SGWB characterization with LISA

Mauro Pieroni

mpieroni@ic.ac.uk

GW primordial cosmology workshop

May 17, 2021

PCA reconstruction

Outline

Introduction

- Signals at LISA
- Data generation and pre-processing
- 2 Binned reconstruction (SGWBinner)
 - Methodology
 - Some examples
- 3 PCA reconstruction
 - Methodology
 - Some examples

Introduction • 0 0 0 0 0 0 0 0	Binned reconstruction (SGWBinner)	PCA reconstruction	Conclusions
Signals at LISA			
SGWBs	at GW detectors		

The data \tilde{d} (in frequency space) can be expressed as

$$\tilde{d} = \tilde{s} + \tilde{n}$$

For an isotropic SGWB $\longrightarrow \langle h_{\lambda}(\vec{k}) h_{\lambda'}^{*}(\vec{k'}) \rangle = P_{h}^{\lambda}(k)(2\pi)^{3}\delta_{\lambda\lambda'}\delta(\vec{k}-\vec{k'})$

Assuming $\langle \tilde{s}\tilde{n} \rangle = 0$ and Gaussian signal

$$\left|\left\langle \tilde{\mathbf{d}}^{2}\right\rangle = \left\langle \tilde{\mathbf{s}}^{2}\right\rangle + \left\langle \tilde{\mathbf{n}}^{2}\right\rangle = \mathcal{R} \, \mathbf{P}_{h}^{\lambda} + \mathbf{N} \equiv \mathcal{R} \left[\mathbf{P}_{h}^{\lambda} + \mathbf{S}_{n}\right]$$

where we have introduced

- The response function of the instrument $\mathcal R$
- The noise power spectrum N
- The (square of the) Strain sensitivity S_n (in 1/Hz)

Introduction ••••••	Binned reconstruction (SGWBinner)	PCA reconstruction	Conclusions
Signals at LISA			

SGWBs at GW detectors

The data \tilde{d} (in frequency space) can be expressed as

$$\tilde{d} = \tilde{s} + \tilde{n}$$

For an isotropic SGWB $\longrightarrow \langle h_{\lambda}(\vec{k}) h_{\lambda'}^{*}(\vec{k'}) \rangle = P_{h}^{\lambda}(k)(2\pi)^{3}\delta_{\lambda\lambda'}\delta(\vec{k}-\vec{k'})$

Assuming $\langle \tilde{s}\tilde{n} \rangle = 0$ and Gaussian signal

$$\left|\left\langle \tilde{\mathbf{d}}^{2}\right\rangle = \left\langle \tilde{\mathbf{s}}^{2}\right\rangle + \left\langle \tilde{\mathbf{n}}^{2}\right\rangle = \mathcal{R} \, \mathbf{P}_{h}^{\lambda} + \mathbf{N} \equiv \mathcal{R} \left[\mathbf{P}_{h}^{\lambda} + \mathbf{S}_{n}\right]$$

where we have introduced

- The response function of the instrument \mathcal{R}
- The noise power spectrum N
- The (square of the) Strain sensitivity S_n (in 1/Hz)

In order to compare with cosmological predictions it's customary to introduce

$$\Omega_n(f) = \frac{4\pi^2}{3H_0^2} f^3 S_n(f) , \quad \text{and} \quad \Omega_{\text{GW}} \equiv \frac{1}{3H_0^2 M_\rho^2} \frac{\partial \rho_{\text{GW}}}{\partial \ln f} = \frac{4\pi^2}{3H_0^2} f^3 \sum_{\lambda} P_h^{\lambda}$$

where $H_0 \simeq 3.24 \times 10^{-18} h_0 \,\mathrm{Hz}$ is the Hubble constant today.

Binned reconstruction (SGWBinner)

PCA reconstruction

Conclusions

Signals at LISA

Laser Interferometer Space Antenna

Few details on LISA:

- First direct GW detector in space
- Constellation of three satellites
- 2.5 million km arm lengths
- Peak sensitivity 10⁻² ÷ 10⁻³Hz
- Three correlated interferometers (XYZ basis)
- two independent detectors (AET basis)
- Expected launch in 2034
- Operating for 4yrs (nominal)

Very interesting for cosmology since we can:

- Measure *H*₀ (see 1601.07112)
- Test modified gravity (see1906.01593)
- (Hopefully) detect and characterize SGWBs! (This talk!)

