Probing the Physics of Inflation with Gravitational Waves

Gianmassimo Tasinato

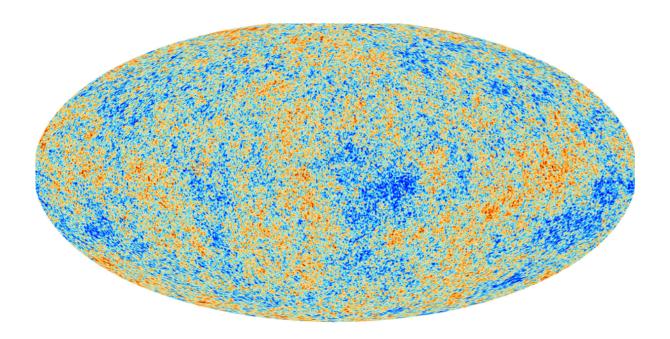
Swansea University;

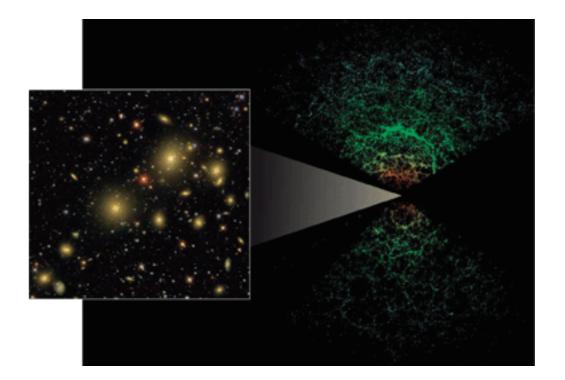
Thanks to all my collaborators:

N. Bartolo, D. Bertacca, D. Cannone, C. Caprini, C. Contaldi, V. De Luca, E. Dimastrogiovanni, V. Domcke, M. Fasiello, D. Figueroa, G. Franciolini , J. Garcia-Bellido S. Matarrese, M. Mylova, S. Parameswaran, M. Peloso, C. Powell, O. Özsoy, A. Renzini, A. Ricciardone, A. Riotto, L. Sorbo, D. Wands, I. Zavala

Introduction

- ▶ Inflation is a short period of superluminal, accelerated expansion, occurred within the first second of our universe life.
- ▶ It solves problems of big bang cosmology: horizon, flatness, entropy problems
- Moreover, inflation provides an elegant mechanism for generating the primordial seeds for the CMB and the LSS





Theoretical Prediction of Cosmological Inflation

Stochastic background of gravitational waves

Vanilla model

$$S_{h} = \frac{M_{\rm Pl}^{2}}{4} \int dt \, d^{3}x \, a^{3} \left[\dot{h}_{ij}^{2} - \frac{1}{a^{2}} \left(\vec{\nabla} h_{ij} \right)^{2} \right]$$

► Tensor power spectrum

$$\mathcal{P}_{h} = \frac{2 k^{3}}{2\pi^{2}} \langle |h|^{2} \rangle = \frac{2}{\pi^{2}} \frac{H^{2}}{M_{\text{Pl}}^{2}}$$

 $\begin{array}{ll} \texttt{Tensor-to-scalar ratio:} & \frac{\mathcal{P}_h}{\mathcal{P}_{\zeta}} = 16\epsilon & \overleftarrow{Size \ of \ inflaton \ field \ excursion} \end{array}$

Tensor-to-Scalar ratio $\frac{\mathcal{P}_h}{\mathcal{P}_{\zeta}} = r \leq 0.07$ [Planck, Bicep 2]

But what if $r \ll 10^{-3}$ at CMB scales?

(Difficult to get large field excursions in quantum gravity embeddings of inflation)

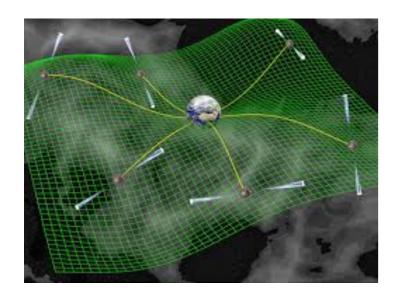
Should we give up any attempts to probe inflationary tensor modes?

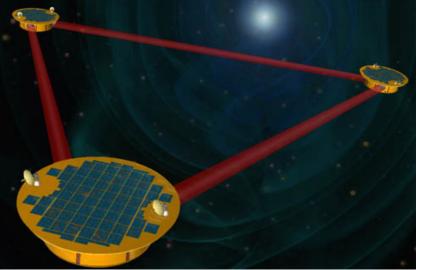
Direct detection?

PTA

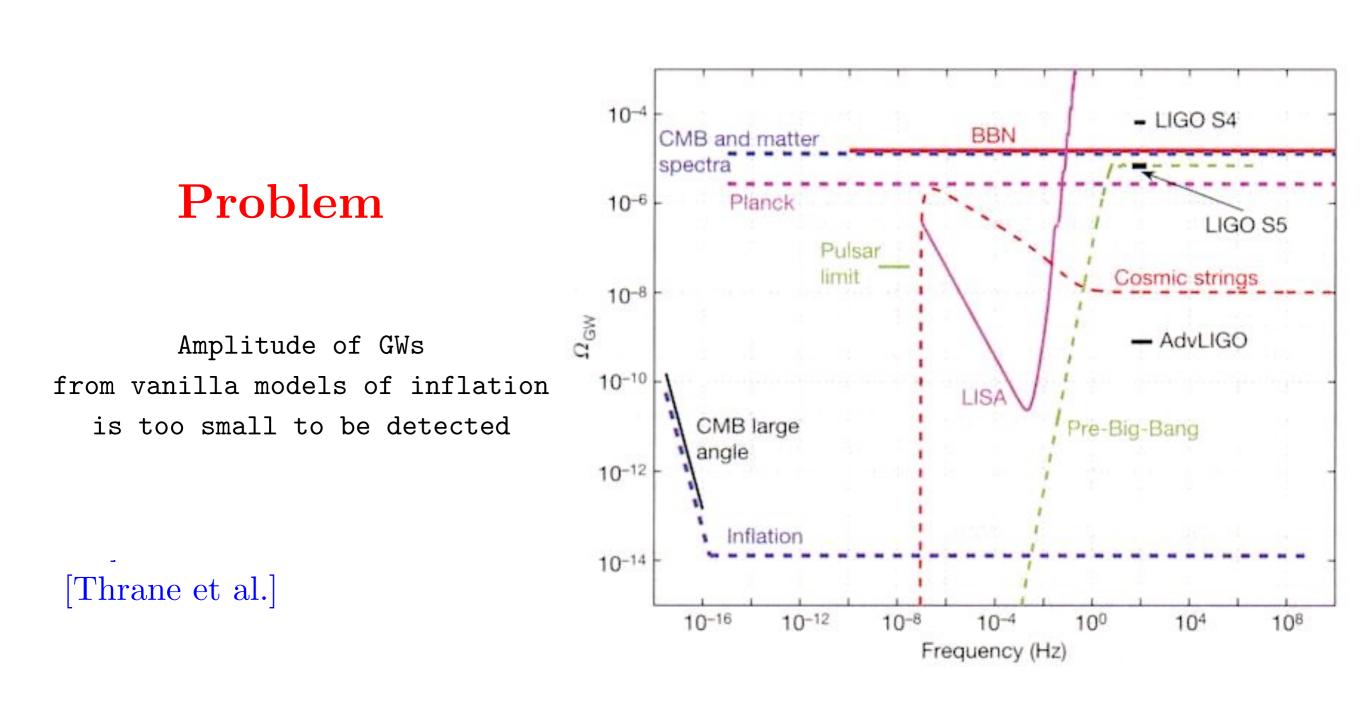
Ground-Based Intf

Space-Based Intf

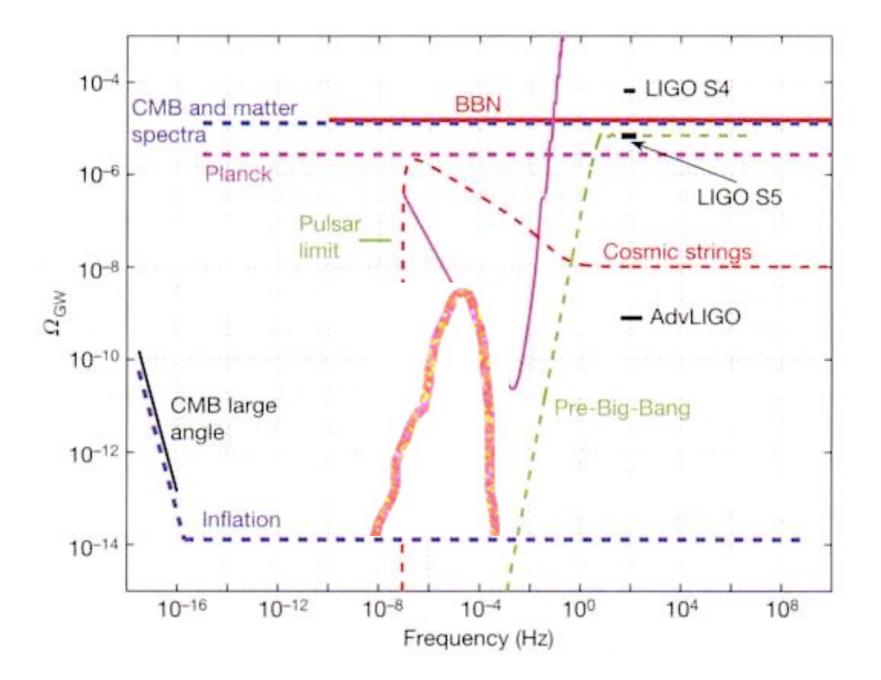




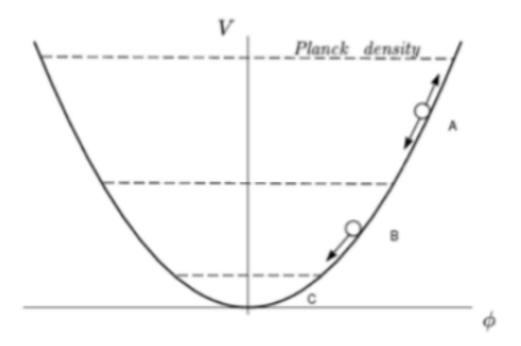
Direct detection?



