sigma_{\rm stat}^2}$	CLPT-GS	0.024	0.033	0.051
	TNS	0.021	0.035	0.046
	P_ℓ	0.029	0.038	0.048

Statistical and systematic errors are comparable

Redshift-space distortions

Also using cosmic-voids: Aubert, Cousinou, Escoffier, et al. 2020

Redshift-space distortions

Constraints are not yet that competitive with other probes within these models

Peculiar velocities

Distance indicator + redshift = peculiar velocity

Methods to determine distances: Tully Fisher, Fundamental Plane, Type-Ia supernovae

Peculiar velocities

<u>Said et al. 2020</u>

Promising information to test gravity at low redshifts

Weak Gravitational Lensing (WL)

Weak Gravitational Lensing (WL)

Weak Gravitational Lensing (WL)

What do we measure? Shapes of galaxies in images

https://www.youtube.com/watch?v=8aHbLMUOwLc

The Dark Energy Survey (DES)

- 570 Megapixel camera for the Blanco 4m telescope in Chile.
- Full survey 2013-2019 (Y3 2013-16).
- Wide field: 5000 sq. deg. in 5 bands. ~23 magnitude.
- DES Y3: Positions and shapes of > 100M galaxies.

Photometric **redshifts** using 5 fluxes

Cross-correlation with spectroscopic surveys to improve accuracy

Measuring galaxy **shapes** for the shear

Stars Adapted from Mandelbaum, Rowe+2013 Galaxies Propagation through the Universe Propagation through the Universe (sheared) (blurred) (blurred)

$$\bar{\epsilon}^{obs}_{\stackrel{\uparrow}{\uparrow}} = (1 + m) \bar{\gamma} + c$$

observed ellipticity multiplicative error additive error

DES measured the shape of 100 million galaxies

We have galaxy positions and their shear, in a few redshift bins

3 x 2 point functions:

- galaxy positions x galaxy positions
- galaxy positions x galaxy lensing
- galaxy lensing x galaxy lensing

 $\hat{\mathbf{D}} \equiv \{\hat{w}^{i}(\theta), \hat{\gamma}_{\mathrm{t}}^{ij}(\theta), \hat{\xi}_{\pm}^{ij}(\theta)\}$

We have galaxy positions and their shear, in a few redshift bins

3 x 2 point functions:

- galaxy positions x galaxy positions
- galaxy positions x galaxy lensing
- galaxy lensing x galaxy lensing

$$\hat{\mathbf{D}} \equiv \{ \hat{w}^{i}(\theta), \hat{\gamma}_{t}^{ij}(\theta), \hat{\xi}_{\pm}^{ij}(\theta) \}$$

We have galaxy positions and their shear, in a few redshift bins

3 x 2 point functions:

- galaxy positions x galaxy positions
- galaxy positions x galaxy lensing
- galaxy lensing x galaxy lensing

$$\hat{\mathbf{D}} \equiv \{\hat{w}^{i}(\theta), \hat{\gamma}_{t}^{ij}(\theta), \hat{\xi}_{\pm}^{ij}(\theta)\}$$

We have galaxy positions and their shear, in a few redshift bins

3 x 2 point functions:

- galaxy positions x galaxy positions
- galaxy positions x galaxy lensing
- galaxy lensing x galaxy lensing

$$\hat{\mathbf{D}} \equiv \{\hat{w}^{i}(\theta), \hat{\gamma}_{\mathrm{t}}^{ij}(\theta), \hat{\xi}_{\pm}^{ij}(\theta)\}$$

Simulations to test the analysis and model

The model

Observed **density** of galaxies in a redshift bin: $\delta^i_{obs}(\hat{\mathbf{n}}) = \delta^i_g(\hat{\mathbf{n}}) + \delta^i_\mu(\hat{\mathbf{n}})$ Observed **shear** signal (gravity+intrinsic alignments): $\gamma^j_\alpha(\hat{\mathbf{n}}) = \gamma^j_{G,\alpha}(\hat{\mathbf{n}}) + \epsilon^j_{I,\alpha}(\hat{\mathbf{n}})$

In Fourier:
$$\gamma^j_{
m E}(\ell) = \kappa^j(\ell) + \epsilon^j_{
m I,E}(\ell) \,, \qquad \gamma^j_{
m B}(\ell) = \epsilon^j_{
m I,B}(\ell)$$