Introduction	Binned reconstruction (SGWBinner)	PCA reconstruction	Conclusions
Signals at LISA			

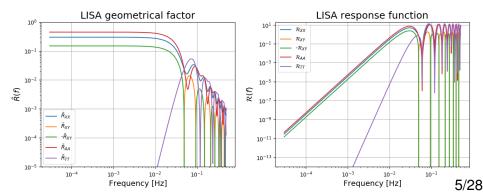
LISA response function

For an isotropic and non-chiral spectrum we get (see 2009.11845):

$$\left\langle \Delta F_{i(jk)}^{TDI} \Delta F_{l(mn)}^{TDI}
ight
angle = \int \mathrm{d}k \, P_h(k) \mathcal{R}_{ij}(k) \,, \qquad \mathcal{R}_{ij}(k) \equiv 4 \, (2\pi k L)^2 |W(kL)|^2 \tilde{R}_{il(jk)(mn)}(k) \,.$$

where $\mathcal{R}_{ij}(k)$ is the LISA response function.

For XYZ/AET (AET is noise diagonal) combinations we get:



Introduction	Binned reconstruction (SGWBinner)	PCA reconstruction	Conclusions
Signals at LISA			

The noise model I

Two analytical approximations for acceleration and interferometric noise:

$$P_{acc}(f,A) = A^{2} \cdot 10^{-30} \cdot \left[1 + \left(\frac{4 \cdot 10^{-4}}{f}\right)^{2}\right] \left[1 + \left(\frac{f}{8 \cdot 10^{-3}}\right)^{4}\right] \left(\frac{1}{2\pi f}\right)^{4} \left(\frac{2\pi f}{c}\right)^{2},$$

$$P_{IMS}(f,P) = P^{2} \cdot 10^{-24} \cdot \left[1 + \left(\frac{2 \cdot 10^{-3}}{f}\right)^{4}\right] \left(\frac{2\pi f}{c}\right)^{2}.$$

The power spectral densities are $(L = 2.5 \times 10^9 \text{m is the arm length})$: $P_{PSD}^{\chi\chi}(f) = 16 \sin^2\left(\frac{2\pi fL}{c}\right) \left\{ P_{IMS}(f,P) + \left[3 + \cos\left(\frac{4\pi fL}{c}\right)\right] P_{acc}(f,A) \right\},$ $P_{PSD}^{\chi\gamma}(f) = -8 \sin^2\left(\frac{2\pi fL}{c}\right) \cos\left(\frac{2\pi fL}{c}\right) \left\{ P_{IMS}(f,P) + 4P_{acc}(f,A) \right\},$

which for the TT combination gives:

$$\begin{aligned} \mathcal{P}_{PSD}^{TT}(f, \mathcal{A}, \mathcal{P}) &= 16\sin^2\left(\frac{2\pi fL}{c}\right) \left\{ 2\left[1 - \cos\left(\frac{2\pi fL}{c}\right)\right]^2 \mathcal{P}_{acc}(f, \mathcal{A}) + \left[1 - \cos\left(\frac{2\pi fL}{c}\right)\right] \mathcal{P}_{IMS}(f, \mathcal{P}) \right\} \right. \end{aligned}$$

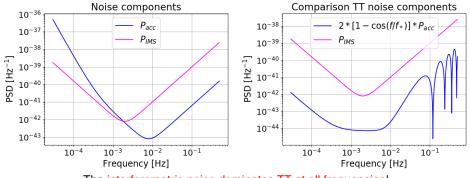
6/28

Introduction	Binned reconstruction (SGWBinner)	PCA reconstruction	Conclusions

The noise model II

At low frequencies this becomes $(f_* \equiv (2\pi L/c)^{-1} \simeq 0.019 \text{ Hz})$:

$$\mathcal{P}_{PSD}^{TT}(f, \mathcal{A}, \mathcal{P}) \simeq 8 \left(rac{f}{f_*}
ight)^2 \sin^2\left(rac{f}{f_*}
ight) \left[\left(rac{f}{f_*}
ight)^2 \mathcal{P}_{acc}(f, \mathcal{A}) + \mathcal{P}_{IMS}(f, \mathcal{P})
ight] ,$$

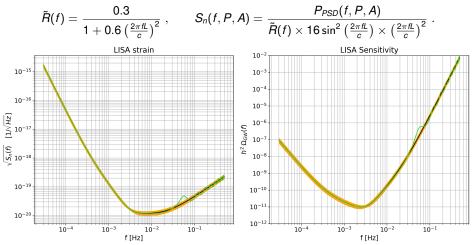


The interferometric noise dominates TT at all frequencies!

