
Federico Piazza

Le modèle standard 
de la Cosmologie 

École de Gif (Marseille 2021)



Standard model of cosmology 

Standard model of particle physics 

6=

• Only one universe (one experiment) 

• Only one point of view

Limitations:
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Natural Units

c = 1
[`] = [t]

[E] = [p] = [m]

~ = 1 [`] = [m]�1

kB= 1 [T ] = [E]

Energy density: [⇢] = [m]4

Thermal state/radiation: ⇢ = T 4



Natural Units

c = 1
[`] = [t]

[E] = [p] = [m]

~ = 1 [`] = [m]�1

kB= 1 [T ] = [E]

Newton’s constant 

Curvature [R] = [m]2 [K] = [m]
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One moral content of Einstein’s equations

⇢ =

✓
1

rcurv

◆2

M2
P

log(m)

⇢1/4 MP
1

r curv

Geometrical mean 



Fundamental hypotheses of cosmology

Homogeneity and Isotropy



Fundamental hypotheses of cosmology

Homogeneity and Isotropy

Each point equivalent to any other

Alternative: e.g. Bianchi-like models:  
different expansion rates in different directions 

Difficult to test directly:  
we observe far in space AND back in time



Fundamental hypotheses of cosmology

Homogeneity and Isotropy

Each direction equivalent to any other

Good evidence from CMB and other observations  

Alternative: e.g. Bondi-like models:  
spherical symmetry 



Fundamental hypotheses of cosmology

Homogeneity and Isotropy

Geometrically, it means that we can identify the t=const. 
surfaces with a spatial geometry that is maximally symmetric. 

Positive curvature Negative curvature

Flat



Fundamental hypotheses of cosmology

Homogeneity and Isotropy

Geometrically, it means that we can identify the t=const. 
surfaces with a spatial geometry that is maximally symmetric. 

Broad evidences that this geometry is just flat 3d space 



Friedmann-Lemaitre-Robertson-Walker metric

ds2 = �dt2 + a2(t)d~x · d~x

Flat sections
Line element: integrate if 


you want the length of a curve 

“Scale factor”
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The Hubble parameter
There is no expansion velocity: the velocity depends on the relative distance.  
 There is an expansion rate: 

H0 ' 73
Km/s

Mpc
' 10�34eV
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interesting mass scale!
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The Hubble parameter

log(m)

MPH0

102810�310�34

⇢1/4 ' ⇤1/4

In FLRW : H =
ȧ
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The equations

H
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(⇢+ 3p)

Gravity is an attractive force…

well it depends on the sign of p!  

w =
pressure

energy density

Acceleration: w < �1

3

⇢̇+ 3H (⇢+ p) = 0



Types of matter

Non relativistic v ⌧ 1, p ' 0

Radiation v = 1, p = ⇢/3

⇢ / a�3

⇢ / a�4

w =
�̇2

2 � V
�̇2

2 + V
Scalar field ⇢ / a�3(1+w)

Spatial curvature rcurv / a ⇢ / a�2



Epochs
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Inflation

• Sets the ``correct” initial conditions 

• Solves the curvature problem 

• Solves the Horizon problem 

• As a gift -> provides a mechanism for generating 
the primordial perturbations



Horizon problem 
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ds2 = �dt2 + a2(t)dx2

t

Big Bang

MD : a / t2/3

RD : a / t1/2



Big Bang

ds2 = a2(⌧)(�d⌧2 + dx2)

⌧

x

Horizon problem 

d⌧ =
dt

a(t)

MD : a / ⌧2

RD : a / ⌧



Big Bang

ds2 = a2(⌧)(�d⌧2 + dx2)

⌧

x

light rays: 45 degrees

Horizon problem 

MD : a / ⌧2

RD : a / ⌧



Big Bang

ds2 = a2(⌧)(�d⌧2 + dx2)

⌧

x

our cosmological observations…

Horizon problem 

MD : a / ⌧2

RD : a / ⌧



Big Bang

ds2 = a2(⌧)(�d⌧2 + dx2)

⌧

x

our cosmological observations…

Horizon problem 

MD : a / ⌧2

RD : a / ⌧
last scattering

z ' 1000
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Big Bang

ds2 = a2(⌧)(�d⌧2 + dx2)

⌧

x

our cosmological observations…

Many causally disconnected regions! (> 10000)

Horizon problem 

MD : a / ⌧2

RD : a / ⌧
last scattering

⌧ls



Inflation!

ds2 = a2(⌧)(�d⌧2 + dx2)

⌧

x

our cosmological observations…

last scattering

Horizon problem 

Push down the

big bang



ds2 = a2(⌧)(�d⌧2 + dx2)Horizon problem 

We want a primordial epoch as long as possible in      time ⌧

⌧ =

Z t

0

dt̃

a(t̃)
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If            ,      is even divergent in 0!ä > 0 ⌧

Primordial accelerated expansion = Inflation



Fourier space - picture

Every wavelength          .  How does this length compare with         ? ` / a
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Fourier space - picture

Every wavelength          .  How does this length compare with         ? ` / a H
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Fourier space - picture

Every wavelength          .  How does this length compare with         ? ` / a H
�1
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Null energy condition guarantees that          .  
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During inflation H ' const.

Fourier space - picture
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Aside: bouncing alternatives to Inflation 
Null energy condition guarantees that          .  

H
�1

`1
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log(L)

t

Ḣ  0

However: Pre-big bang, cyclic cosmologies, LQC etc. 

ȧ < 0

Ḣ > 0

bounce



How much of inflation? 
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How much of inflation? 
Solving the spatial curvature problem is a little more difficult

H
�1

t

say, 

⇢K(t0) = ⇢r(t0)

t0tendti

say, 

⇢K(ti) = ⇢̄

⇢̄ ' const.



How much of inflation? 
Solving the spatial curvature problem is a little more difficult

H
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say, 

⇢K(t0) = ⇢r(t0)

t0tendti
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The scale of inflation 

Spoiler: the simplest model of inflation happens at roughly 
the grand-unification scale. With more fine tuning down to the EW scale
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Inflation

• Sets the ``correct” initial conditions 

• Solves the curvature problem 

• Solves the Horizon problem 

• As a gift -> provides a mechanism for generating 
the primordial perturbations



How to get inflation
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Typical scenario



Case study: V (�) =
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