

[ Domcke, Jinno, Rubira '20 (JCAP 06 (2020) 046)

# **GRAVITATIONAL WAVES: A NEW PROBE TO THE UNIVERSE**

#### Gravitational waves:

Transverse-traceless part of the metric

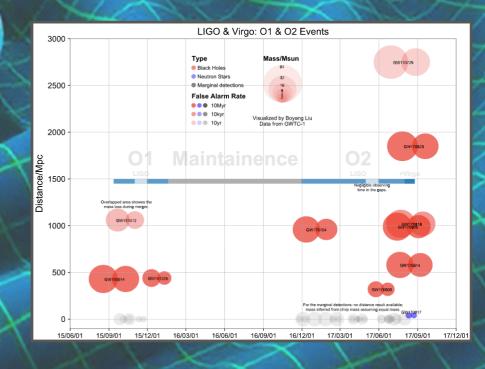
 $ds^2 = -dt^2 + a^2(\delta_{ij} + h_{ij})dx^i dx^j$ 

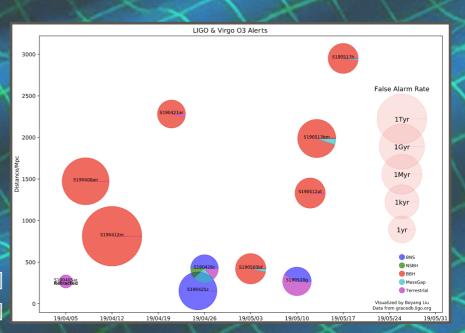
obeying the equation of motion sourced by the energy-momentum tensor of the system

 $\Box h_{ij} \sim G\Lambda_{ij,kl} T_{kl}$ 

Detections by LIGO & Virgo have been exciting us

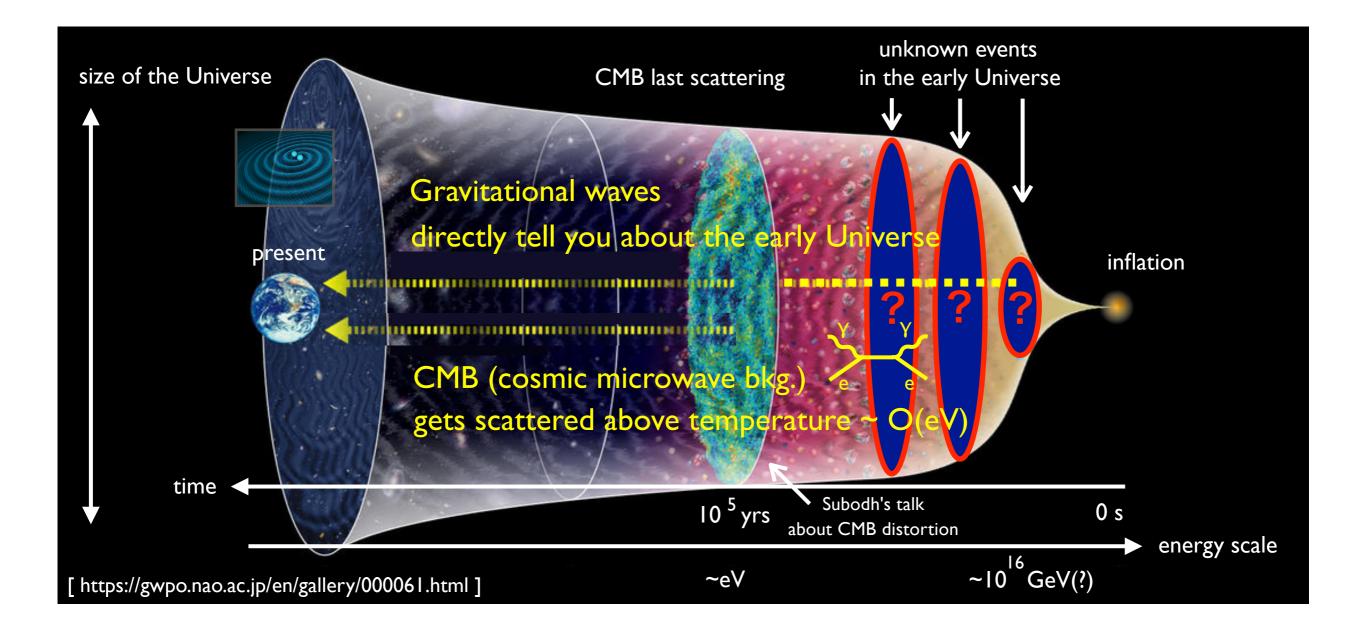
> [Wikipedia "List of gravitational wave observations"] see also https://gracedb.ligo.org/superevents/public/O3/