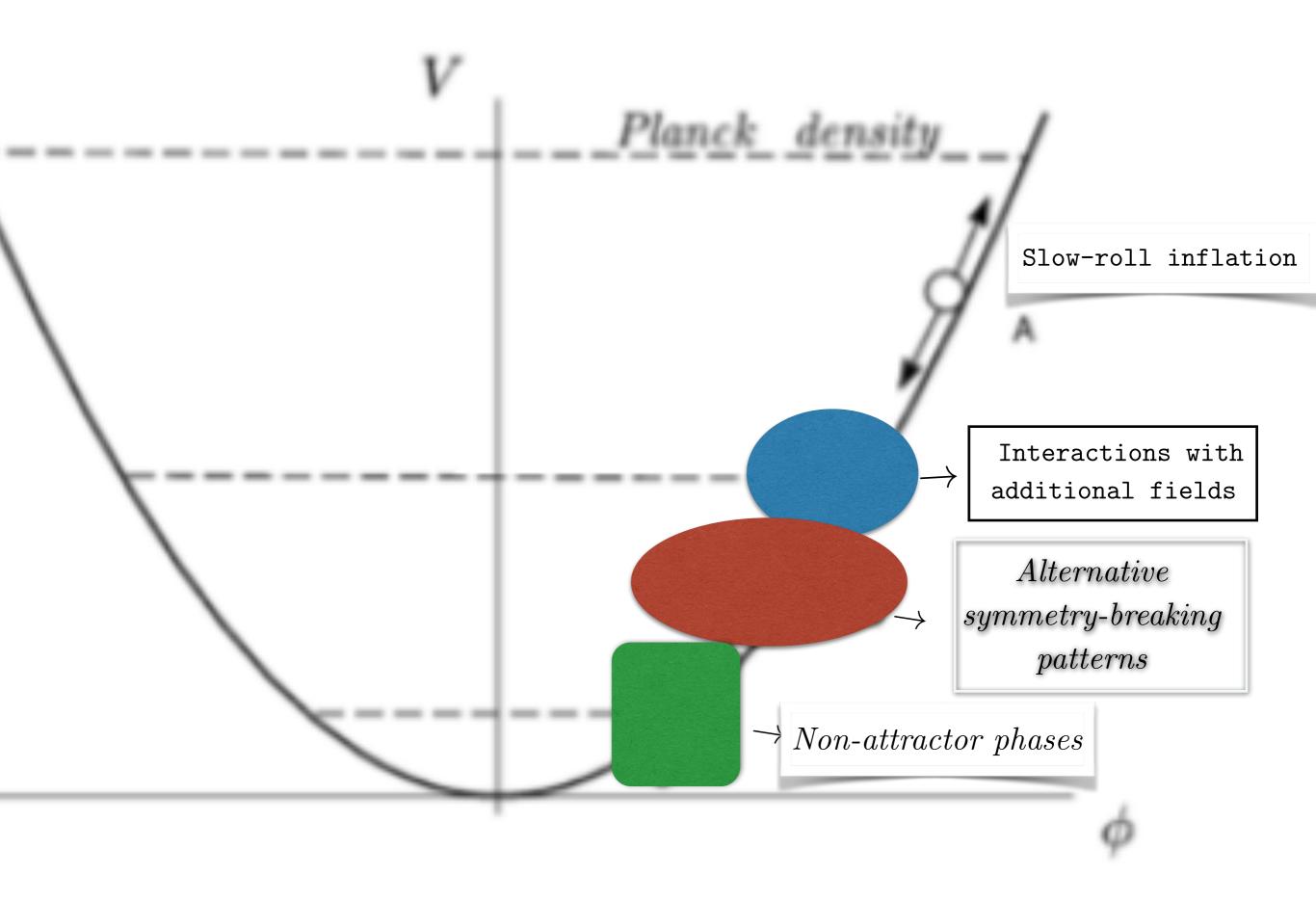
Direct detection?



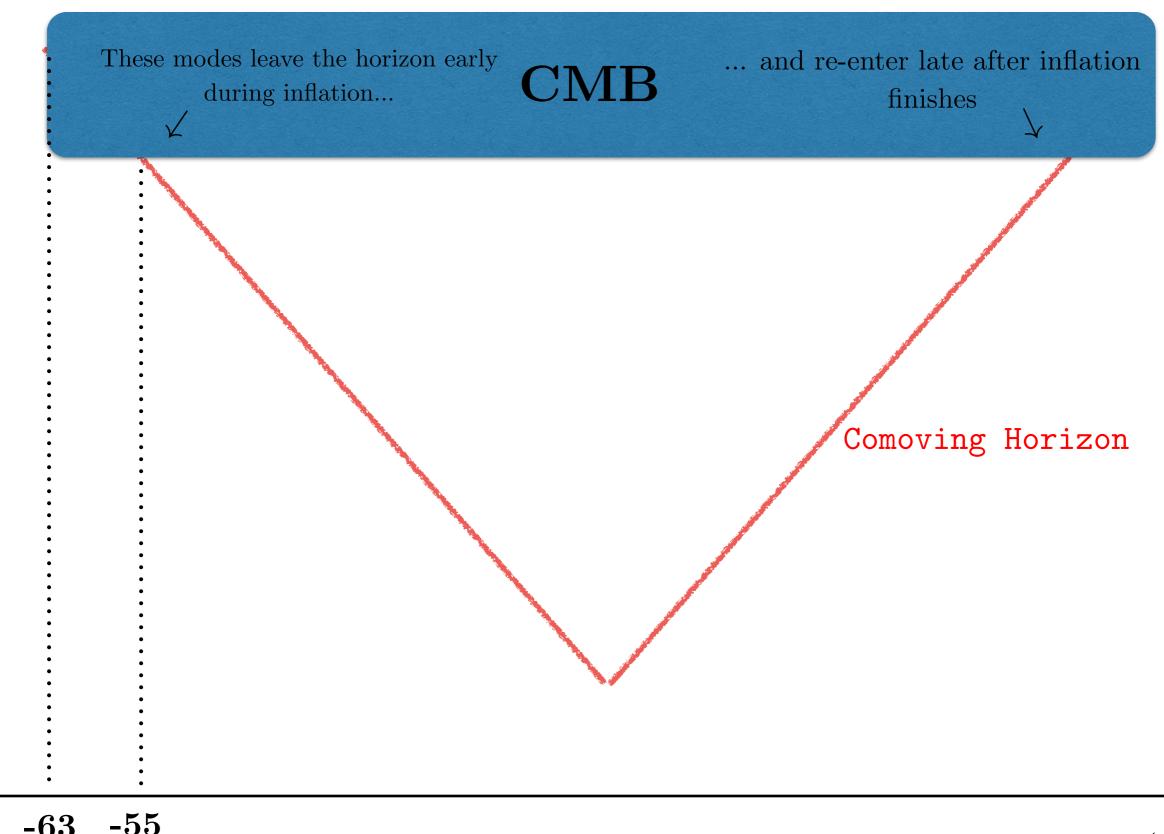
Instead of vanilla model...



...we could have a richer dynamics after an initial phase of slow-roll...