Introduction 00000000	Binned reconstruction (SGWBinner)	PCA reconstruction	Conclusions
Signals at LISA			

Analytical vs numerical

An approximation of the response function and the strain sensitivity are:



Central values in black (analytical) / green (numerical) ±20% in orange

8/28

Introduction	Binned reconstruction (SGWBinner)	PCA reconstruction	Conclusions
Data generation and	pre-processing		
Data ger	neration		

Assume signal and noise (Ω units) to be Gaussian distributed The spectra (Ω_{GW} and Ω_n) quantify the variance of fluctuations

$$ilde{\mathbf{s}}_{c}(f_{i}) = \left| egin{array}{c} G(0,\sqrt{\Omega_{\mathrm{GW}}(f_{i})}) + i \ G(0,\sqrt{\Omega_{\mathrm{GW}}(f_{i})}) \ \sqrt{2} \end{array}
ight.$$
 $ilde{\mathbf{n}}_{c}(f_{i}) = \left| egin{array}{c} G(0,\sqrt{\Omega_{n}(f_{i})}) + i \ G(0,\sqrt{\Omega_{n}(f_{i})}) \ \sqrt{2} \end{array}
ight|$

For each data segment and frequency we generate a gaussian realization.

Introduction	Binned reconstruction (SGWBinner)	PCA reconstruction	Conclusions
Data generation and	pre-processing		
Data ger	neration		

Assume signal and noise (Ω units) to be Gaussian distributed The spectra (Ω_{GW} and Ω_n) quantify the variance of fluctuations

$$ilde{\mathbf{s}}_{c}(f_{i}) = egin{array}{c} G(0,\sqrt{\Omega_{\mathrm{GW}}(f_{i})}) + i \ G(0,\sqrt{\Omega_{\mathrm{GW}}(f_{i})}) \ \sqrt{2} \ egin{array}{c} ilde{\mathbf{n}}_{c}(f_{i}) = egin{array}{c} G(0,\sqrt{\Omega_{n}(f_{i})}) + i \ G(0,\sqrt{\Omega_{n}(f_{i})}) \ \sqrt{2} \ egin{array}{c} ilde{\mathbf{n}}_{c}(f_{i}) = egin{array}{c} G(0,\sqrt{\Omega_{n}(f_{i})}) + i \ G(0,\sqrt{\Omega_{n}(f_{i})}) \ \sqrt{2} \ egin{array}{c} ilde{\mathbf{n}}_{c}(f_{i}) = egin{array}{c} G(0,\sqrt{\Omega_{n}(f_{i})}) + i \ G(0,\sqrt{\Omega_{n}(f_{i})}) \ \sqrt{2} \ egin{array}{c} ilde{\mathbf{n}}_{c}(f_{i}) = egin{array}{c} G(0,\sqrt{\Omega_{n}(f_{i})}) + i \ G(0,\sqrt{\Omega_{n}(f_{i})}) \ \sqrt{2} \ egin{array}{c} ilde{\mathbf{n}}_{c}(f_{i}) = egin{array}{c} G(0,\sqrt{\Omega_{n}(f_{i})}) + i \ G(0,\sqrt{\Omega_{n}(f_{i})}) \ \sqrt{2} \ egin{array}{c} \ ilde{\mathbf{n}}_{c}(f_{i}) = egin{array}{c} G(0,\sqrt{\Omega_{n}(f_{i})}) + i \ G(0,\sqrt{\Omega_{n}(f_{i})}) \ \sqrt{2} \ egin{array}{c} \ ilde{\mathbf{n}}_{c}(f_{i}) = egin{array}{c} G(0,\sqrt{\Omega_{n}(f_{i})}) + i \ G(0,\sqrt{\Omega_{n}(f_{i})}) \ \sqrt{2} \ egin{array}{c} \ ilde{\mathbf{n}}_{c}(f_{i}) = egin{array}{c} G(0,\sqrt{\Omega_{n}(f_{i})}) + i \ G(0,\sqrt{\Omega_{n}(f_{i})}) \ \Wegin{array}{c} \ ilde{\mathbf{n}}_{c}(f_{i}) = egin{array}{c} \ ilde{\mathbf{n}}_{c}(f_{i}) & \Wegin{array}{c} \ ilde{\mathbf{n}}_{c}(f_{i}) & \Wegin{array}{c}$$

For each data segment and frequency we generate a gaussian realization.