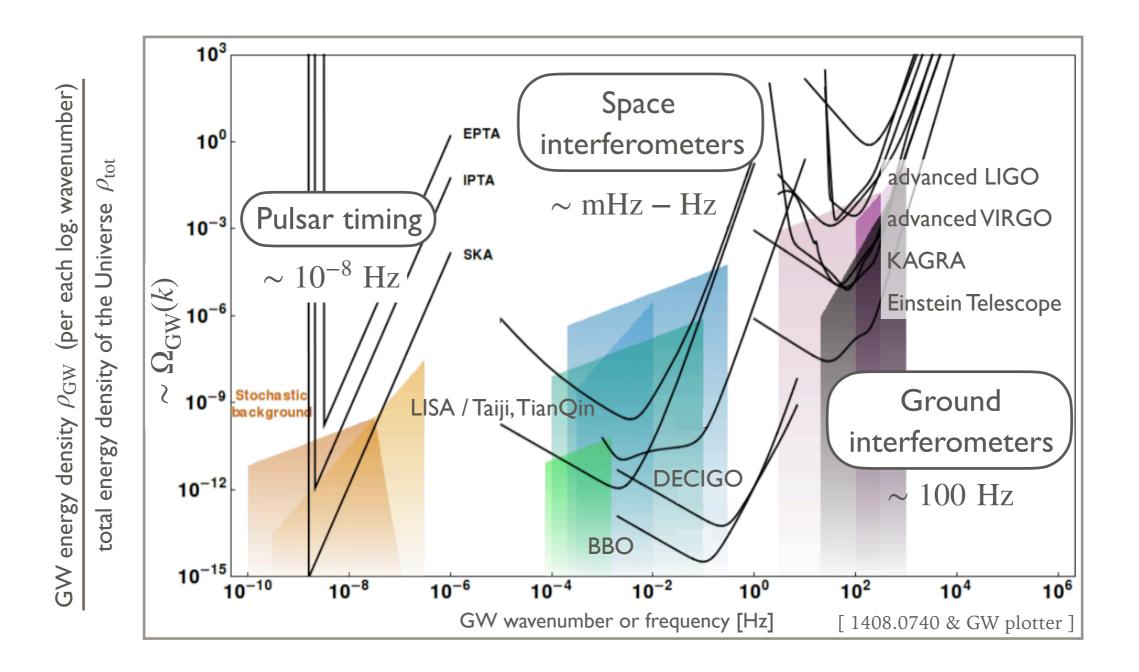
## **GWS FROM EARLY UNIVERSE**

#### ► What is special about GWs?



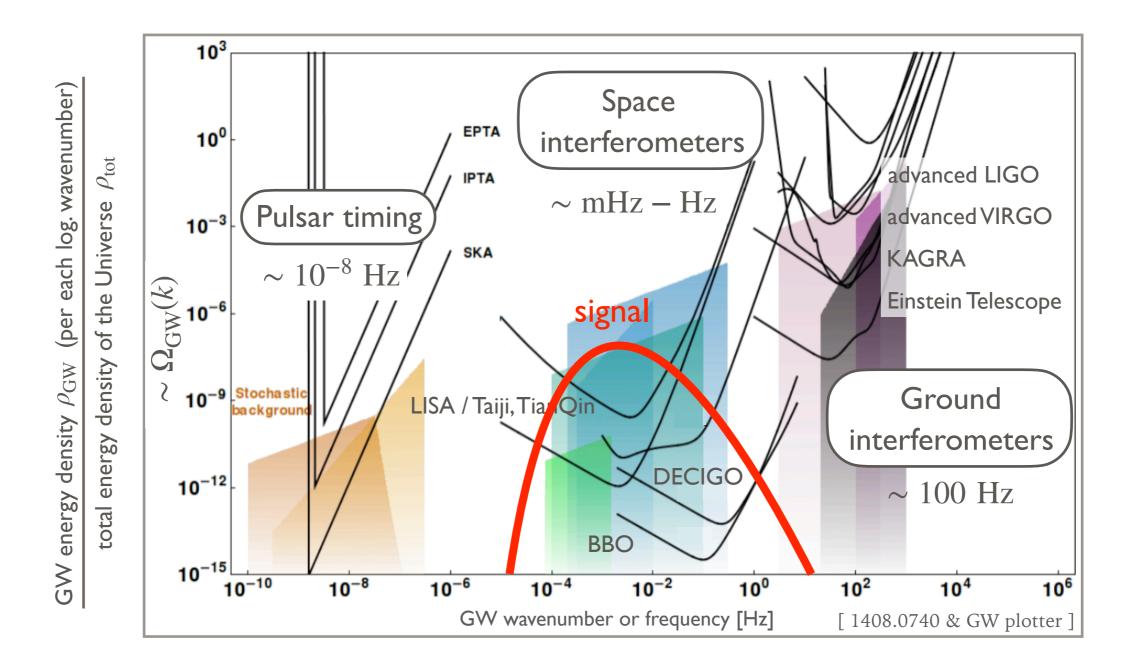
# **PRESENT & FUTURE OBSERVATIONS**

Summary of ongoing & future experiments



# **PRESENT & FUTURE OBSERVATIONS**

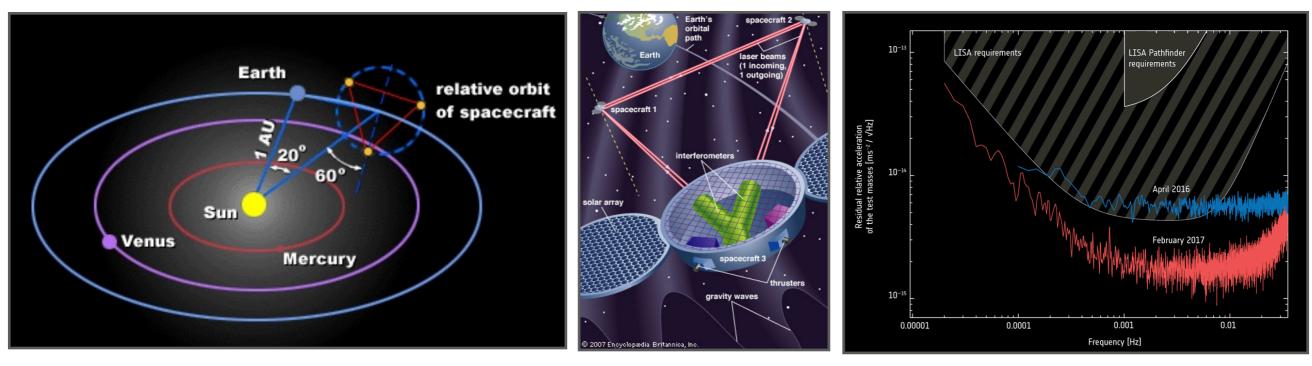
Summary of ongoing & future experiments



## **PRESENT & FUTURE OBSERVATIONS**

LISA (Laser Interferometer Space Antenna)

- Space interferometer project led by ESA & NASA
- ► Selected as third-large class mission(L3) in 2017. Operation from 2034.
- > 3 spacecrafts orbitting around the Sun. Distance btwn spacecrafts =  $2.5 \times 10^6$  km.
- ► Tested necessary technologies with LISA pathfinder since 2015.



