Scales — Experiments

We're lucky to be living during a great time for inflationary cosmology:

- we still got so much to discover about inflation, theorists can go wild
- we can test our models with more, much better, data in the coming years/decade

		$k \ \left[\mathrm{Mpc}^{-1} ight]$	$N_{ m estim.}$
(I) GW from binary	CMB / LSS	$10^{-4} - 10^{-1}$	56 - 63
	$y-\& \mu-{ m distortions}$	$10^{-1} - 10^4$	45 - 56
mergers	$P_{\zeta} \rightarrow \text{PBH} \rightarrow \text{GW} @ \text{PTA}$	$10^4 - 10^5$	41 - 44
	$P_{\zeta} \rightarrow \text{PBH} \rightarrow \text{GW} @ \text{LISA}$	$10^5 - 10^7$	38 - 41
	$P_{\zeta} \rightarrow \text{PBH} \rightarrow \text{GW} @ \text{AdvLIGO}$	$10^7 - 10^8$	35 - 37
(II) GW produced	$P_{\delta g} \rightarrow \mathrm{GW} @ \mathrm{PTA}$	$10^6 - 10^8$	36 - 40
	$P_{\delta g} \to \mathrm{GW} @ \mathrm{LISA}$	$10^{11} - 10^{14}$	22 - 28
	$P_{\delta g} \rightarrow \text{GW} @ \text{AdvLIGO}$	$10^{16} - 10^{17}$	15 - 17

Table 1. First column: list of observational windows on inflation. Second column: order of magnitude of the wavenumber of the primordial modes in the corresponding window. Third column: estimated number of efolds before the end of inflation at which those modes exited the horizon. The third, fourth, and fifth row refer to <u>GW produced by the collision of black hole binaries originated by PBH</u> due to enhanced scalar perturbations produced during inflation. For brevity, we denote by AdvLIGO the regime probed by terrestrial GW interferometers. The last three rows denote a stochastic GW signal produced during inflation.

Garcia-Bellido, Peloso, Unal - 2016

(III) GW produced at second order from scalar perturbations after inflation (David)

GW and inflation

Not the end of the story! So much may have happened that is not represented by this line

<u>Model building</u>: what should we expect for the SGWB from inflation? How likely is it that it will be visible at small scales?

<u>Preparing for observations</u>: how do we exploit [and/or make the case for] upcoming experiments?

<u>Model building</u>: what should we expect for the SGWB from inflation? How likely is it that it will be visible at small scales?

- Relaxing vanilla hypotheses
 [single field/straight trajectory, BD
 initial states, space diff invariance,..]
- Complementary approaches: EFT and model-specific

Preparing for observations:

- Multiple d.o.f. well motivated from particle physics and string theory
- Excited initial states may have been left over from pre-inflation phase

Model building:

what should we expect for the SGWB from inflation? How likely is it that it will be visible at small scales?

- Relaxing vanilla hypotheses
 [single field/straight trajectory, BD initial states, space diff invariance,..]
- Complementary approaches: EFT and model-specific

<u>Preparing for observations</u>: how do we exploit [and/or make the case for] upcoming experiments?

Some challenges ahead :

- Building models and computing observables when multiple fields (especially beyond spin-0,1) are involved is hard
- Interesting predictions for tensors without messing up the scalar sector

- what s Cosmological n-point correlators from i (scalar, tensor, mixed)
 - Wi Second-order GW production from scalars and consequences for PBH

Re [single field initial states

- Complement
 EFT and metal
- Frequency profile/features
- Chirality
- Non-Gaussianity
- SGWB Anisotropies

<u>Preparing for observations</u>: how do we exploit [and/or make the case for] upcoming experiments?

Produce accurate predictions

- Identify crucial/new observables
- Figure out the best use of data

- Investigating the capability of new experiments, asking what we would need from experiments and influence their design when possible
- Multi-messenger approach and cross-correlations
- Develop data analysis techniques

Model building:

what should we expect for the SGWB from inflation? How likely is it that it will be visible at small scales?

- Relaxing vanilla hypotheses
 [single field/straight trajectory, BD initial states, space diff invariance,..]
- Complementary approaches: EFT and model-specific

<u>Preparing for observations</u>: how do we exploit [and/or make the case for] upcoming experiments?

- Produce accurate predictions
- Identify crucial/new observables
- Figure out the best use of data

Some challenges ahead :

- Building models and computing observables when multiple fields (especially beyond spin-0,1) are involved is hard
- Interesting predictions for tensors without messing up the scalar sector

- We may be facing a tiny signal and a lot of noise
- Disentangling the SGWB from inflation from other cosmological/ astrophysical backgrounds