Convergence field:
$$\kappa^{j}(\hat{\mathbf{n}}) = \int d\chi W^{j}_{\kappa}(\chi) \delta_{\mathrm{m}}(\hat{\mathbf{n}}\chi,\chi)$$

baryons + dark matter

$\begin{array}{ll} \text{The model}\\ \text{Lensing kernel:} & W^{j}_{\kappa}(\chi) = \frac{3\Omega_{\mathrm{m}}H_{0}^{2}}{2} \int_{\chi}^{\chi_{H}} d\chi' n^{j}_{\mathrm{s}}(\chi') \frac{\chi}{a(\chi)} \frac{\chi'-\chi}{\chi'}\\ & \text{number density of galaxies} \end{array}$ $\begin{array}{ll} \text{Angular cross power spectra:} & C^{ij}_{AB}(\ell) = \int d\chi \frac{W^{i}_{A}(\chi)W^{j}_{B}(\chi)}{\chi^{2}} P_{AB}\left(k = \frac{\ell + \frac{1}{2}}{\chi}, z(\chi)\right) \end{array}$

3D power spectrum (matter or convergence)

$$w^{i}(\theta) = \sum_{\ell} \mathcal{G}_{0} \left(\ell, \theta_{\min}, \theta_{\max}\right) C^{ii}_{\delta_{obs}\delta_{obs}}(\ell)$$

Convert back to configuration space: $\gamma_{t}^{ij}(\theta) = \sum_{\ell} \mathcal{G}_{2} \left(\ell, \theta_{\min}, \theta_{\max}\right) C^{ij}_{\delta_{obs}E}(\ell)$
 $\xi_{\pm}^{ij}(\theta) = \sum_{\ell} \mathcal{G}_{4,\pm} \left(\ell, \theta_{\min}, \theta_{\max}\right) \left[C^{ij}_{EE}(\ell) \pm C^{ij}_{BB}(\ell)\right]$

Done! Compare to data!

 $\hat{\mathbf{D}} \equiv \{\hat{w}^{i}(\theta), \hat{\gamma}_{t}^{ij}(\theta), \hat{\xi}_{\pm}^{ij}(\theta)\}$

The model
Lensing kernel:
$$W^{j}_{\kappa}(\chi) = \underbrace{\frac{3\Omega_{m}H_{0}^{2}}{2}}_{\chi} \int_{\chi}^{\chi_{H}} d\chi' n^{j}_{s}(\chi') \frac{\chi}{a(\chi)} \frac{\chi' - \chi}{\chi'}$$

number density of galaxies
Angular cross power spectra: $C^{ij}_{AB}(\ell) = \int d\chi \underbrace{W^{i}_{A}(\chi)W^{j}_{B}(\chi)}_{\chi^{2}} P_{AB}\left(k = \frac{\ell + \frac{1}{2}}{\chi}, z(\chi)\right)$

3D power spectrum (matter or convergence)

The amplitude of the signal mainly depends on:

$$S_8 = \sigma_8 \sqrt{\Omega_m / 0.3}$$

Testing modified gravity Redshift-space distortions (RSD) + Weak gravitational lensing (WL)

Scalar metric perturbations in the conformal Newtonian gauge : $ds^{2} = a^{2}(\tau)[(1 + 2\Psi)d\tau^{2} - (1 - 2\Phi)\delta_{ij}dx_{i}dx_{j}]$

Future of optical cosmology

Future cosmological constraints

Expansion rate with BAO

Growth-rate of structures with RSD and peculiar velocities

Julián Bautista

Future cosmological constraints

Expansion rate with BAO

Growth-rate of structures with RSD and peculiar velocities

We hope we can learn more about dark energy !

Julián Bautista

Future

Other optical future projects : Roman Space Telescope, Mauna Kea Spectroscopic Explorer (MSE)

Radio and CMB: Square Kilometre Array (SKA), LiteBird, Simons Observatory, CMB-S4

Gravitational waves: LISA

and many more...

Cosmological probes of gravity

Lecture 3

Observing the sky

The Hubble constant (H₀)

Big Bang Nucleosynthesis (BBN)

Type-la supernovae (SNIa)

Baryon acoustic oscillations (BAO)

Lecture 4

Cosmic microwave background (CMB)

Redshift-space distortions (RSD)

Weak gravitational lensing (WL)

The future

Based on "Modern Cosmology" by <u>Dodelson & Schmidt 2019</u> "Observational probes of cosmic acceleration" by <u>Weinberg et al. 2013</u>