04 / 17 Ryusuke Jinno (DESY) "Deformation of the GW spectrum by density perturbations"



#### MAIN IDEA

#### ➤ What I discuss will be in parallel to Ema & Gianmassimo's talk "GWs propagate in an inhomogeneous Universe"

... from another aspect. Consistency will be discussed at the end.

[ Laguna, Larson, Spergel, Yunes '10 ] [ Alba, Maldacena '15 ]

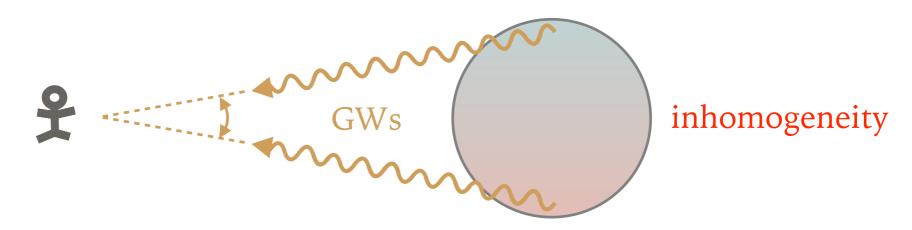
[ Bartolo, Bertacca, Matarrese, Peloso, Riccardone, Riotto, Tasinato '19 ]

[ Adshead, Afshordi, Dimastrogiovanni, Fasiello, Lim, Tasinato '20 ] [ Malhotra, Dimastrogiovanni, Fasiello, Shiraishi '20 ] ...

► Our question:

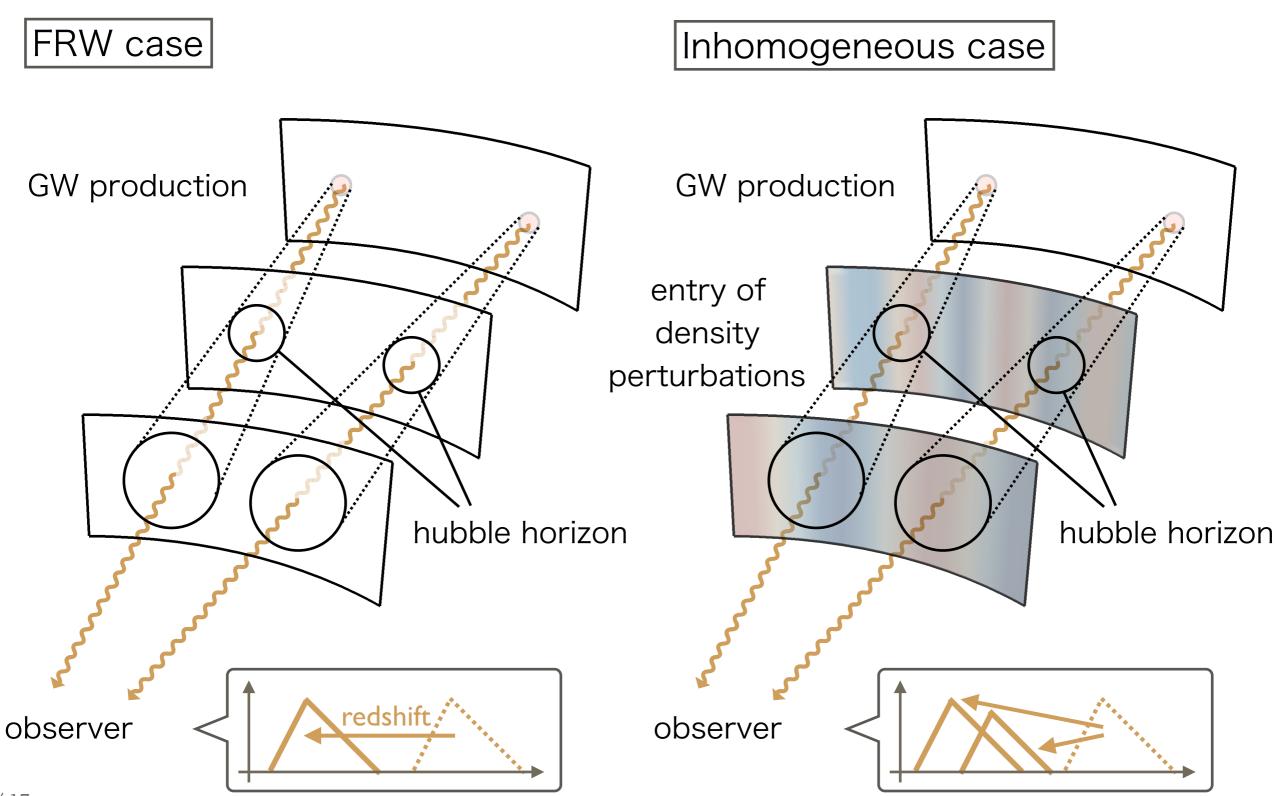
"What is the effect of GW propagation on GW isotropic spectrum?"

Why do we care about isotropic spectrum?

