
Introduction Binned reconstruction (SGWBinner) PCA reconstruction Conclusions

SGWB characterization with LISA

Mauro Pieroni

mpieroni@ic.ac.uk

GW primordial cosmology workshop

May 17, 2021

1/28



Introduction Binned reconstruction (SGWBinner) PCA reconstruction Conclusions

Outline

1 Introduction
Signals at LISA
Data generation and pre-processing

2 Binned reconstruction (SGWBinner)
Methodology
Some examples

3 PCA reconstruction
Methodology
Some examples

4 Conclusions

2/28



Introduction Binned reconstruction (SGWBinner) PCA reconstruction Conclusions

Signals at LISA

SGWBs at GW detectors
The data d̃ (in frequency space) can be expressed as

d̃ = s̃ + ñ

For an isotropic SGWB −→ 〈hλ(~k) h∗λ′(~k ′)〉 = Pλh (k)(2π)3δλλ′δ(~k − ~k ′)
Assuming 〈s̃ñ〉 = 0 and Gaussian signal〈

d̃2
〉

=
〈

s̃2
〉

+
〈

ñ2
〉

= RPλh + N ≡ R
[
Pλh + Sn

]
where we have introduced

The response function of the instrument R
The noise power spectrum N
The (square of the) Strain sensitivity Sn (in 1/Hz)

In order to compare with cosmological predictions it’s customary to introduce

Ωn(f ) =
4π2

3H2
0

f 3Sn(f ) , and ΩGW ≡
1

3H2
0 M2

p

∂ρGW

∂ ln f
=

4π2

3H2
0

f 3
∑
λ

Pλh

where H0 ' 3.24× 10−18 h0 Hz is the Hubble constant today.
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Signals at LISA

Laser Interferometer Space Antenna
Few details on LISA:

First direct GW detector in space

Constellation of three satellites

2.5 million km arm lengths

Peak sensitivity 10−2 ÷ 10−3Hz

Three correlated interferometers (XYZ basis)

∼ two independent detectors (AET basis)

Expected launch in 2034

Operating for 4yrs (nominal)

Very interesting for cosmology since we can:

Measure H0 (see 1601.07112)

Test modified gravity (see1906.01593)

(Hopefully) detect and characterize SGWBs! (This talk!) 4/28
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Signals at LISA

LISA response function
For an isotropic and non-chiral spectrum we get (see 2009.11845):〈

∆F TDI
i(jk)∆F TDI

l(mn)

〉
=

∫
dk Ph(k)Rij (k) , Rij (k) ≡ 4 (2πkL)2|W (kL)|2R̃il(jk)(mn)(k) .

where Rij (k) is the LISA response function.

For XYZ/AET (AET is noise diagonal) combinations we get:

At low frequencies TT is suppressed by a factor f 6!
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Signals at LISA

The noise model I
Two analytical approximations for acceleration and interferometric noise:

Pacc(f ,A) = A2 · 10−30 ·

[
1 +

(
4 · 10−4

f

)2
][

1 +

(
f

8 · 10−3

)4
](

1
2πf

)4(2πf
c

)2

,

PIMS(f ,P) = P2 · 10−24 ·

[
1 +

(
2 · 10−3

f

)4
](

2πf
c

)2

.

The power spectral densities are (L = 2.5× 109m is the arm length):

PXX
PSD(f ) = 16 sin2

(
2πfL

c

){
PIMS(f ,P) +

[
3 + cos

(
4πfL

c

)]
Pacc(f ,A)

}
,

PXY
PSD(f ) = −8 sin2

(
2πfL

c

)
cos

(
2πfL

c

)
{PIMS(f ,P) + 4Pacc(f ,A)} ,

which for the TT combination gives:

PTT
PSD(f ,A,P) = 16 sin2

(
2πfL

c

){
2
[
1− cos

(
2πfL

c

)]2

Pacc(f ,A) +

+

[
1− cos

(
2πfL

c

)]
PIMS(f ,P)