Given that:

- LISA will be operating for 4yrs (75% efficiency)
- We choose data segments of roughly 12 days

we conclude that:

- Roughly 95 independent measurements at each frequency.
- The resolution of the detector is roughly 10⁻⁶Hz

Binned reconstruction (SGWBinner)

PCA reconstruction

Conclusions

Data generation and pre-processing

Data pre-processing and likelihood

Starting from $D_c(f_i)$ (our data), defined as:

$$\mathcal{D}_c(f_i)\equiv \langle ilde{d}_c^2(f_i)
angle = \langle (ilde{s}_c(f_i)+ ilde{n}_c(f_i))^2
angle = \langle ilde{s}_c^2(f_i)
angle + \langle ilde{n}_c^2(f_i)
angle \;.$$

we can reduce the complexity of the problem by performing two operations:

Binned reconstruction (SGWBinner)

PCA reconstruction

Conclusions

Data generation and pre-processing

Data pre-processing and likelihood

Starting from $D_c(f_i)$ (our data), defined as:

$$\mathcal{D}_c(f_i) \equiv \langle ilde{\mathcal{d}}_c^2(f_i)
angle = \langle (ilde{m{s}}_c(f_i) + ilde{m{n}}_c(f_i))^2
angle = \langle ilde{m{s}}_c^2(f_i)
angle + \langle ilde{m{n}}_c^2(f_i)
angle \;.$$

we can reduce the complexity of the problem by performing two operations:

• We average over the (95) data segments:

This leaves us with some $D(f_i)$ (the averaged data) and an estimate of the error $\sigma(f_i)$ (the standard deviation or the data).

Binned reconstruction (SGWBinner)

PCA reconstruction

Conclusions

Data generation and pre-processing

Data pre-processing and likelihood

Starting from $D_c(f_i)$ (our data), defined as:

$$\mathcal{D}_c(f_i) \equiv \langle ilde{\mathcal{d}}_c^2(f_i)
angle = \langle (ilde{m{s}}_c(f_i) + ilde{m{n}}_c(f_i))^2
angle = \langle ilde{m{s}}_c^2(f_i)
angle + \langle ilde{m{n}}_c^2(f_i)
angle \;.$$

we can reduce the complexity of the problem by performing two operations:

• We average over the (95) data segments:

This leaves us with some $D(f_i)$ (the averaged data) and an estimate of the error $\sigma(f_i)$ (the standard deviation or the data).

• We coarse grain the data:

i.e. from the initial linear 10^{-6} Hz spacing (~ 5 × 10⁵ points) \rightarrow we go to some final (and less dense) set of frequencies f_i . This leaves us with the final data set D_i and errors σ_i . Binned reconstruction (SGWBinner)

PCA reconstruction

Conclusions

Data generation and pre-processing

Data pre-processing and likelihood

Starting from $D_c(f_i)$ (our data), defined as:

$$\mathcal{D}_c(f_i) \equiv \langle ilde{\mathcal{d}}_c^2(f_i)
angle = \langle (ilde{s}_c(f_i) + ilde{n}_c(f_i))^2
angle = \langle ilde{s}_c^2(f_i)
angle + \langle ilde{n}_c^2(f_i)
angle \;.$$

we can reduce the complexity of the problem by performing two operations:

• We average over the (95) data segments:

This leaves us with some $D(f_i)$ (the averaged data) and an estimate of the error $\sigma(f_i)$ (the standard deviation or the data).

• We coarse grain the data:

i.e. from the initial linear 10^{-6} Hz spacing (~ 5 × 10^{5} points) \rightarrow we go to some final (and less dense) set of frequencies f_i . This leaves us with the final data set D_i and errors σ_i .

Finally we assume the data to be described by the likelihood:

$$\mathcal{L}\left(\vec{\theta},\vec{n}\right) \propto \exp\left[-\frac{N_{chunks}}{2}\sum_{i}\left(\frac{D_{i}-h^{2}\Omega_{GW}\left(f_{i},\vec{\theta}\right)-h^{2}\Omega_{n}\left(f_{i},\vec{n}\right)}{\sigma_{i}}\right)^{2}\right]$$

with *i* labeling the data points and Ω_{GW} , Ω_n models for signal and noise.

Binned reconstruction (SGWBinner)

PCA reconstruction

Conclusions

Methodology

SGWBinner algorithm

Based on two LISA COSWG projects:

- 9 1906.09244: C. Caprini, D. Figueroa, R. Flauger, M.P., G. Nardini, M. Peloso, A. Ricciardone, G. Tasinato
- 2009.11845: R. Flauger, N. Karnesis, G. Nardini, M. P., A. Ricciardone, J. Torrado

We look for best approximation of the signal with a multi-PL

$$h^{2}\Omega_{\mathrm{GW}}\left(f,\,\vec{\theta}\right) = \sum_{i} 10^{\alpha_{i}} \left(\frac{f}{\sqrt{f_{\mathrm{min},i} f_{\mathrm{max},i}}}\right)^{p_{i}} \,\Theta\left(f-f_{\mathrm{min},i}\right) \,\Theta\left(f_{\mathrm{max},i}-f\right) \,.$$

where Θ is the Heaviside step function.