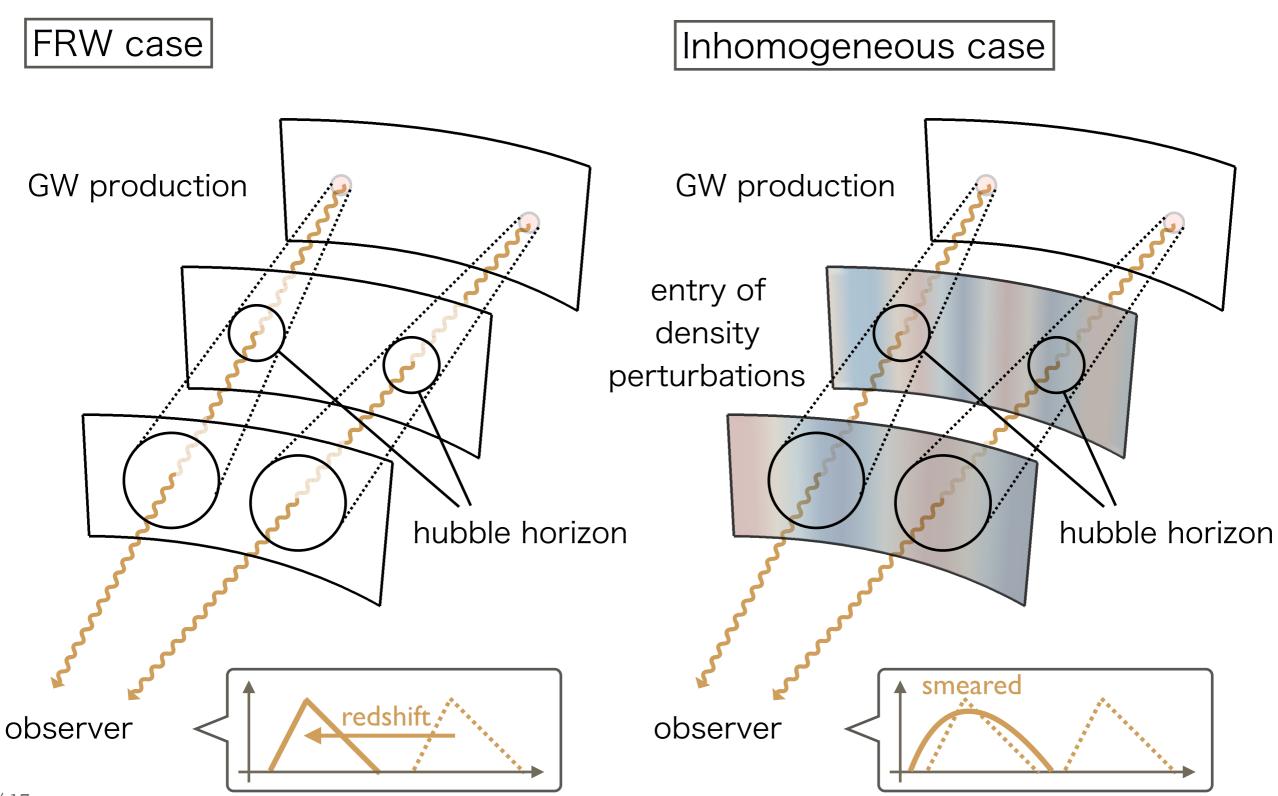


... because (typical angular scale for inhomogeneity)  $\ll$  (detector resolution)

## **SKETCH OF THE MAIN RESULT**

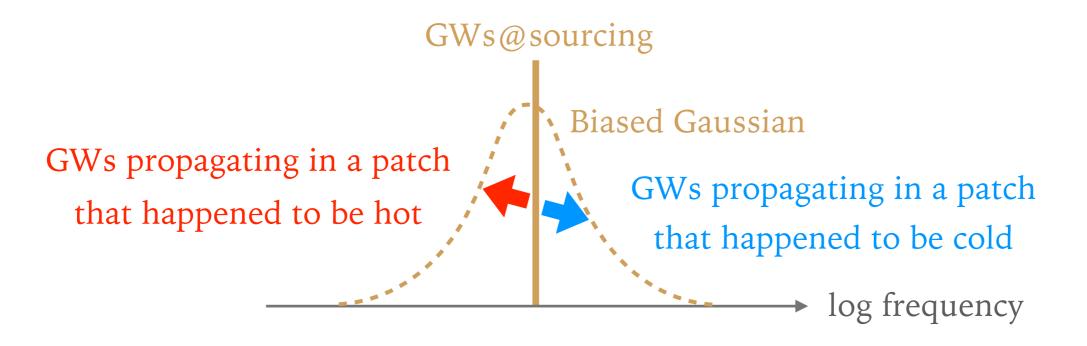


## **SKETCH OF THE MAIN RESULT**



# SKETCH OF THE MAIN RESULT (CONT'D)

Each frequency bin experiences random walk



- For a more generic GW spectrum@sourcing, we convolute the biased Gaussian

$$\Delta_h^{2,(o)}(\ln f) \simeq \int d \ln f' \, \Delta_h^{2,(s)}(\ln f') \, K(f,f')$$
observer
source biased Gaussian

► This picture takes into account at least <u>part of</u> the relevant contributions ( $\rightarrow$  later)

07 / 17 Ryusuke Jinno (DESY) "Deformation of the GW spectrum by density perturbations"

# **DEFINITION OF THE SETUP**

#### Assume any GW source in very early Universe

| - First-order phase transitions     | [ Witten '84 ] [ Hogan ' 86 ] [ Kosowski, Turner, Watkins '92 ]<br>e.g. [ Kamionkowski, Kosowski, Turner '93 ] [ Huber, Konstandin '08 ] [ Caprini et al. '16 ]<br>[ Hindmarsh, Huber, Rummukainen, Weir '13 ] [ Ellis, Lewicki, No '18 ] |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - Gauge field production e.g. [0]   | Cook, Sorbo '11 ] [ Sorbo '11 ] [ Malek-Nejad, Sheikh-Jabbari '11 ] [ Anber, Sorbo '12 ]<br>Namba, Peloso, Shiraishi, Sorbo, Unal '15 ] [ Domcke, Pieroni, Binétury '16 ]                                                                 |
| - Preheating don't miss Dani's talk |                                                                                                                                                                                                                                           |

. . .

- Topological defects [Zeldovich, Kobzarev, Okun '74] [Kibble '76] [Vilenkin '81] [Gleiser, Roberts '98] e.g. [Battye, Shellard '93 & '96] [Figueroa, Hindmarsh, Urrestilla '13] [Ramberg, Visinelli '19] [Chang, Cui '20] ...