}
.
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Signals at LISA

The noise model II
At low frequencies this becomes (f∗ ≡ (2πL/c)−1 ' 0.019 Hz):

PTT
PSD(f ,A,P) ' 8

(
f
f∗

)2

sin2
(

f
f∗

)[(
f
f∗

)2

Pacc(f ,A) + PIMS(f ,P)

]
,

The interferometric noise dominates TT at all frequencies!
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Signals at LISA

Analytical vs numerical
An approximation of the response function and the strain sensitivity are:

R̃(f ) =
0.3

1 + 0.6
( 2πfL

c

)2 , Sn(f ,P,A) =
PPSD(f ,P,A)

R̃(f )× 16 sin2 ( 2πfL
c

)
×
( 2πfL

c

)2 .

Central values in black (analytical) / green (numerical) ±20% in orange 8/28



Introduction Binned reconstruction (SGWBinner) PCA reconstruction Conclusions

Data generation and pre-processing

Data generation
Assume signal and noise (Ω units) to be Gaussian distributed
The spectra (ΩGW and Ωn) quantify the variance of fluctuations

s̃c(fi ) =

∣∣∣∣∣G(0,
√

ΩGW(fi )) + i G(0,
√

ΩGW(fi ))√
2

∣∣∣∣∣
ñc(fi ) =

∣∣∣∣∣G(0,
√

Ωn(fi )) + i G(0,
√

Ωn(fi ))√
2

∣∣∣∣∣
For each data segment and frequency we generate a gaussian realization.

Given that:
LISA will be operating for 4yrs (75% efficiency)
We choose data segments of roughly 12 days

we conclude that:
Roughly 95 independent measurements at each frequency.
The resolution of the detector is roughly 10−6Hz
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Data generation and pre-processing

Data pre-processing and likelihood
Starting from Dc(fi ) (our data), defined as:

Dc(fi ) ≡ 〈d̃2
c (fi )〉 = 〈(s̃c(fi ) + ñc(fi ))2〉 = 〈s̃2

c (fi )〉+ 〈ñ2
c (fi )〉 .

we can reduce the complexity of the problem by performing two operations:

We average over the (95) data segments:
This leaves us with some D(fi ) (the averaged data) and
an estimate of the error σ(fi ) (the standard deviation or the data).
We coarse grain the data:
i.e. from the initial linear 10−6Hz spacing (∼ 5× 105 points)
−→ we go to some final (and less dense) set of frequencies fi
This leaves us with the final data set Di and errors σi .

Finally we assume the data to be described by the likelihood:

L
(
~θ,~n
)
∝ exp

−Nchunks

2

∑
i

Di − h2ΩGW

(
fi , ~θ

)
− h2Ωn

(
fi , ~n
)

σi

2
with i labeling the data points and ΩGW, Ωn models for signal and noise.
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c (fi )〉+ 〈ñ2
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Methodology

SGWBinner algorithm
Based on two LISA COSWG projects:

1906.09244: C. Caprini, D. Figueroa, R. Flauger, M.P., G. Nardini, M. Peloso, A. Ricciardone, G. Tasinato

2009.11845: R. Flauger, N. Karnesis, G. Nardini, M. P., A. Ricciardone, J. Torrado

We look for best approximation of the signal with a multi-PL

h2ΩGW

(
f , ~θ
)

=
∑

i

10αi

(
f√

fmin,i fmax,i

)pi

Θ (f − fmin,i ) Θ (fmax,i − f ) .

where Θ is the Heaviside step function.
N bins→ 4N (fmin,i , fmax,i , αi , pi ) +2N (noise) parameters.

The basic procedure is composed of four steps
1 Build a robust prior for the noise model

(to force bin-by-bin measurements)
2 Divide the frequency range in a set of bins and reconstruct the signal
3 Merge as many bins as possible (to avoid overfitting)
4 Define a procedure to compute the error on the reconstruction
5 Final MCMC run with common noise parameters

Few more detail on steps 1 and 3 ...
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Methodology

Characterizing the noise
Bad noise
reconstruction

−→ No detection/false detections

Bad parameter reconstruction

Some useful observations:
Noise parameters are correlated over the full frequency range!
Noise is expected to dominate at small and at large frequencies
Noise dominates over signal in TT

As a consequence (single channel version):
1 We divide the range into three bands

(small and large frequencies + a central band)
2 Estimate signal and noise parameters in the external bands
3 Use this as a prior for the measurements in the bins in the central part

As a consequence (three channels version):
1 Estimate signal and noise parameters in TT
2 Use this as a prior for the AA/EE.

