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Brief Summary for Inflation at CMB

@ The dimensionless power spectra for scalar and tensor sectors
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@ The power spectrum is conventionally parametrized as
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@ The parameters in Planck '18 (for the pivot scale k. = 0.05Mpc_1)
o A, =(2140.03)-10"° (Planck TT, TE, EE + lowE + lensing) , 68% CL
o ns =0.9649 £0.0042  (Planck TT, TE, EE + lowE + lensing), 68% CL
e as = —0.0045 £ 0.0067 (Planck TT, TE, EE + lowE + lensing) , 68% CL
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Inflationary models
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Figure: Predictions of selected inflationary models (taken from Planck '18)
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How to probe smaller scales?

Inflation is expected to last roughly 60 e-folds depending on post-inflation physics.
@ CMB and LSS probe the wavenumbers in the range 10~* < k/l\/[pcf1 < 0.1
o 11— and y— distortions extend this range up to ~ 10° Mpc ™t
@ This corresponds only 18 efolds of inflation.

The rest ~ 40 e-folds is unexplored apart from the bounds and potential
signatures associated with primordial black holes (PBHs), and the GW signatures!
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Figure: Density/curvature perturbations, taken from arXiv:1110.2484
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Basic Assumptions and Observational Signatures

@ Assume amplification in primordial density fluctuations at scales much
smaller than CMB modes (not assume a specific mechanism)
o Inevitable (induced) GWs from enhanced primordial density perturbations via
(nonlinear coupling) ¢ +¢ — h
Acquaviva+'02 ; Mollerach, Harari, Matarrese '03, Ananda, Clarkson, Wands '06 ; Baumann+'07

3 () + 2H b () + K2 ha k(1) = 28 k(1) (3)
Suiln) o / d*p D¢ OCip (4)

2
chocph,ndoc(/drc-«S) o (CCCO) (5)

e Primordial Black Holes (may or may not be part of DM, but our conclusions
are independent from that)

@ Could we measure these observables so that we can learn more about
primordial /high energy universe?
Possible!
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@ When curvature fluctuations are amplified, they usually come together with
non-trivial amount of NG
e Slowing down the inflaton leads to quantum diffusion
Pattison+ '17 ; Franciolini+ '17 ; Biagetti+ '18 ; Ezquiaga, Garcia-Bellido '18..
o Particle production is inherently NG via 2 — 1 and 3 — 1 processes
Barnaby, Peloso '10 ; Anber, Sorbo '12 ; Bugaev, Klimai '13 ; Garcia-Bellido, Peloso, Unal '16...

@ Let’s allow some NG

c d®*p ¢ . G NG
Ck = G +fNL/(27T)3/2Cka—p7 = Pe(k) =P (k) + P~ (k) (6)

In? (k/k,)
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PNC(k) = 2f2 /777,;@ PE(k — 7
¢ (k) NL p 4m |k — pP c(P) g(| pl) (7)
o Effects of NG :Scalar modes peak at a larger frequency, more contraction due

to more legs, wider signal due to convolution
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@ Contractions vanishing due to zero
momentum propagator or symmetry ° O(ff/L)

WM W reducible planar
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Results for small/mild NG ! 2
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1Large far limit studied by Nakama, Kamionkowski, Silk 16 ; Garcia-Bellido, Peloso, Unal 17
2Also recent works with similar results : Atal, Domenech '21 : Adshead, Lozanov, Weiner '21
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10—6 L

P(k)

PPBH

>~ PpM - (I)].O — 100M@ <~ fPTA—SKA and (ii)10_14 — 10_11/\/’@ <~ fLISA)

(II) Garcia-Bellido, Peloso, Unal '17 ; Bartolo et al '19 ; Cai, Pi, Sasaki '19
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(i)Bird et al '16 ; Clesse, Garcia-Bellido '16 ; Sasaki et al '16
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Signatures for Narrow Spectra - | (0 << 1)

Signature 1: A not-very-well-resolved double peak.
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Signatures for Narrow Spectra - Il (0 << 1)

Signature 2: A bump in UV tail even if GWs from NG fluctuations are completely
subdominant. J

1078 i [ﬂ:lO_z, fn=0.5, U:O.l) 1

With PTA-SKA and LISA, probing fy, ~ O(0.1 — 10) is possible
( could be better probe than next generation CMB+LSS ')
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Sensitivity of Next Generation Experiments

o CMB Spectral Distortions
< ppixie >~ 1078 ~ 2.3 AN Pe = Pe~ 10—8

@ Stochastic Gravitational Wave Background
QGW >~ (sym fact) . Qrad . Pg — P( ~ (QGW . 104)1/2
P¢(kpra—ska) ~ 1072, Pc(kpisa) ~ 107%° | Pe(ker/ce) ~ 107*
See also Byrnes, Cole, Patil '18 ; Inomata, Nakama '18 ; Cai, Pi, Wang, Yang '19
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Summary

@ Enhanced perturbations (usually contain NG) lead inevitably induced GWs

<+ may also produce PBHs in large abundance

@ GW spectrum can probe small scale inflationary perturbations fy; ~ (0.1 — 1)
with PTA-SKA and LISA

| Which is is even better than next generation CMB+LSS

o If no signal from (distortions + SKA GWs), then we obtain the strongest
constraints on primordial fluctuations at small scales.
~+ rule out " robustly’ PBH (M > 0.1Mg) and the intriguing possibility that PBH are SMBH seeds

independent of inflationary fluctuation statistics, merger history, accretion rates and clustering properties

@ Similar conclusions will be valid for LISA scales/frequencies, namely ballpark
of 10712M, PBHs will be probed conclusively (detected or ruled out).
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TImprints of Primordial Non-Gaussi itational Wave Sp
Supplemental Aruzwut

In this supplementary section, we give (‘Xphm( expressions for the Hybrid, Walnut and Reducible diagrams
F 1|

= 7 and internal momentim variables ate rescaled with peak scale, k., such that 7 p/k.. 1

4/k.. Finally, these di are
the horizon, namely k. = z. > 1.

evaluated when the corresponding mode is deep inside
Hybrid Diagram
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where C is defined in (3)
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