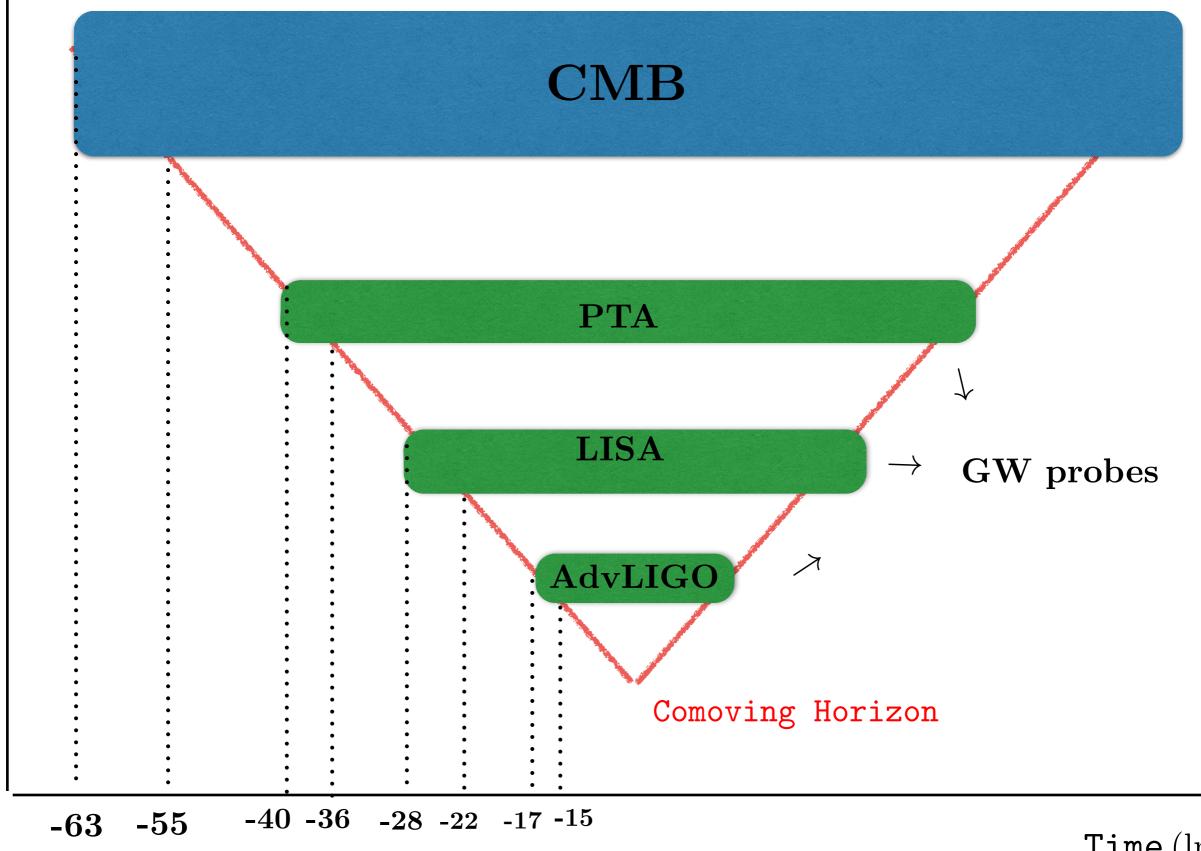
Comoving scales



-55 -63

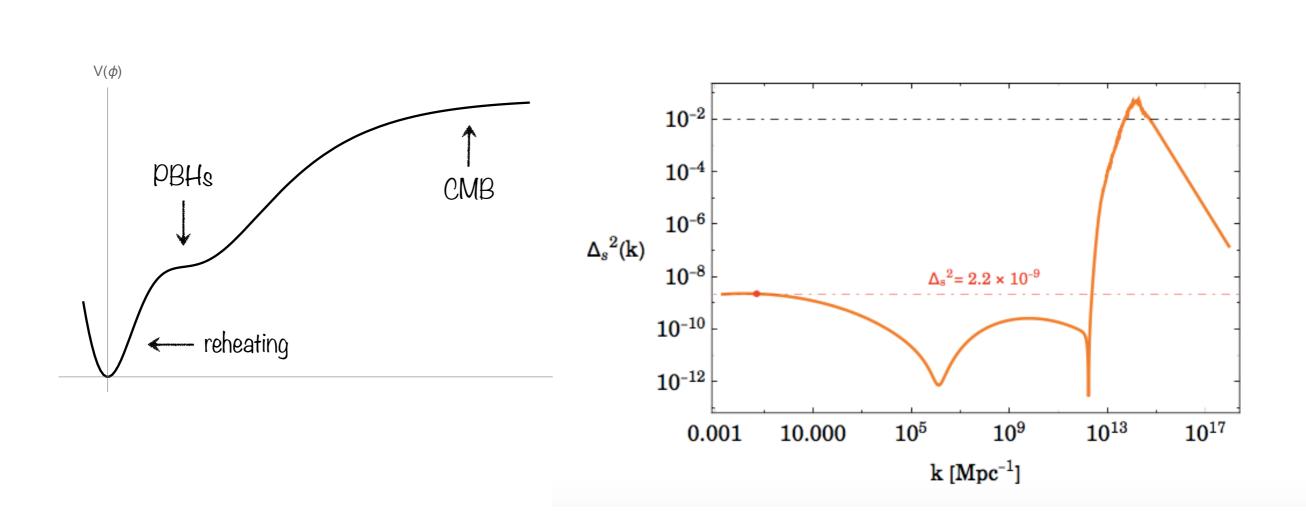
Time $(\ln a)$

Comoving scales



Time $(\ln a)$

Are there additional motivations for examining models enhancing fluctuations at small scales?



Yes, formation of Primordial Black Holes

Theory

Survey of scenarios amplifying tensor modes at small scales

Phenomenology

Smoking gun observables for cosmological origin of GW signal

...paying special emphasis on distinctive features to distinguish them from astrophysical backgrounds

Mechanisms to enhance primordial GWs at small scales

We need to change the evolution eq for primordial tensor modes in inflationary background

$$\ddot{h}_{ij}(t,\,\vec{k}) + 3H\,\dot{h}_{ij}(t,\,\vec{k}) + \frac{k^2}{a^2}\,h_{ij}(t,\,\vec{k}) = 0$$

1. Include a source term

$$\ddot{h}_{ij}\left(\mathbf{k},t\right) + 3H\,\dot{h}_{ij}\left(\mathbf{k},t\right) + \frac{k^{2}}{a^{2}}\,h_{ij}\left(\mathbf{k},t\right) = \frac{2}{M_{\mathrm{Pl}}^{2}}\Pi_{ij}^{TT}\left(\mathbf{k},t\right)$$

Mechanisms to enhance primordial GWs at small scales

We need to change the evolution eq for primordial tensor modes in inflationary background

$$\ddot{h}_{ij}(t,\,\vec{k}) + 3H\,\dot{h}_{ij}(t,\,\vec{k}) + \frac{k^2}{a^2}\,h_{ij}(t,\,\vec{k}) = 0$$

1. Include a source term

2. Include a 'mass term' (more in general, potential) leading to alternative symmetry-breaking patterns

$$\ddot{h}_{ij}(t, \vec{k}) + 3H \dot{h}_{ij}(t, \vec{k}) + \frac{k^2}{a^2} h_{ij}(t, \vec{k}) + \frac{m^2 h_{ij}(t, \vec{k})}{\cancel{4}} = 0$$

can induce blue spectrum

Mechanisms to enhance primordial GWs at small scales

We need to change the evolution eq for primordial tensor modes in inflationary background

$$\ddot{h}_{ij}(t,\,\vec{k}) + 3H\,\dot{h}_{ij}(t,\,\vec{k}) + \frac{k^2}{a^2}\,h_{ij}(t,\,\vec{k}) = 0$$

- 1. Include a source term
- 2. Include a 'mass term' (more in general, potential)
- 3. Modify kinetic terms leading to non-attractor eras

$$\ddot{h}_{ij}(t,\,\vec{k}) + 3H f(t) \dot{h}_{ij}(t,\,\vec{k}) + c_T^2(t) k^2 h_{ij}(t,\,\vec{k}) = 0$$

First possibility: source terms

 $\phi F \tilde{F}$

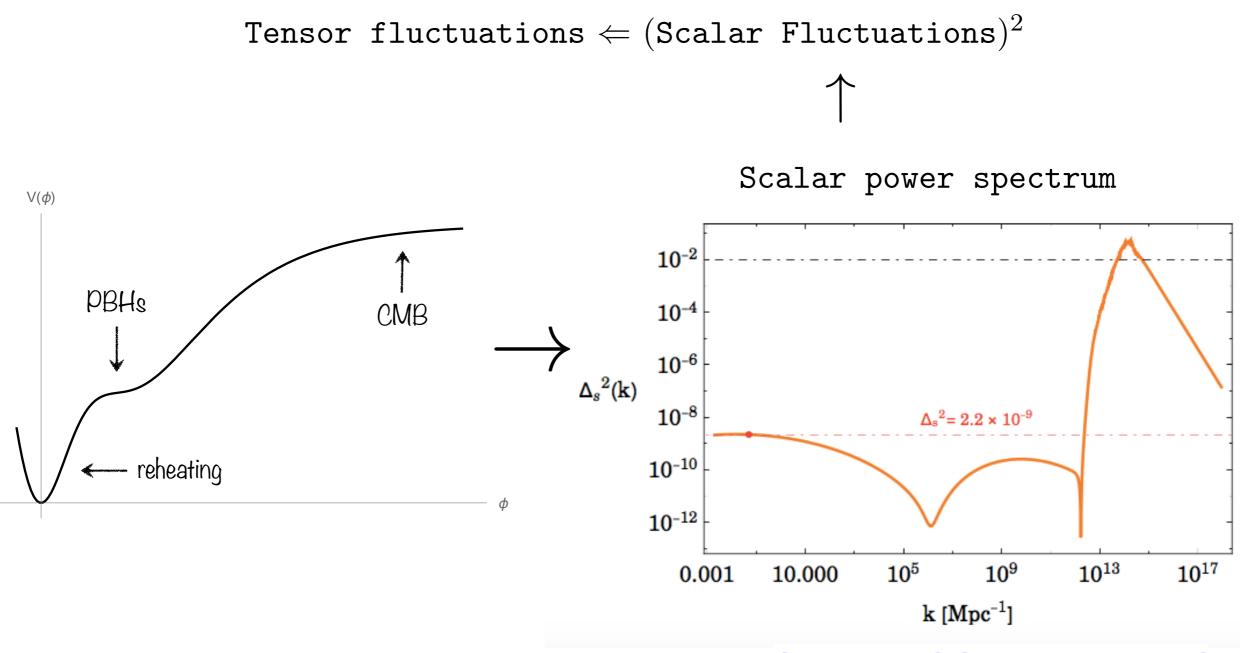
Paradigmatic example:

Transient instability of vectors feed tensor modes through anisotropic stress

 $\ddot{h}_{ij}(\mathbf{k},t) + 3H \,\dot{h}_{ij}(\mathbf{k},t) + k^2 \,h_{ij}(\mathbf{k},t) = \begin{bmatrix} \frac{2}{M_{\rm Pl}^2} \Pi_{ij}^{TT}(\mathbf{k},t) \\ \frac{2}{M_{\rm Pl}^2} \Pi_{ij}^{TT}(\mathbf{k},t) \end{bmatrix}$ 30 20 10 40 Model dependent 10⁻⁸ - Chiral spectrum μ² μ² μ² μ² L/R modes have different amplitude - $h^2 \Omega_{GW}^{total}$ LISA Cosmology Working Group $= -4\epsilon + (4\pi\xi - 6)(\epsilon - \eta)$ 10⁻¹⁴ $n_t = (4\pi\xi - 6)(\epsilon - \eta)$ astro-ph.CO 1610.0648 10-7 10⁻⁴ 0.1 100 f [Hz]

First possibility: source terms

Secondary GWs produced during radiation domination



[Kinney et al], [Garcia-Bellido et al]

First possibility: interactions among fields during inflation

Secondary GWs produced during radiation domination

Transient instabilities in scalar/vector sectors feed tensor modes at small scales

$$h''(\mathbf{k},\eta) + \frac{2}{\eta}h'(\mathbf{k},\eta) + k^2h(\mathbf{k},\eta) = S(\mathbf{k},\eta),$$
 [Ananda et al, Baumann et al]

$$\mathcal{S}(\boldsymbol{k},\tilde{\eta}) = \frac{q^{ij}(\boldsymbol{k})}{(2\pi)^{3/2}} \int d^{3}\tilde{k} \ \tilde{k}_{i}\tilde{k}_{j} \left\{ 12\Phi(\boldsymbol{k}-\tilde{\boldsymbol{k}},\tilde{\eta})\Phi(\tilde{\boldsymbol{k}},\tilde{\eta}) + \left[\tilde{\eta}\Phi(\boldsymbol{k}-\tilde{\boldsymbol{k}},\tilde{\eta}) + \frac{\tilde{\eta}^{2}}{2}\Phi'(\boldsymbol{k}-\tilde{\boldsymbol{k}},\tilde{\eta})\right]\Phi'(\tilde{\boldsymbol{k}},\tilde{\eta}) \right\}.$$

Echoes of GWs from PBH production

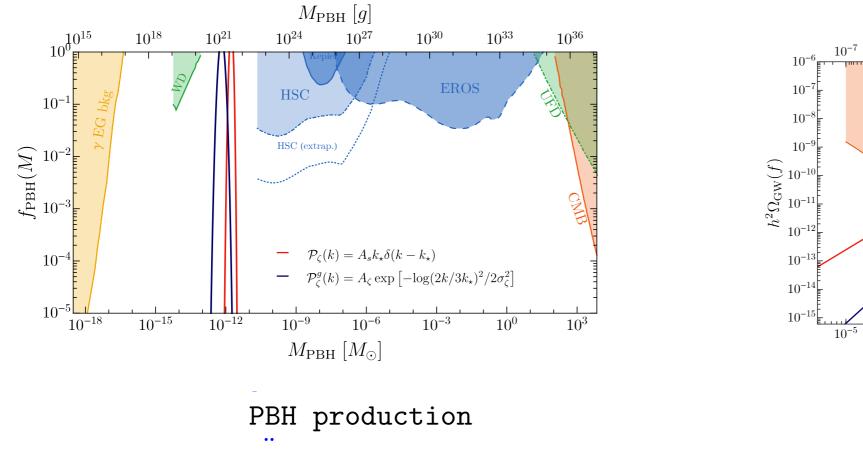
Secondary GWs produced during radiation domination

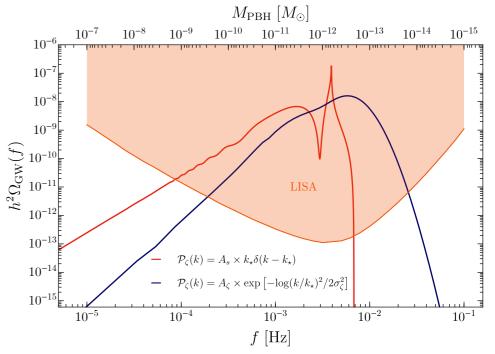
Transient instabilities in scalar/vector sectors feed tensor modes at small scales

Echoes of GWs from PBH production

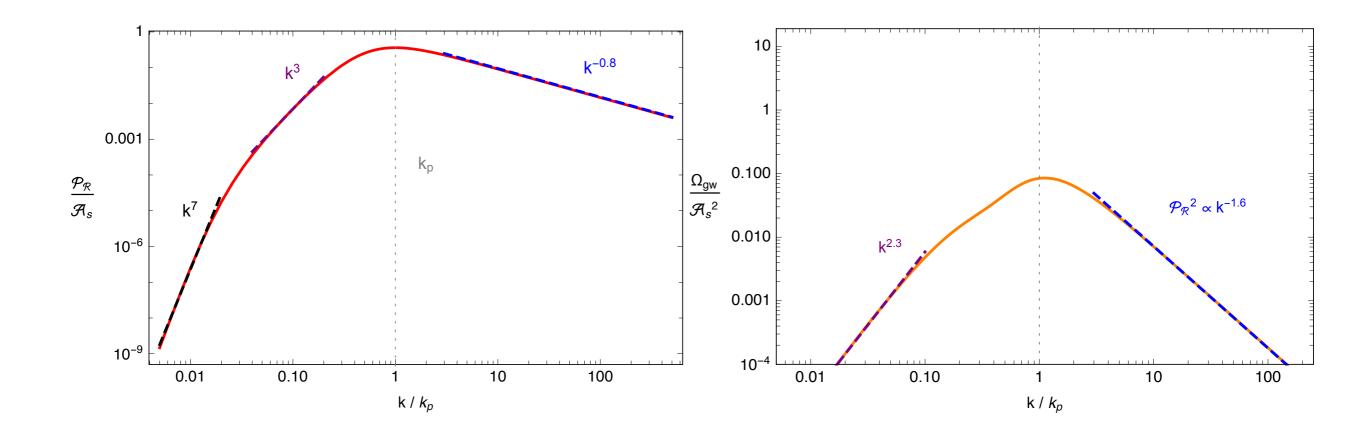
[Saito, Yokoyama] ... [Bartolo et al]

$$\mathcal{P}_{\psi}(f) = rac{\mathcal{A}}{\sqrt{2\pi}\Delta} \exp\left\{-rac{\left[\ln(f/f_{\star})
ight]^2}{2\Delta^2}
ight\}$$
 E.g. Lognormal spectrum [Pi, Sasaki]



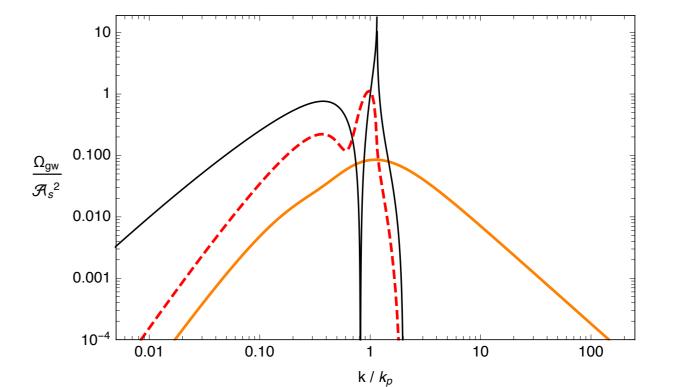


Induced SGWB at LISA frequencies The amplitude of SGWB has a characteristic profile as function of the frequency, which also depends on the scalar spectrum that sources it