#### Curvature perturbations (from inflation) enter the horizon later

- We assume single clock: each horizon patch is different only by time shift.
  - GW production occurs in the same way among all the patches, up to time shift.
- Preferably enhanced: Talks by Matteo, Spyros, Lukas (w/ Sébastien, Jacopo), Gianmassimo, Caner, Guillem, Shi, Antonio, Sébastien
- ► We assume hierarchy in scales

(detector resolution) >>> (length of curvature pert'n) >>> (GW wavelength)



- ► Hierarchy in scales justifies using geometric optics [Laguna, Larson, Spergel, Yunes '10]
  - Infinitely short-wave GW rays propagating inside density perturbations



► Just like CMB, we have several effects on GW rays

Sachs-Wolfe / Integrated Sachs-Wolfe / Doppler / Lensing

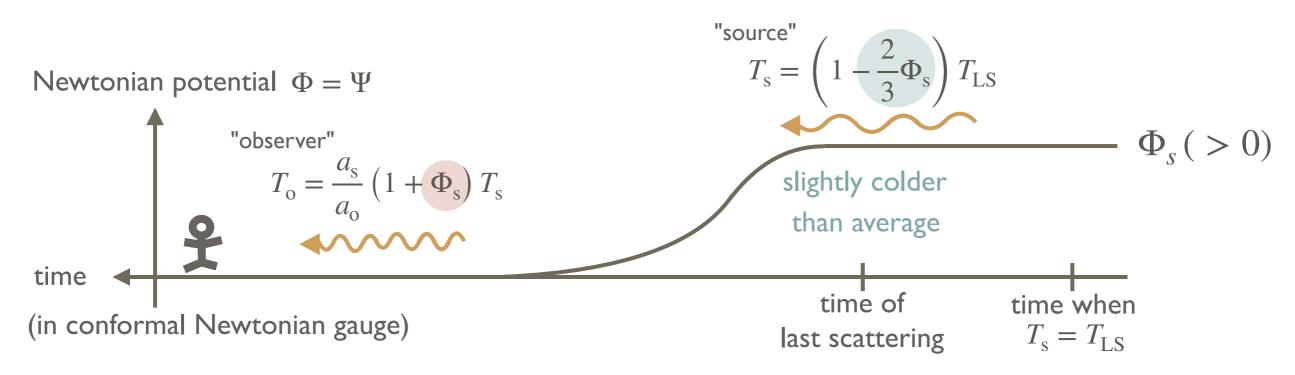
Sachs-Wolfe effect (in CMB context) [Sachs & Wolfe '67] [Hu & White '97]

$$\frac{\Delta T}{T} = \Phi_{\rm s} - \frac{2}{3}\Phi_{\rm s}$$

$$ds^{2} = -a^{2}(1+2\Phi) d\tau^{2} + a^{2}\delta_{ij}(1-2\Psi) dx^{i}dx^{j} \text{ (conformal Newtonian gauge)}$$

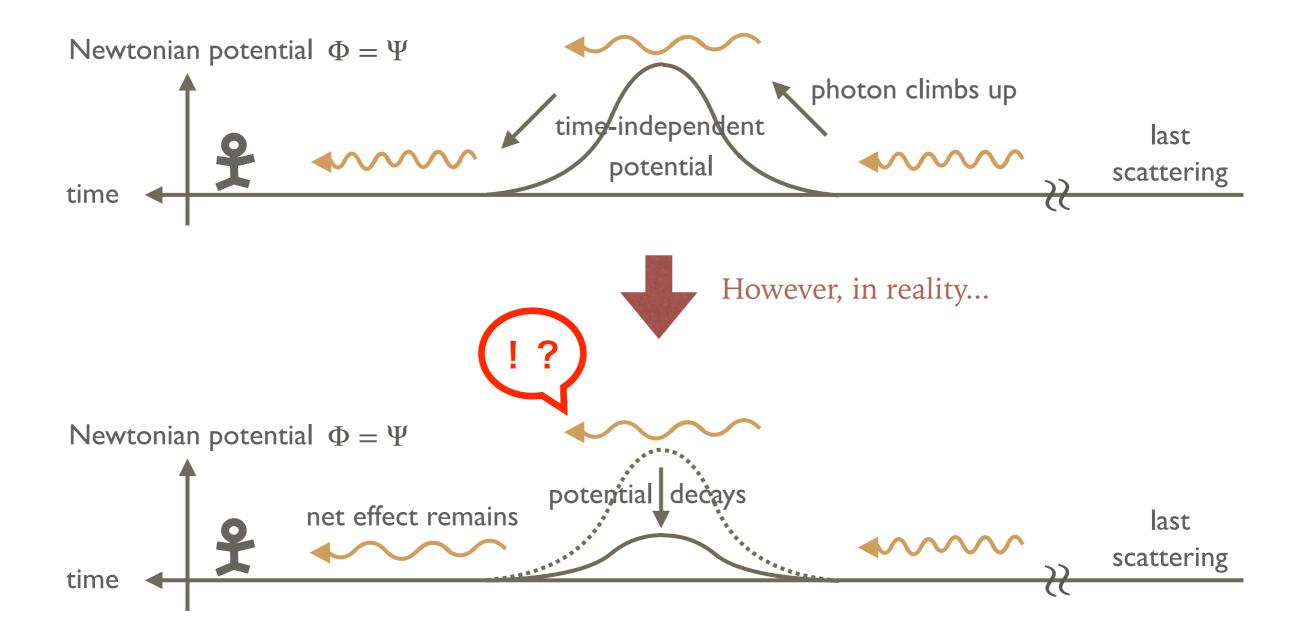
where

 $\Phi = \Psi$  (absense of anisotropic stress)





► Integrated Sachs-Wolfe effect (in CMB context) [Rees & Sciama '68]