N bins \rightarrow 4*N* ($f_{\min,i}, f_{\max,i}, \alpha_i, p_i$) +2*N* (noise) parameters.

Binned reconstruction (SGWBinner)

PCA reconstruction

Conclusions

Methodology

SGWBinner algorithm

Based on two LISA COSWG projects:

- 9 1906.09244: C. Caprini, D. Figueroa, R. Flauger, M.P., G. Nardini, M. Peloso, A. Ricciardone, G. Tasinato
- 2009.11845: R. Flauger, N. Karnesis, G. Nardini, M. P., A. Ricciardone, J. Torrado

We look for best approximation of the signal with a multi-PL

$$h^{2}\Omega_{\mathrm{GW}}\left(f,\,\vec{\theta}\right) = \sum_{i} 10^{\alpha_{i}} \left(\frac{f}{\sqrt{f_{\mathrm{min},i} f_{\mathrm{max},i}}}\right)^{p_{i}} \,\Theta\left(f-f_{\mathrm{min},i}\right) \,\Theta\left(f_{\mathrm{max},i}-f\right) \,.$$

where Θ is the Heaviside step function.

N bins \rightarrow 4*N* ($f_{\min,i}, f_{\max,i}, \alpha_i, p_i$) +2*N* (noise) parameters.

The basic procedure is composed of four steps

- Build a robust prior for the noise model (to force bin-by-bin measurements)
- 2 Divide the frequency range in a set of bins and reconstruct the signal
- Merge as many bins as possible (to avoid overfitting)
- Oefine a procedure to compute the error on the reconstruction
- Final MCMC run with common noise parameters

Few more detail on steps 1 and 3 ...

Introduction

Binned reconstruction (SGWBinner)

PCA reconstruction

Conclusions

Methodology

Characterizing the noise

Bad noise reconstruction

- No detection/false detections
- Bad parameter reconstruction

Some useful observations:

- Noise parameters are correlated over the full frequency range!
- Noise is expected to dominate at small and at large frequencies
- Noise dominates over signal in TT

Introduction

Binned reconstruction (SGWBinner)

PCA reconstruction

Conclusions

Methodology

Characterizing the noise

Bad noise reconstruction

- No detection/false detections
- Bad parameter reconstruction

Some useful observations:

- Noise parameters are correlated over the full frequency range!
- Noise is expected to dominate at small and at large frequencies
- Noise dominates over signal in TT

As a consequence (single channel version):

- We divide the range into three bands (small and large frequencies + a central band)
- Estimate signal and noise parameters in the external bands
- Use this as a prior for the measurements in the bins in the central part

As a consequence (three channels version):

- Estimate signal and noise parameters in TT
- Use this as a prior for the AA/EE.

Binned reconstruction (SGWBinner)

PCA reconstruction

Conclusions

Methodology

Criterion for merging

Two motivations for merging:

- Larger N means smaller bins which implies larger errors
- For large values of *N*, the reconstruction with *N* bins (*i.e.* 2*N* parameters) may overfit the signal

Typically reducing the number *N* of bins may improve the analysis!

Binned reconstruction (SGWBinner)

PCA reconstruction

Conclusions

Methodology

Criterion for merging

Two motivations for merging:

- Larger N means smaller bins which implies larger errors
- For large values of *N*, the reconstruction with *N* bins (*i.e.* 2*N* parameters) may overfit the signal

Typically reducing the number *N* of bins may improve the analysis!

AIC for model comparison we use:

$$AIC = -2\ln \mathcal{L} + 2k = \chi^2 + 2k$$

For a couple of consecutive bins (i, i + 1) we can compute

$$\begin{split} \Delta \, AIC = AIC_{after merging} - AIC_{before merging} = \chi^2_{after merging} - \chi^2_{before merging} - 2 \, k_{1\text{-bin}} \\ \text{According to the AIC definition:} \end{split}$$

 $\Delta AIC < 0 \longrightarrow$ It is convenient to merge the two bins

Binned reconstruction (SGWBinner)

PCA reconstruction

Conclusions

Methodology

A more accurate likelihood

A Gaussian likelihood would give a systematic low bias!