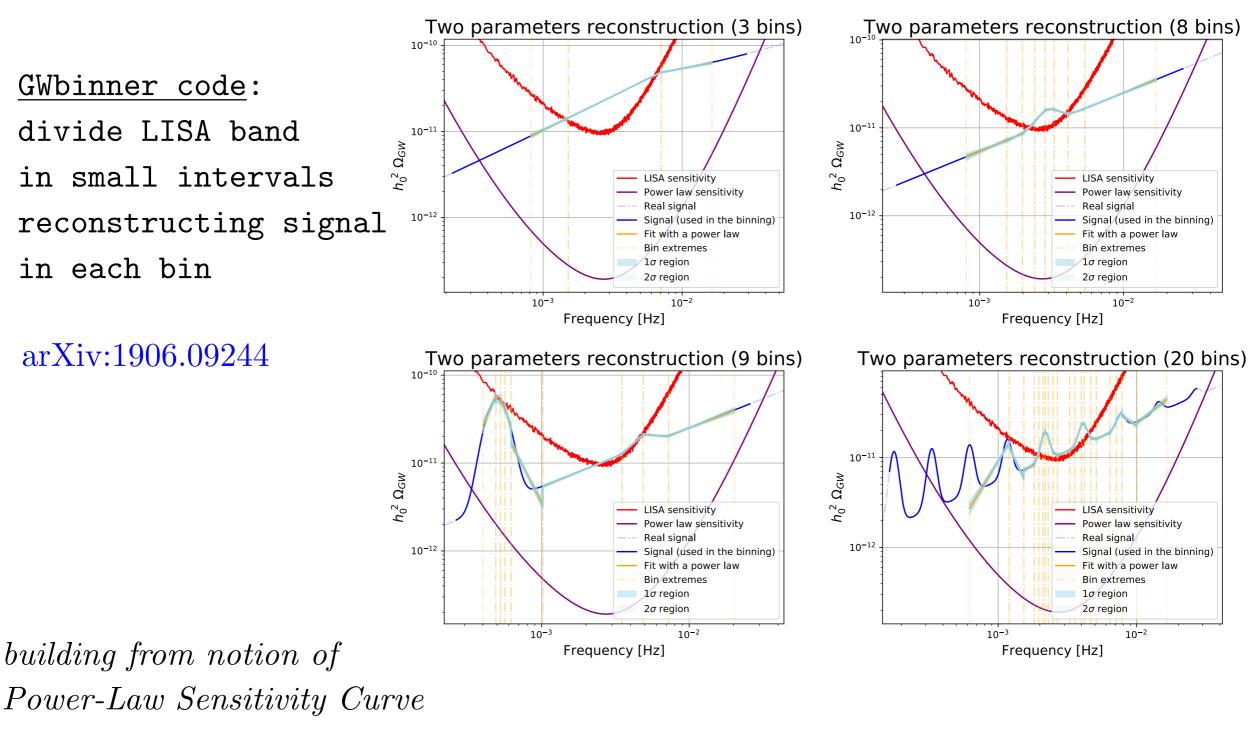


Detailed analysis in single-field inflation

[Byrnes et al] [Cai et al] [Özsoy et al]



How to distinguish among different SGWB profiles?



[Thrane, Romano]

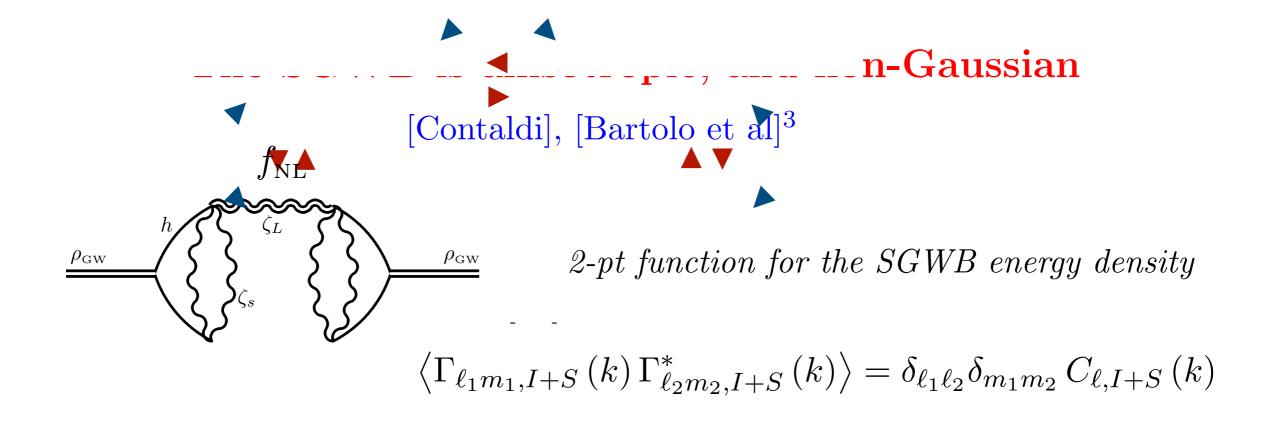
The SGWB is anisotropic, and non-Gaussian [Contaldi], [Bartolo et al]³

$$\delta_{\rm GW} \equiv \frac{\omega_{\rm GW}(\vec{x}, q, \hat{n}) - \Omega_{\rm GW}(q)}{\bar{\Omega}_{\rm GW}(q)} = \left[4 - \frac{\partial \ln \Omega_{\rm GW}(q)}{\partial \ln q}\right] \Gamma(\eta_0, \vec{x}, q, \hat{n})$$

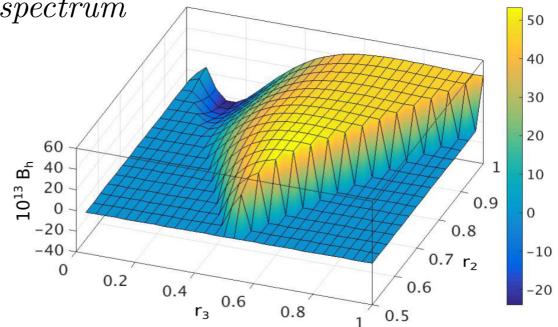
Anisotropies of SGWB

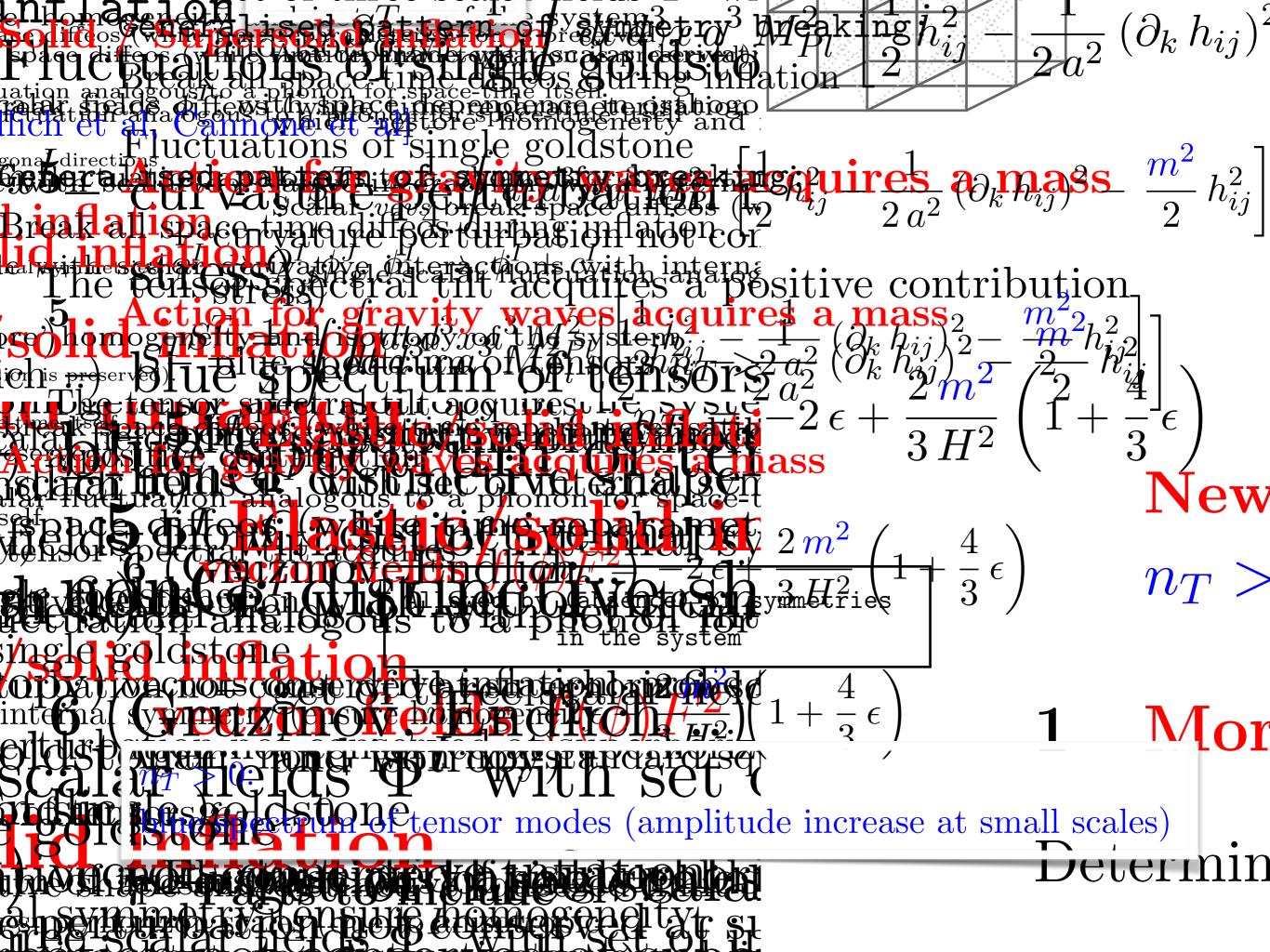
$$\Gamma\left(\eta, \vec{k}, q, \hat{n}\right) = e^{ik\mu(\eta_{\rm in} - \eta)} \Gamma\left(\eta_{\rm in}, \vec{k}, q, \hat{n}\right)$$