We average the frequency and amplitude random walk over the curvature perturbations

$$\Delta_h^{2,(o)}(\ln f) \simeq \left\langle \left(1 + 2\underline{\Delta \ln A}\right) \Delta_h^{2,(s)}(\ln f - \underline{\Delta \ln f}) \right\rangle_{\text{scalar ens. ave.}}$$

...using linear-order results from geometric optics [Laguna, Larson, Spergel, Yunes '10]

amplitude 
$$\Delta \ln A = \begin{bmatrix} -\Psi_{s} - \frac{1}{2}\Phi_{s} \\ \Phi_{s} - \frac{1}{2}\Phi_{s} \end{bmatrix}$$
 + lensing (neglected)  
frequency  $\Delta \ln f = \begin{bmatrix} \Phi_{s} - \frac{1}{2}\Phi_{s} \\ SW \end{bmatrix} \begin{bmatrix} +\int_{\lambda_{s}}^{\lambda_{o}} d\lambda \,\partial_{\tau}(\Phi + \Psi) \end{bmatrix}$ 

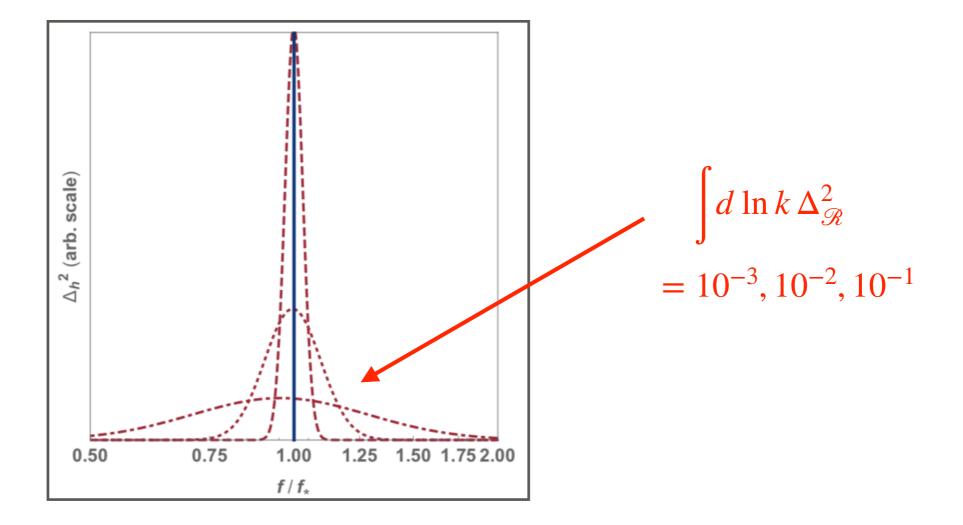
► Then the scalar average is strictly calculable

$$\Delta_{h}^{2,(0)}(\ln f) \simeq \int d\ln f' \,\Delta_{h}^{2,(s)}(\ln f') \,K(f,f') \qquad K(f,f') = \frac{1}{\sqrt{2\pi\sigma^2}} \begin{bmatrix} \sin b \approx -0.52 \\ 1 + b(\ln f - \ln f') \end{bmatrix} e^{-\frac{(\ln f - \ln f')^2}{2\sigma^2}}$$
  
linearly biased  
Gaussian 
$$\text{variance } \sigma^2 \sim \int d\ln k \,\Delta_{\mathcal{R}}^2$$



#### RESULTS

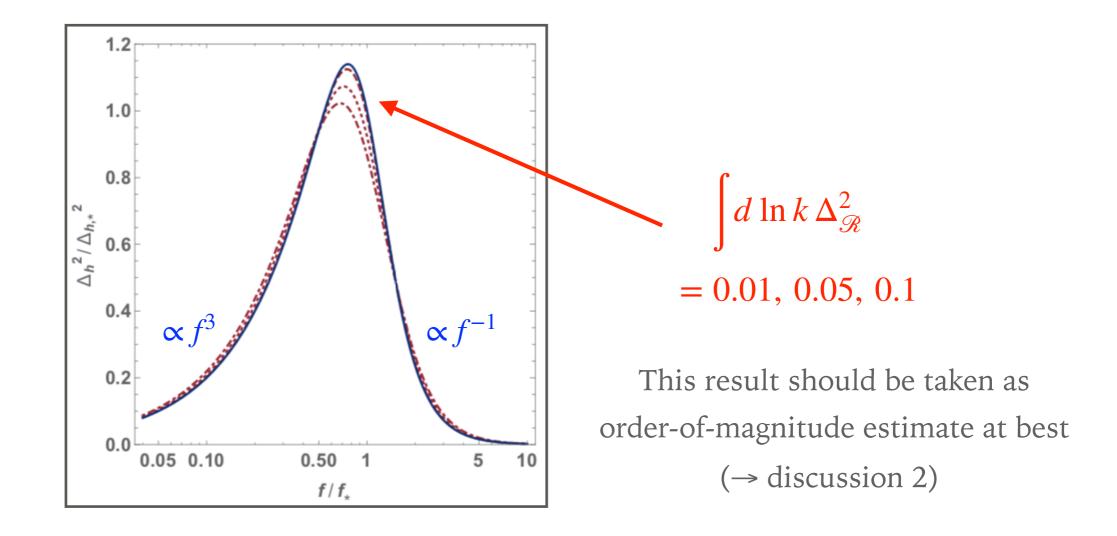
► For a spiky GW spectrum at the sourcing time



blue = original (= source) / red = deformed (= observed)



► For a smooth GW spectrum at the sourcing time

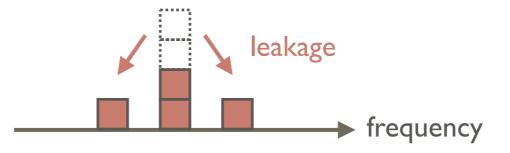


blue = original (= source) / red = deformed (= observed)

### **DISCUSSION 1**

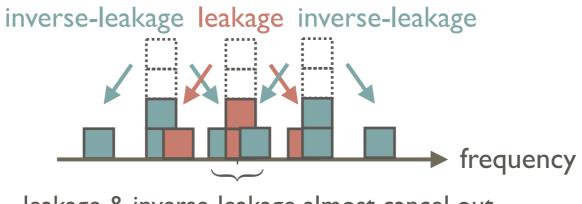
► For the smooth spectrum, the deformation looks smaller. Why?