(astro-ph/9808264, astro-ph/0205387, astro-ph/0302218, 0801.0554)

Consider the Gaussian likelihood:

$$\ln \mathcal{L}_{G}\left(\vec{\theta},\vec{n}\right) \propto -\frac{N_{chunks}}{2} \sum_{i,j} \sum_{k} w_{ij}^{(k)} \left(\frac{D_{ij}^{(k)} - h^{2}\Omega_{GW}\left(f_{ij}^{(k)},\vec{\theta}\right) - h^{2}\Omega_{n}\left(f_{ij}^{(k)},\vec{n}\right)}{h^{2}\Omega_{GW}\left(f_{ij}^{(k)},\vec{\theta}\right) + h^{2}\Omega_{n}\left(f_{ij}^{(k)},\vec{n}\right)}\right)^{2}$$

and the Lognormal likelihood:

$$\ln \mathcal{L}_{LN}\left(\vec{\theta},\vec{n}\right) \propto -\frac{N_{chunks}}{2} \sum_{i,j} \sum_{k} w_{ij}^{(k)} \ln^2 \left(\frac{h^2 \Omega_{\rm GW}\left(f_{ij}^{(k)},\vec{\theta}\right) + h^2 \Omega_n\left(f_{ij}^{(k)},\vec{n}\right)}{D_{ij}^{(k)}}\right)$$

Then we define our likelihood as (astro-ph/0302218, 2009.11845)

$$\ln \mathcal{L} = \frac{1}{3} \ln \mathcal{L}_G + \frac{2}{3} \ln \mathcal{L}_{LN}$$

which removes the skewness contributions and thus is more accurate.

Binned reconstruction (SGWBinner)

PCA reconstruction

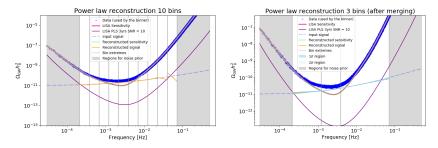
Conclusions

Some examples

Linear signal + "LIGO binaries"

As a first example let us consider

$$h^{2}\Omega_{\rm GW}(f) = h^{2}\Omega_{\rm GW,const}(f) + h^{2}\Omega_{\rm GW,BHB+NSB}(f) = 10^{-11} + 5.4 \times 10^{-12} \left(\frac{f}{0.001}\right)^{2/3}$$



After the merging procedure only 3 bins with small error bands are left.

Binned reconstruction (SGWBinner)

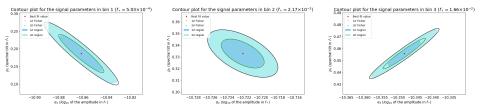
PCA reconstruction

Conclusions

Some examples

Linear signal + "LIGO binaries" contour plots

Let us have a closer look at the contour plots in each bin



The three contour plots clearly show a progressive increase in the slope Consistent with the values of the ratio $\Omega_{GW,const}/\Omega_{GW,binaries}$ in the three bins!

Binned reconstruction (SGWBinner)

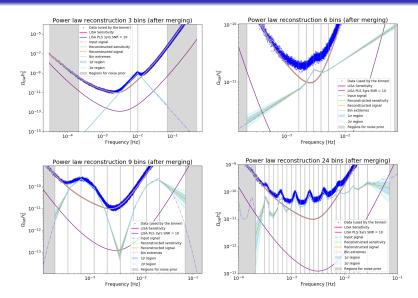
PCA reconstruction

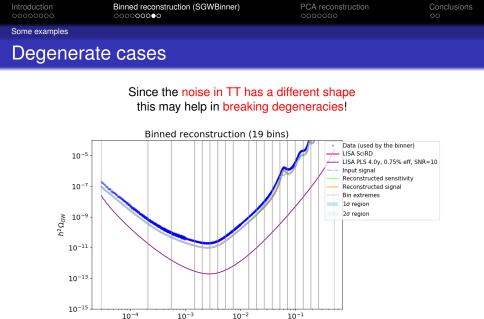
Conclusions

17/28

Some examples

More cases



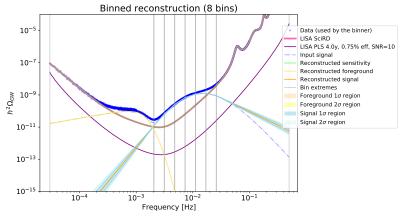


Frequency [Hz]

The code can now account for perform component separation too!

Consider for example the signal due to Galactic binaries:

$$h^2 \Omega_{
m GW} = 10^{lpha_{FG}} f^{2/3} {
m e}^{-a_1 f + a_2 f \sin(a_3 f)} \left\{ 1 + anh \left[a_4 (f_k - f)
ight]
ight\} \; .$$



Binned reconstruction (SGWBinner)

PCA reconstruction

Conclusions

Methodology

An exact solution for the parameters

Based on 2004.01135, in collaboration with Enrico Barausse

If the model (for both signal and noise) is linear in the $\vec{\theta}$:

- The log likelihood is quadratic in the parameters
- The Fisher matrix does not depend on the parameters
- Finding the best fit reduces to solving a linear equation

Binned reconstruction (SGWBinner)