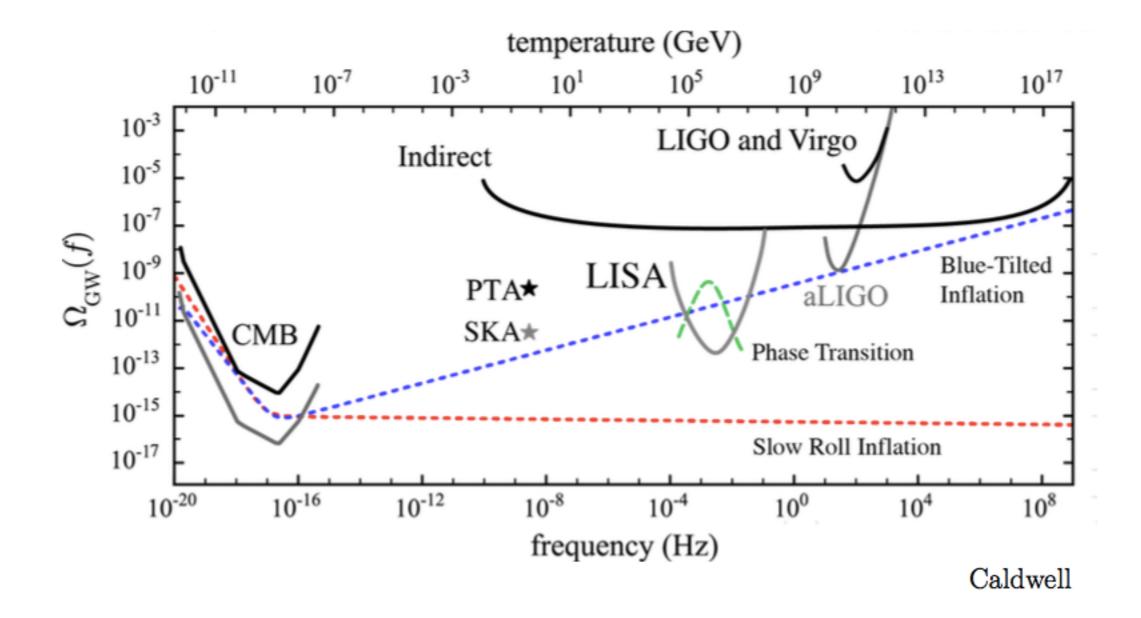
$$+ \int_{\eta_{\rm in}}^{\eta} d\eta' e^{ik\mu(\eta' - \eta)} \left[\frac{d\Psi\left(\eta', \vec{k}\right)}{d\eta'} - ik\mu\Phi\left(\eta', \vec{k}\right) - \frac{1}{2}n^i n^j \frac{\partial\chi_{ij}\left(\eta', \vec{k}\right)}{\partial\eta'} \right]$$
Induced by propagation effects
in a perturbed background



3-pt function: equilateral shape for GW bispectrum



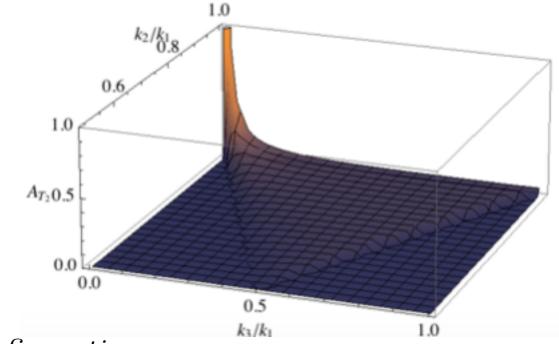




The SGWB is anisotropic, and non-Gaussian

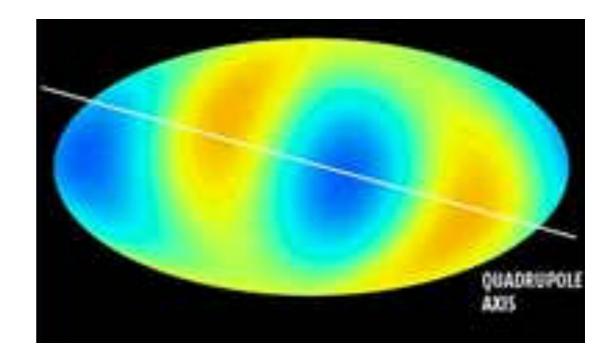
[Ricciardone, GT]

[Dimastrogiovanni et al]

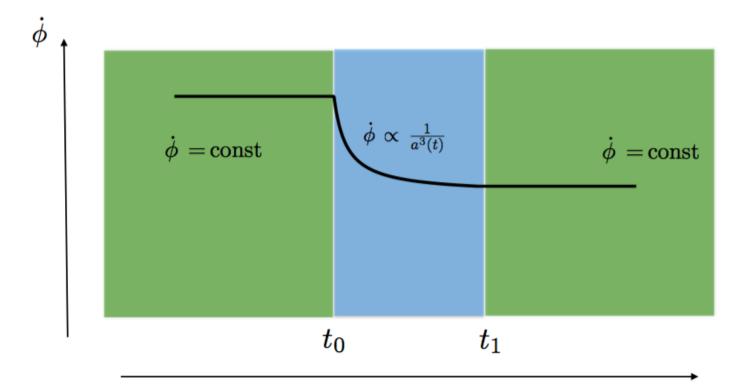


GW 3-pt function enhanced in squeezed configurations

...leads to quadrupolar anisotropy in the GW 2-pt function



Third possibilty: strong (but brief) violation of slow-roll conditions



Single-field inflation

Time

$$\mathcal{L}_{\text{tot}} = \mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5,$$

$$\mathcal{L}_2 = G_2,$$

$$\mathcal{L}_3 = -G_3 \Box \phi,$$

$$\mathcal{L}_4 = G_4 R + G_{4X} \left[(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2 \right]$$

$$\mathcal{L}_5 = G_5 G_{\mu\nu} \nabla^\mu \nabla^\nu \phi - \frac{G_{5X}}{6} \left[(\Box \phi)^3 - 3\Box \phi (\nabla_\mu \nabla_\nu \phi)^2 + 2 (\nabla_\mu \nabla_\nu \phi)^3 \right]$$

Third possibility: strong (but brief) violation of slow-roll conditions

General action for quadratic fluctuations

$$S_T = \frac{1}{8} \int dt \, d^3x \, a^3(t) \left[\mathcal{G}_T(t) \, (\partial_t h_{ij})^2 - \frac{\mathcal{F}_T(t)}{a^2(t)} \left(\vec{\nabla} h_{ij} \right)^2 \right] \,,$$

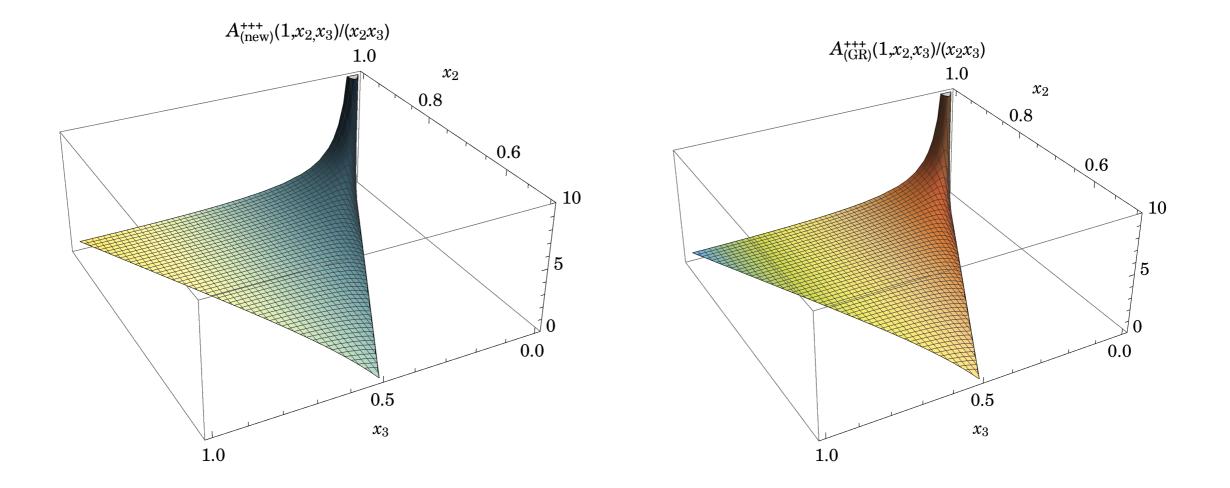
• Idea: Determine a non-attractor regime which enhance the would be decaying mode [Mylova et al]

$$h_{ij} = C_1 + C_2 \left[\int \frac{dt}{a^3 \mathcal{F}_T \mathcal{G}_T} \right]$$

[Özsoy et al]

Decaying mode can grow if $\mathcal{F}_T \mathcal{G}_T$ decreases fast in time

The SGWB is anisotropic, and non-Gaussian



 $Parametrically\ enhanced\ sqz\ nG:\ \texttt{violates}\ \texttt{Maldacena's consistency relation}$

$$S_T^{(3)} = \int \mathrm{d}t \,\mathrm{d}^3x \,a^3 \left[\frac{\mathcal{F}_T}{4a^2} \left(h_{ik} h_{jl} - \frac{1}{2} h_{ij} h_{kl} \right) \partial_k \partial_l h_{ij} + \frac{\dot{\phi} X G_{5X}}{12} \dot{h}_{ij} \dot{h}_{jk} \dot{h}_{ki} \right],$$

There are plenty of theoretical mechanisms $(\pm \text{ theoretically well motivated})$ to enhance tensor spectrum at small scales.