- For the spiky case (= seen bin-by-bin), only leakage occurs



In this case, our prescription is safe ( $\rightarrow$  backup)

- For the smooth case, leakage & inverse-leakage almost cancel out



leakage & inverse-leakage almost cancel out

In this case, our calculation takes into account <u>part of</u> the whole effect

#### DISCUSSION 1 (CONT'D)

► For the smooth case, we had two nontrivial steps:

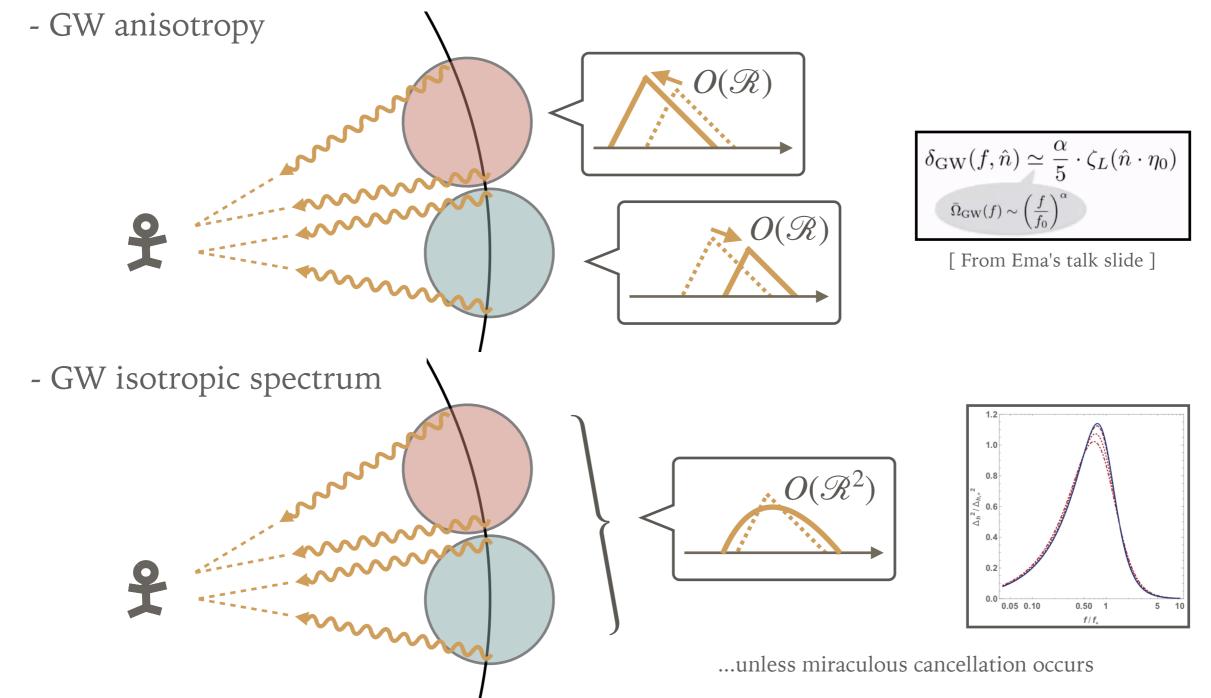
1. Taylor exp. 
$$\Delta_h^{2,(o)}(\ln f) = \left\langle e^{2\Delta \ln A} \Delta_h^{2,(s)}(\ln f - \Delta \ln f) \right\rangle_{\text{scalar ens. ave.}}$$
$$\stackrel{!}{\simeq} \left\langle \left(1 + 2\Delta \ln A\right) \Delta_h^{2,(s)}(\ln f - \Delta \ln f) \right\rangle_{\text{scalar ens. ave.}}$$

2. Linear-order result 
$$\Delta \ln A \stackrel{!}{=} -\Psi_{s} - \frac{1}{2}\Phi_{s}$$
  
$$\Delta \ln f \stackrel{!}{=} \Phi_{s} - \frac{1}{2}\Phi_{s} + \int_{\lambda_{s}}^{\lambda_{o}} d\lambda \,\partial_{\tau}(\Phi + \Psi)$$

> At each step, part of  $\langle (\text{scalar})^2 \rangle_{\text{scalar ens. ave.}}$  terms are neglected

## **DISCUSSION 2**

Consistency with GW anisotropy



#### SUMMARY

► GWs propagate in an inhomogeneous Universe.

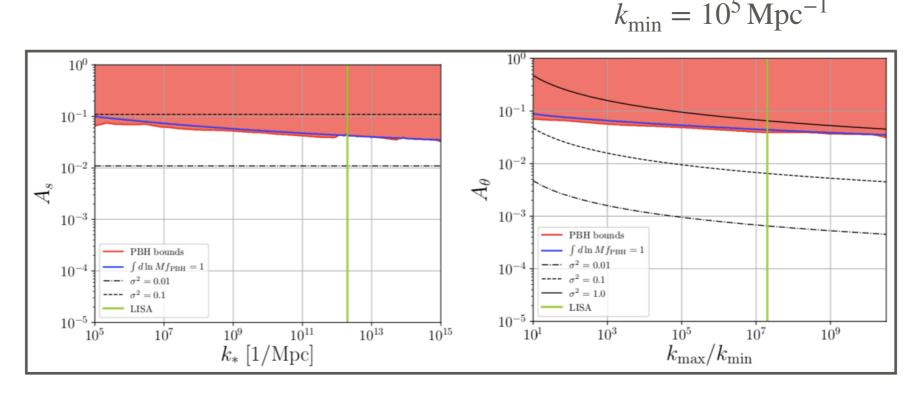
The inhomogeneity deforms the original isotropic spectrum.