PCA reconstruction

Conclusions

Methodology

An exact solution for the parameters

Based on 2004.01135, in collaboration with Enrico Barausse

If the model (for both signal and noise) is linear in the $\vec{\theta}$:

- The log likelihood is quadratic in the parameters
- The Fisher matrix does not depend on the parameters
- Finding the best fit reduces to solving a linear equation

Starting from:

$$-\ln \mathcal{L}\left(ec{ heta},ec{ heta}
ight) \propto rac{1}{2}\sum_{i}\left(rac{D_{i}-M\left(f_{i},ec{ heta}
ight)}{\sigma_{i}}
ight)^{2}$$

for a linear model we get:

$$F_{lk} \equiv \sum_{i} \frac{1}{\sigma_{i}^{2}} \frac{\partial M\left(f_{i}, \vec{\theta}\right)}{\partial \theta_{l}} \frac{\partial M\left(f_{i}, \vec{\theta}\right)}{\partial \theta_{k}} , \qquad \bar{\theta}_{l} = F_{lk}^{-1} \sum_{i} \frac{1}{\sigma_{i}^{2}} D_{i} \frac{\partial M\left(f_{i}, \vec{\theta}\right)}{\partial \theta_{k}}$$

where $\bar{\theta}_l$ is the MLE for the parameters.

Binned reconstruction (SGWBinner)

PCA reconstruction

Conclusions

Methodology

A simple model for the signal

Assume the signal can be expressed as:

$$\mathbf{S}(f) = \sum_{j=1}^{n} a_j \, \delta_{\mathbf{w}}(f-f_j) \,,$$

where:

- a_j are the parameters
- w is some correlation length
- $\delta_w(f f_j)$ are some functions

The choice of $\delta_w(f - f_j)$ defines a basis to express the signal.

Binned reconstruction (SGWBinner)

PCA reconstruction

Conclusions

Methodology

A simple model for the signal

Assume the signal can be expressed as:

$$\mathbf{S}(f) = \sum_{j=1}^{n} a_j \, \delta_{\mathbf{w}}(f-f_j) \,,$$

where:

- *a_j* are the parameters
- w is some correlation length
- $\delta_w(f f_j)$ are some functions

The choice of $\delta_w(f - f_j)$ defines a basis to express the signal.

Depending on the choice of w we have two regimes:

- Small w: the measurements in f_j are not correlated
- Large *w*: the measurements in *f_j* are correlated

Properly choosing w we can smooth the signal!

Binned reconstruction (SGWBinner)

PCA reconstruction

Conclusions

Methodology

Principal component analysis

It is interesting to notice that:

- In general the parameters a_j are correlated
- Eigenvectors $e_i^{(i)}$ of F_{ik} are uncorrelated combinations of a_i .
- Eigenvalues $\lambda^{(i)}$ of F_{lk} give the information on the $e_i^{(i)}$.

Binned reconstruction (SGWBinner)

PCA reconstruction

Conclusions

Methodology

Principal component analysis

It is interesting to notice that:

- In general the parameters a_j are correlated
- Eigenvectors $e_i^{(i)}$ of F_{lk} are uncorrelated combinations of a_i .
- Eigenvalues $\lambda^{(i)}$ of F_{lk} give the information on the $e_i^{(i)}$.

Principal Component Analysis (PCA):

- Compute the eigensystem of F_{lk}
- 2 Cut $e_i^{(i)}$ corresponding to $\lambda^{(i)}$ smaller than some threshold
- Solution Project $\delta_w(f f_j)$ and a_j on this subset of $e_j^{(i)}$ (say $\eta_k(f)$, b_k)
- Reconstruct the signal as: $S(f) = \sum_k b_k \eta_k(f)$

Corresponds to reconstructing the signal in terms of the components which can be well determined!

In the following plots all parameters are normalized to 1!

Binned reconstruction (SGWBinner)

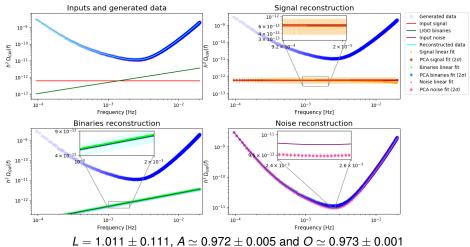
PCA reconstruction

Conclusions

Some examples

Subtracting the foreground 1

Flat signal (SNR \sim 30) + LIGO binaries (gaussian prior σ = 0.5)



Binned reconstruction (SGWBinner)

