Studying dark-energy with the large-scale structures of our Universe

Julian Bautista Postdoc @ CPPM

IPhU e-Seminar - 24 March 2020

How the structures of the Universe can inform us about dark energy?

Observing structures with eBOSS

Analysis of the red galaxy sample from eBOSS

Future surveys

Cosmology with type-Ia supernovae

Acceleration of the expansion of the Universe

Independent probes confirm acceleration

Acceleration of the expansion of the Universe

Modifications or alternatives to General Relativity

How to distinguish between these two?

Large-scale structures of the Universe

BAO - Baryon Acoustic Oscillations

RSD - Redshift-space distortions

Growth rate of structures f(z)

Modifications or alternatives to General Relativity

RSD - Redshift-space distortions

Velocities "flatten" the structures radially

Growth rate of structures

in general relativity

$$f(z) \sim \left[\Omega_m(z)\right]^{\gamma=0.55}$$

Else: $\gamma \neq 0.55$

Modifications or alternatives to General Relativity

RSD - Redshift-space distortions

Expansion rate H(z)

Cosmic microwave background (CMB) z ~ 1100 or t ~ 380 000 years

$$F = \frac{L_{\text{candle}}}{4\pi D_L^2(z)} \qquad \Delta \theta = \frac{r_{\text{ruler}}}{D_M(z)} \qquad \Delta z = \frac{r_{\text{ruler}}}{D_H(z)}$$

Growth rate of structures f(z)

Cosmic microwave background (CMB) z ~ 1100 or t ~ 380 000 years

Sloan Digital Sky Survey (SDSS)

Observing the structures

Galaxies

- low redshift, z < 2
- trace high density regions
- traditional method

Lyman- α forests

- unique* access to high redshift, z > 2
- trace low density in the line-of-sight
- recent method

eBOSS

and the state-of-the-art map of the Universe's structures

20 years of redshift surveys with SDSS

https://www.youtube.com/watch?v=KJJXbcf8kxA (by EPFL.ch)

eBOSS

extended Baryon Oscillation Spectroscopic Survey Dawson et al. 2016

2.5-meter mirror

> Sloan Digital Sky Survey Telescope Apache Point Observatory, New Mexico, USA

eBOSS extended Baryon Oscillation Spectroscopic Survey

1-meter focal plane

eBOSS Spectra

Luminous Red Galaxies (0.6 < z < 1.0)

Emission Line Galaxies (0.7 < z < 1.1)

Quasars (z > 2) for Lyman-alpha forest

Quasars for clustering (0.8 < z < 2.2)

and some visual inspection (for QSOs)

1000 simulated surveys used to test methods, covariance, systematic errors (Zhao, Chuang, **Bautista**, et al. 2020)

Extracting cosmological overdensities Ross, **Bautista**, Tojeiro et al. 2020

EZmock catalogs

Zhao, Chuang, **Bautista**, et al. 2020

- Zel'dovich approximations to rapidly construct density field
- 1000 realizations of the survey
- includes redshift evolution
- includes observational effects
- includes cross-correlations between tracers
- used to test our methods, estimate systematic errors and compute covariance matrices

BAO analysis

eBOSS LRG sample

Post-reconstruction multipoles

Estimate D_M/r_d and D_H/r_d from BAO peak position (and nothing else) Model from Bautista et al. 2018

RSD analysis

eBOSS LRG sample

Pre-reconstruction multipoles

Final results from the LRG sample at z = 0.7 BAO + RSD $\xi_{\ell} + P_{\ell}$

Expansion-rate with Baryon Acoustic Oscillations (BAO)

Growth-rate of structures with redshift-space distortions (RSD)

Also using cosmic-voids: Aubert, Cousinou, Escoffier, et al. 2020

Stage III: SDSS final, Planck CMB, Pantheon SN Ia, and DES 3x2pt Stage II: SDSS DR7, WMAP CMB, JLA SN Ia

Future

and making high-resolution maps

Next-generation surveys of the structures

Satellite with 2m mirror ~30 million galaxies 2022 - 2028

Telescope with 4m mirror 5000 spectra at a time ~ 20 million galaxies 2021-2026

DARK ENERGY SPECTROSCOPIC INSTRUMENT Telescope with 8.4m mirror Largest camera in the world ~ 300k supernovae 2023 - 2033

> Rubin Observatory

Key participation of CPPM in these projects

Expansion-rate

Growth-rate

Testing GR with type-Ia supernovae peculiar velocities

This new type of measurement will be competitive for the first time (with SNIa)

FACILITY

Rubin-LSST

ZTF

INSTRUMENT

4MOST

DESI

Cosmology with type Ia supernovae

Photometric classification of supernovae with *deep learning*

Use images as input for learning

Collaboration with LIRMM et TETIS

Project in collaboration with: Bastien Carreres, doctorant, CPPM Mariam Sabalbal, master 2, AMU Nattapon Preedasak, master 1, AMU

Préparation à l'analyse cosmologique de la prochaine génération

Conclusion