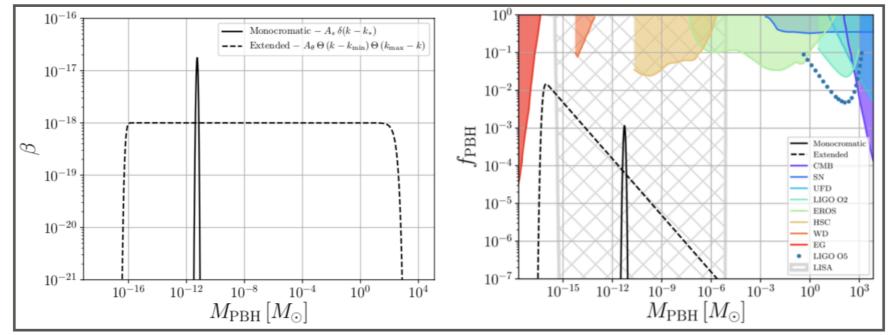
- If the original GW spectrum is  $\begin{cases} \text{ sufficiently spiky} \rightarrow \text{ we can show this effect clearly} \\ \text{ smooth} \rightarrow \text{ our result is just implicative} \end{cases}$
- GW anisotropy is also important
- Careful comparison btwn. theoretical and observed GW spectra may reveal the intermediate-scale curvature perturbations
- ► To fully pin down the effect, we need 2nd-order pert'n theory

# Backup

#### **PBH CONSTRAINTS**

$$\Delta_{\mathscr{R}}^2(k) = A_s \, k_* \, \delta(k - k_*) \qquad \Delta_{\mathscr{R}}^2(k) = A_\theta \, \Theta(k - k_{\min}) \, \Theta(k_{\max} - k)$$





#### **NEGLECTED TERMS**

#### ► Taylor expansion

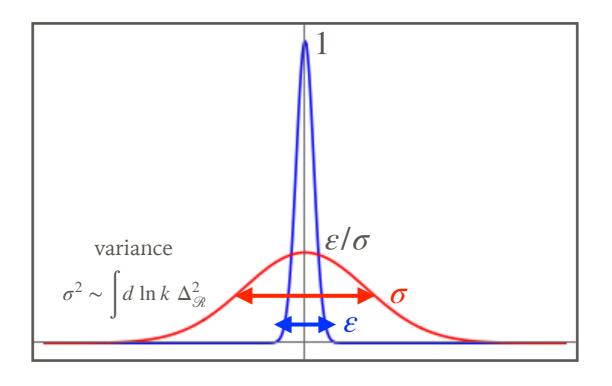
$$\begin{split} \Delta_{h}^{2(o)}(\ln f) &= \left\langle e^{2\Delta \ln A} \Delta_{h}^{2(s)} \left( \ln f - \Delta \ln f \right) \right\rangle_{\text{ens}(s)} \\ &= \left\langle \left( 1 + 2\Delta \ln A^{(1)} \right) \Delta_{h}^{2(s)} \left( \ln f - \Delta \ln f^{(1)} \right) \right\rangle_{\text{ens}(s)} \\ &+ \left\langle 2 \left( \Delta \ln A^{(1)} \right)^{2} + 2\Delta \ln A^{(2)} \right\rangle_{\text{ens}(s)} \Delta_{h}^{2(s)}(\ln f) \\ &+ \left\langle \Delta_{h}^{2(s)} \left( \ln f - \Delta \ln f^{(2)} \right) \right\rangle_{\text{ens}(s)} - \Delta_{h}^{2(s)}(\ln f) \\ &+ \mathcal{O}(\sigma^{3}) \,. \end{split}$$
 : we took this

#### $SPIKY \rightleftharpoons SMOOTH$

►  $\delta$ -function type source spectrum  $\left[\Delta_h^{2(s)}(f) = \frac{\Delta_{h,*}^2}{\sqrt{2\pi\varepsilon^2}} \exp\left[-\frac{(\ln f - \ln f_*)^2}{2\varepsilon^2}\right]\right]$  ( $\delta$ -func. for  $\varepsilon \to 0$ )

► Our expression 
$$\Delta_h^{2(o)}(f) = \int d\ln f' \, \Delta_h^{2(s)}(f') \, K(f, f')$$
 gives

the observed spectrum 
$$\Delta_h^{2(o)}(f) = \frac{\Delta_{h,*}^2}{\sqrt{2\pi(\varepsilon^2 + \sigma^2)}} \left[ 1 + \frac{\sigma^2}{\varepsilon^2 + \sigma^2} b \left( \ln f - \ln f_* \right) \right] \exp\left[ -\frac{(\ln f - \ln f_*)^2}{2(\varepsilon^2 + \sigma^2)} \right]$$



#### **DERIVATION OF THE LINEARLY BIASED GAUSSIAN**

- ► Imagine a Gaussian variable *X* obeying distribution  $P(X) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{X^2}{2\sigma^2}}$
- Suppose you would like to calculate  $\langle (1+2X)f(x-X) \rangle$

► You will get 
$$\langle (1+2X)f(x-X) \rangle = \int dX \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{X^2}{2\sigma^2}} (1+2X)f(x-X)$$
  
$$= \int dx' \frac{1}{\sqrt{2\pi\sigma^2}} [1+2(x-x')] e^{-\frac{(x-x')^2}{2\sigma^2}} f(x')$$
$$(x-X=x')$$

► In the present case, we have infinitely many Gaussian variables  $X_1, X_2, \cdots$ (corresponding to each *k* mode), but the calculation is essentially the same

## ANALOGY TO CMB