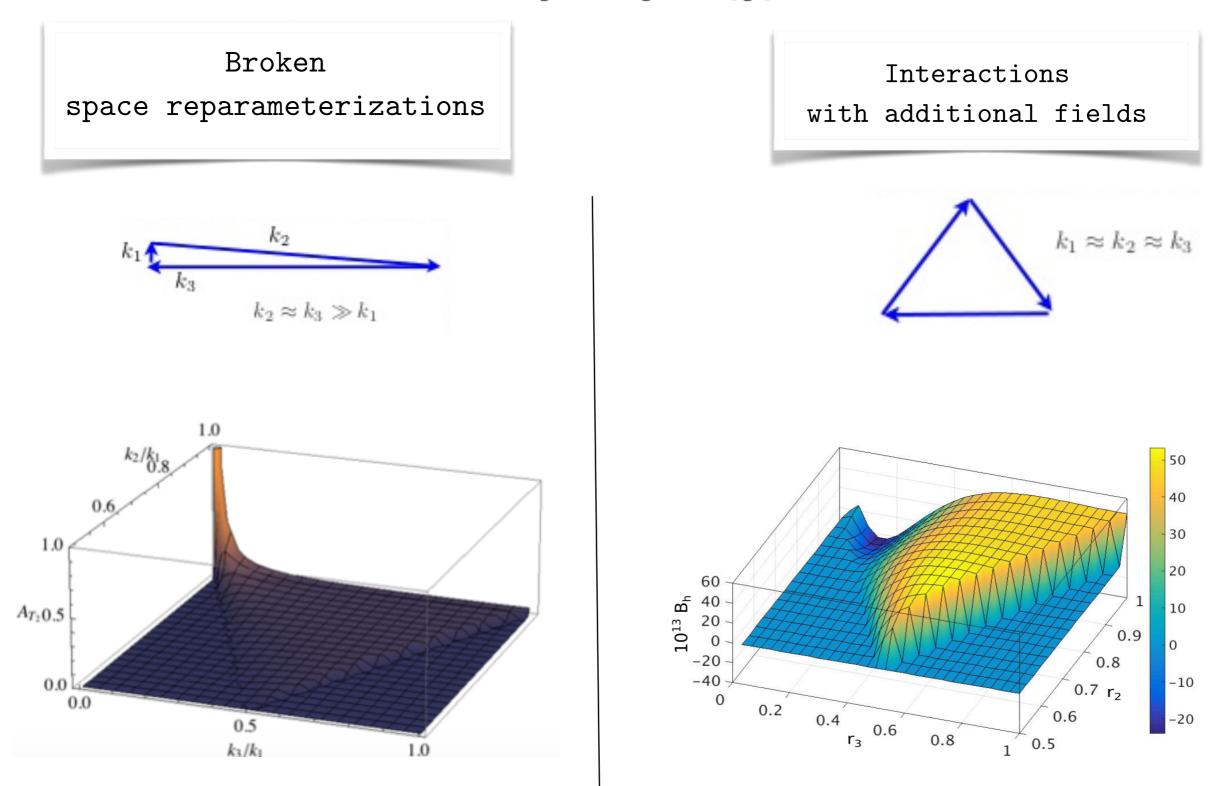
Even if $r \leq 10^{-3}$ at CMB scales

...and many possible 'smoking guns' of cosmological origin of a SGWB

- Rich profile of GW power spectrum
- Non-Gaussian signal (astro signal is Gaussian)
- Chirality

Non-Gaussianity of the SGWB

 $\langle h_{i_1j_1}^{(s_1)} h_{i_2j_2}^{(s_2)} h_{i_3j_3}^{(s_3)} \rangle$



... one can build 3-point response functions for interferometers...

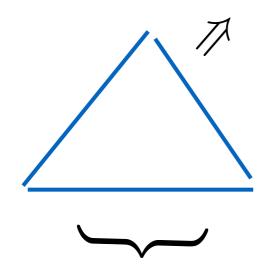
Depends on phase correlations

$$\langle s_a(t)s_b(t)s_c(t)\rangle \Leftrightarrow R_{abc}^{(\lambda_1\lambda_2\lambda_3)} \langle h_{im}^{(\lambda_1)}(t)h_{mj}^{(\lambda_2)}(t)h_{ji}^{(\lambda_3)}(t)\rangle$$

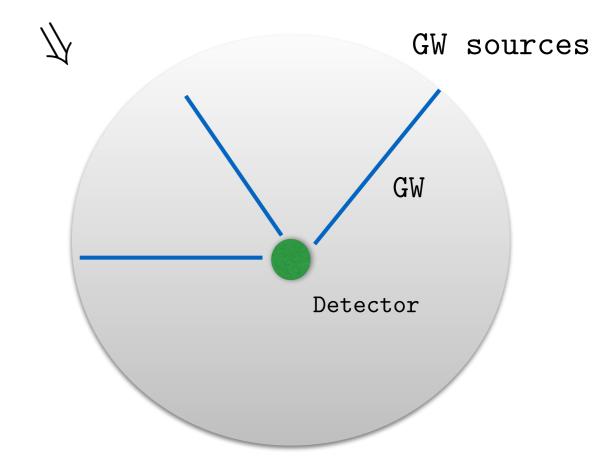
Quantifies how 3-pt correlators \Leftrightarrow Depends on the intrinsic of the measured signal \Leftrightarrow 3-pt correlator of GWs

Momentum conservation implies that GW momenta form a closed triangle

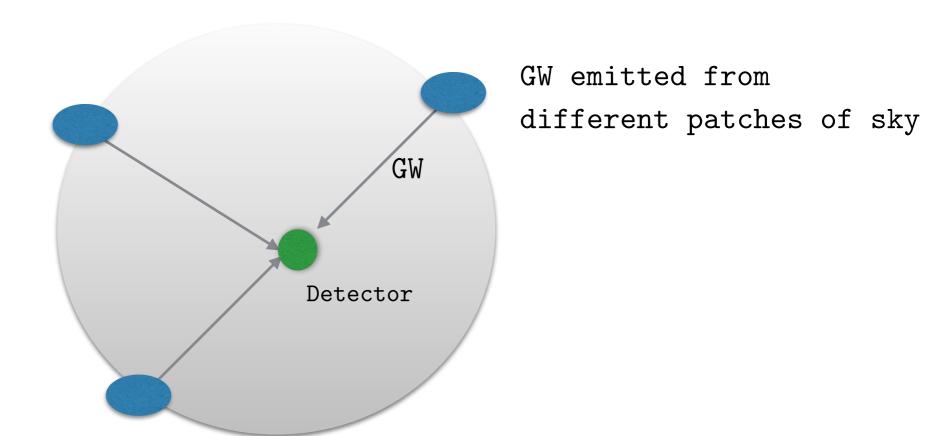
Direction of triangle side \rightarrow GW directions



Size of triangle side \rightarrow GW frequency

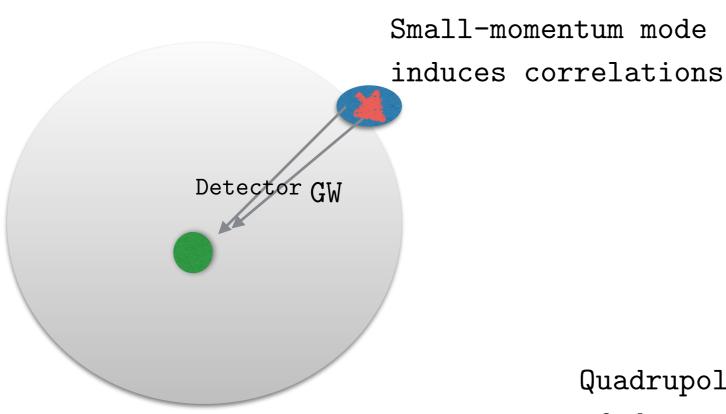


Problem: GWs from different directions tend to 'Gaussianize' the signal [Allen], [Adshead, Lim] [Bartolo et al.]



Phase decorrelations due to propagation in a perturbed universe [Bartolo et al.]

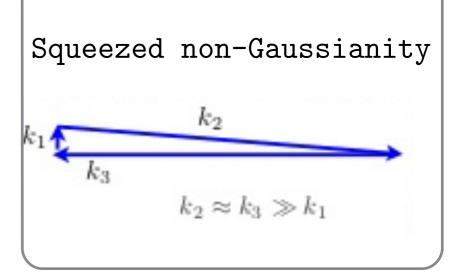
Way out: measure correlators of GWs originating from the same patch



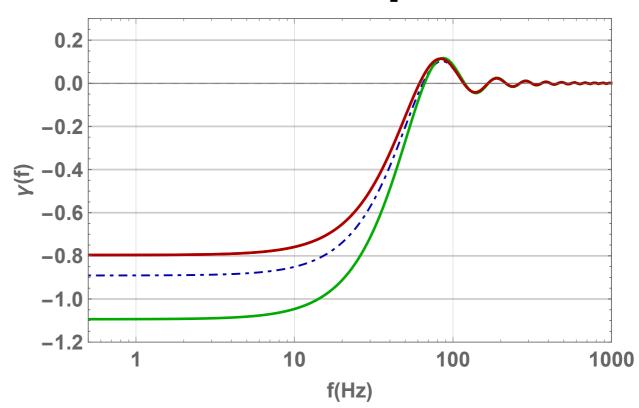
PLADEUPOLE AXS

[Dimastrogiovanni et al]