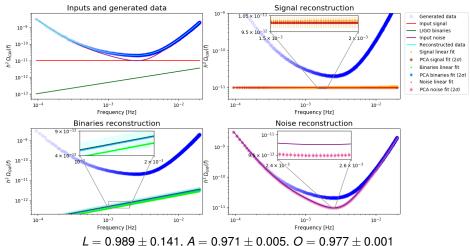
PCA reconstruction

Conclusions

Some examples

Subtracting the foreground 2

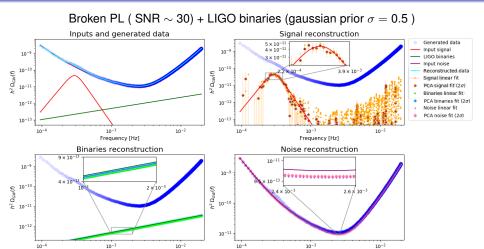
Flat signal (SNR \sim 520)+ LIGO binaries (gaussian prior $\sigma =$ 0.5)



Some examples			
		0000000	
Introduction	Binned reconstruction (SGWBinner)	PCA reconstruction	Conclusions

No degeneracy 1

Frequency [Hz]

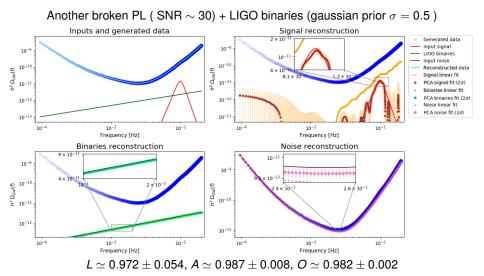


 $\textit{L} \simeq 0.960 \pm 0.033, \textit{A} \simeq 0.990 \pm 0.004, \textit{O} \simeq 0.976 \pm 0.001$

Frequency [Hz]

Introduction	Binned reconstruction (SGWBinner)	PCA reconstruction	Conclusions
0000000		○○○○○●	00
Some examples			

No degeneracy 2



PCA reconstruction

Conclusions ●○

Conclusions and future perspective

Conclusions

- PLS is (qualitatively) useful but not the end of the story
- SGWBinner: a flexible algorithm to reconstruct general signal (multiple power lows, bumps,...)
- PCA reconstruction: an alternative approach for SGWB reconstruction
- In both cases it's possible to perform component separation

Future perspectives

- Keep improving on detector modeling
- Application to concrete case (inflation, phase transitions, ...)
- New techniques?

Binned reconstruction (SGWBinner)

PCA reconstruction

Conclusions

The End

Thank you

Bayes theorem and data analysis

Given some events *D* and $\vec{\theta}$ we define:

$$P(D| heta_j)\equiv rac{P(D\cap heta_j)}{P(heta_j)}$$

the conditional probability of *D* occurring given $\vec{\theta}$.

Since $P(D \cap \vec{\theta}) = P(\vec{\theta} \cap D)$ we get the Bayes theorem:

$$P(\vec{\theta}|D) = \frac{P(D|\vec{\theta}) \cdot P(\vec{\theta})}{P(D)} \propto P(D|\vec{\theta}) \cdot P(\vec{\theta})$$

D is the set of data and $\vec{\theta}$ is the vector of parameters of the theory.

- $P(\vec{\theta}|D)$ are the *Posterior probabilities*
- $P(\vec{\theta})$ are the *Prior probabilities*
- $P(D|\vec{\theta})$ is the *Likelihood* which from now on is denoted $\mathcal{L}(\vec{\theta})$
- P(D) is the Model Evidence

Some statistical tools

• The maximum likelihood estimate of best fit parameters $\vec{\theta_0}$ is

$$\partial_{\vec{ heta}} \ln \mathcal{L}(\vec{ heta_0}) = 0$$

• The Fisher matrix (*i.e.* the inverse of the covariance matrix C_{ij}) is

$$F \equiv C_{ij}^{-1} = -\langle \partial_i \partial_j \ln \mathcal{L} |_{\vec{\theta}_0} \rangle$$

• Gaussian approximation of \mathcal{L} around $\vec{\theta_0}$

$$\mathcal{L}(\vec{\theta}) \simeq \frac{1}{\sqrt{\det(2\pi C)}} \exp\left\{-\frac{1}{2} (\vec{\theta} - \vec{\theta}_0)^T C^{-1} (\vec{\theta} - \vec{\theta}_0)\right\}$$

• Confidence intervals are obtained by solving

$$-2\left[\ln \mathcal{L}(\vec{\theta}) - \ln \mathcal{L}(\vec{\theta}_0)\right] = v_{n\sigma}(k)$$

• Akaike Information Criterion (AIC) for a fit with *k* parameters:

$$AIC = -2\ln \mathcal{L} + 2k = \chi^2 + 2k$$