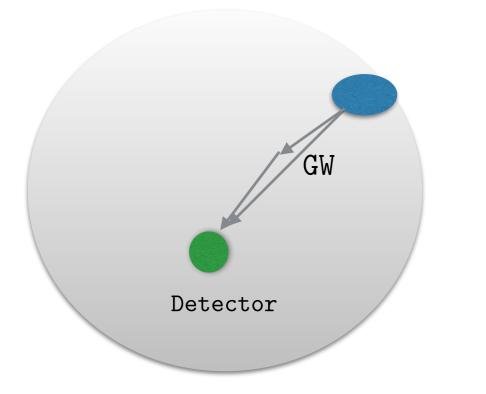
First

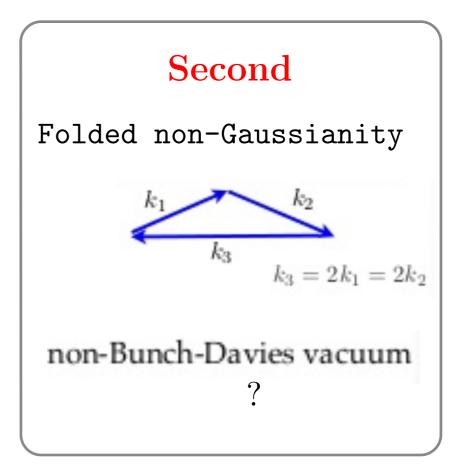


Quadrupolar modulation of detector overlap function

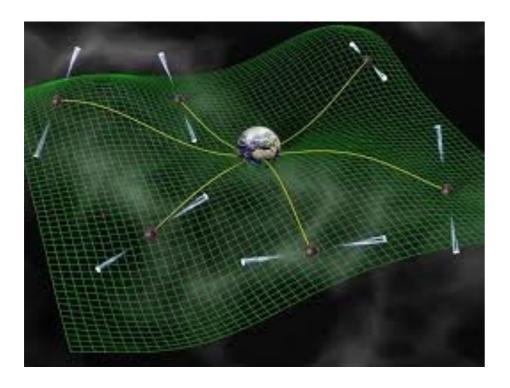


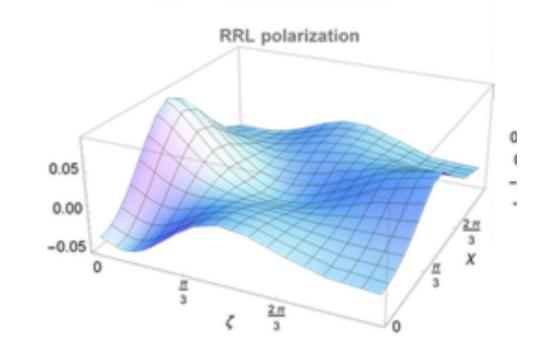
Way out: measure correlators of GWs originating from the same patch





[Powell, GT] Use PTA detectors

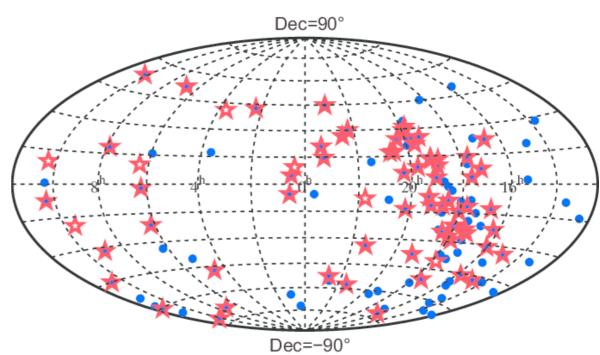




Use pulsar positions from IPTA collaboration

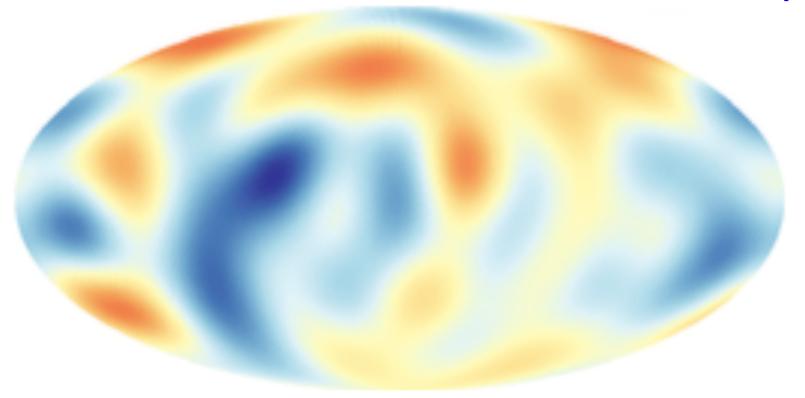
$$\text{SNR}_{\text{opt}} = \sqrt{4T} \left[\sum_{\lambda_1 \lambda_2 \lambda_3} \frac{\int_0^\infty df_A df_B \left(\mathbf{r}^{\lambda_1 \lambda_2 \lambda_3} B^{\lambda_1 \lambda_2 \lambda_3} (f_A, f_B, \hat{n}_\star) \right)^2}{S_n^3} \right]^{\frac{1}{2}}$$

	Case 1	Case 2
\mathbf{r}^{RRR}	20.17	0.58
\mathbf{r}^{RRL}	19.58	0.99
\mathbf{r}^{RLR}	19.58	0.99
\mathbf{r}^{STT}	38.11	0.28
\mathbf{r}^{SST}	119.49	1.96
r^{SSS}	168.99	9.12



Another way out: study SGWB anisotropies...

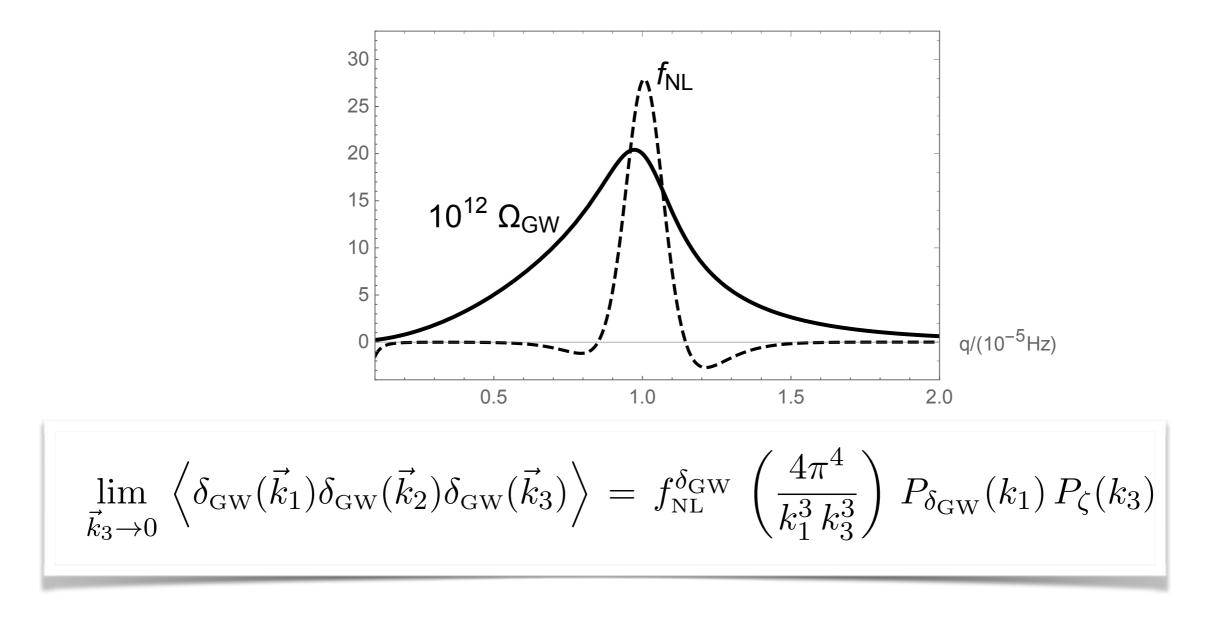
[Renzini et al]



...where issues of phase decorrelations do not apply [Bartolo et al]

$$\left\langle \prod_{i=1}^{3} \Gamma_{\ell_{i}m_{i},I}\left(q\right) \right\rangle = \mathcal{G}_{\ell_{1}\ell_{2}\ell_{3}}^{m_{1}m_{2}m_{3}} \int_{0}^{\infty} dr \, r^{2} \prod_{i=1}^{3} \left[\frac{2}{\pi} \int dk_{i} \, k_{i}^{2} j_{\ell_{i}}\left(k_{i}\left(\eta_{0}-\eta_{\mathrm{in}}\right)\right) \, j_{\ell_{i}}\left(k_{i} \, r\right) \right] \, B_{I}\left(q, \, k, \, k', \, k''\right)$$

Example: squeezed limit of SGWB anisotropies (single-field inflation)



$$\begin{split} f_{\rm NL}^{\delta_{\rm GW}} &= -\frac{\partial \ln \bar{f}(q)}{\partial \ln q} \ T_S(\eta, \, k_3, \, \mu_3) \left[2 \frac{\partial \ln P_{\zeta}}{\partial \ln k_1} + 2\beta_q(\eta) \frac{\partial \ln q}{\partial \ln \bar{f}(q)} \frac{\partial^2 \ln \bar{f}(q)}{\partial (\ln q)^2} + \epsilon(\eta) \frac{\partial \ln |T_S|^2}{\partial \eta} + \frac{\partial \ln |T_S|^2}{\partial \ln k_1} + \beta_n(\eta) \frac{\partial \ln |T_S|^2}{\partial \ln \mu_1} \right], \end{split}$$

GW from inflation – a challenge for observational cosmology

The inflationary paradigm predicts the existence of a stochastic background of GWs from inflation but many of its properties depend on the inflationary model

• Most of the effort concentrates on CMB B-modes...

• ... but there're arising well motivated theoretical scenarios predicting primordial GWs at interferometer scales – a possibility worth exploring!