12/28
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Methodology

Criterion for merging

Two motivations for merging:

Larger N means smaller bins which implies larger errors

For large values of N, the reconstruction with N bins
(i.e. 2N parameters) may overfit the signal

Typically reducing the number N of bins may improve the analysis!

AIC for model comparison we use:

AIC = −2 lnL+ 2k = χ2 + 2k

For a couple of consecutive bins (i , i + 1) we can compute

∆ AIC = AICafter merging − AICbefore merging = χ2
after merging − χ2

before merging − 2 k1-bin

According to the AIC definition:

∆AIC < 0 −→ It is convenient to merge the two bins

13/28
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Methodology

A more accurate likelihood
A Gaussian likelihood would give a systematic low bias!

(astro-ph/9808264, astro-ph/0205387, astro-ph/0302218, 0801.0554)

Consider the Gaussian likelihood:

lnLG

(
~θ,~n
)
∝ −Nchunks

2

∑
i,j

∑
k

w (k)
ij

D(k)
ij − h2ΩGW

(
f (k)ij , ~θ

)
− h2Ωn

(
f (k)ij , ~n

)
h2ΩGW

(
f (k)ij , ~θ

)
+ h2Ωn

(
f (k)ij , ~n

)
2

and the Lognormal likelihood:

lnLLN

(
~θ,~n
)
∝ −Nchunks

2

∑
i,j

∑
k

w (k)
ij ln2

h2ΩGW

(
f (k)ij , ~θ

)
+ h2Ωn

(
f (k)ij , ~n

)
D(k)

ij


Then we define our likelihood as (astro-ph/0302218, 2009.11845 )

lnL =
1
3

lnLG +
2
3

lnLLN

which removes the skewness contributions and thus is more accurate.
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Some examples

Linear signal + “LIGO binaries”

As a first example let us consider

h2ΩGW(f ) = h2ΩGW,const(f )+h2ΩGW,BHB+NSB(f ) = 10−11+5.4×10−12
(

f
0.001

)2/3

After the merging procedure only 3 bins with small error bands are left.

15/28



Introduction Binned reconstruction (SGWBinner) PCA reconstruction Conclusions

Some examples

Linear signal + “LIGO binaries” contour plots

Let us have a closer look at the contour plots in each bin

The three contour plots clearly show a progressive increase in the slope
Consistent with the values of the ratio ΩGW,const/ΩGW,binaries in the three bins!
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Some examples

More cases
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Some examples

Degenerate cases

Since the noise in TT has a different shape
this may help in breaking degeneracies!
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Some examples

Foreground removal
The code can now account for perform component separation too!

Consider for example the signal due to Galactic binaries:

h2ΩGW = 10αFG f 2/3e−a1f+a2f sin(a3f ) {1 + tanh [a4(fk − f )]} .

10 4 10 3 10 2 10 1

Frequency [Hz]

10 15

10 13

10 11

10 9

10 7

10 5

h2
G

W

Binned reconstruction (8 bins)

Data (used by the binner)
LISA SciRD
LISA PLS 4.0y, 0.75% eff, SNR=10
Input signal
Reconstructed sensitivity
Reconstructed foreground
Reconstructed signal
Bin extremes
Foreground 1  region
Foreground 2  region
Signal 1  region
Signal 2  region
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Methodology

An exact solution for the parameters
Based on 2004.01135, in collaboration with Enrico Barausse

If the model (for both signal and noise) is linear in the ~θ:

The log likelihood is quadratic in the parameters

The Fisher matrix does not depend on the parameters

Finding the best fit reduces to solving a linear equation

Starting from:

− lnL
(
~θ,~n
)
∝ 1

2

∑
i

Di −M
(

fi , ~θ
)

σi

2

,

for a linear model we get:

Flk ≡
∑

i

1
σ2

i

∂M
(

fi , ~θ
)

∂θl

∂M
(

fi , ~θ
)

∂θk
, θ̄l = F−1

lk

∑
i

1
σ2

i
Di

∂M
(

fi , ~θ
)

∂θk

where θ̄l is the MLE for the parameters.
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Methodology

A simple model for the signal

Assume the signal can be expressed as:

S(f ) =
n∑

j=1

aj δw (f − fj ) ,

where:
aj are the parameters

w is some correlation length

δw (f − fj ) are some functions

The choice of δw (f − fj ) defines a basis to express the signal.

Depending on the choice of w we have two regimes:

Small w : the measurements in fj are not correlated

Large w : the measurements in fj are correlated

Properly choosing w we can smooth the signal!

21/28
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Methodology

Principal component analysis

It is interesting to notice that:

In general the parameters aj are correlated

Eigenvectors e(i)
j of Flk are uncorrelated combinations of aj .

Eigenvalues λ(i) of Flk give the information on the e(i)
j .

Principal Component Analysis (PCA):
1 Compute the eigensystem of Flk

2 Cut e(i)
j corresponding to λ(i) smaller than some threshold

3 Project δw (f − fj ) and aj on this subset of e(i)
j (say ηk (f ), bk )

4 Reconstruct the signal as: S(f ) =
∑

k bkηk (f )

Corresponds to reconstructing the signal in terms of
the components which can be well determined!

In the following plots all parameters are normalized to 1!

22/28
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Some examples

Subtracting the foreground 1

Flat signal (SNR ∼ 30) + LIGO binaries (gaussian prior σ = 0.5 )

L = 1.011± 0.111, A ' 0.972± 0.005 and O ' 0.973± 0.001

23/28
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Some examples

Subtracting the foreground 2

Flat signal (SNR ∼ 520)+ LIGO binaries (gaussian prior σ = 0.5 )

L = 0.989± 0.141, A = 0.971± 0.005, O = 0.977± 0.001

24/28



Introduction Binned reconstruction (SGWBinner) PCA reconstruction Conclusions

Some examples

No degeneracy 1

Broken PL ( SNR ∼ 30) + LIGO binaries (gaussian prior σ = 0.5 )

L ' 0.960± 0.033,A ' 0.990± 0.004,O ' 0.976± 0.001
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Some examples

No degeneracy 2

Another broken PL ( SNR ∼ 30) + LIGO binaries (gaussian prior σ = 0.5 )

L ' 0.972± 0.054, A ' 0.987± 0.008, O ' 0.982± 0.002
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Conclusions and future perspective

Conclusions

PLS is (qualitatively) useful but not the end of the story

SGWBinner: a flexible algorithm to reconstruct general signal (multiple
power lows, bumps,...)

PCA reconstruction: an alternative approach for SGWB reconstruction

In both cases it’s possible to perform component separation

Future perspectives

Keep improving on detector modeling

Application to concrete case (inflation, phase transitions, ...)

New techniques?
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Last Slide

The End
Thank you
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Statistical tools

Bayes theorem and data analysis

Given some events D and ~θ we define:

P(D|θj ) ≡
P(D ∩ θj )

P(θj )

the conditional probability of D occurring given ~θ.

Since P(D ∩ ~θ) = P(~θ ∩ D) we get the Bayes theorem:

P(~θ|D) =
P(D|~θ) · P(~θ)

P(D)
∝ P(D|~θ) · P(~θ)

D is the set of data and ~θ is the vector of parameters of the theory.

P(~θ|D) are the Posterior probabilities

P(~θ) are the Prior probabilities

P(D|~θ) is the Likelihood which from now on is denoted L(~θ)

P(D) is the Model Evidence
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Statistical tools

Some statistical tools
The maximum likelihood estimate of best fit parameters ~θ0 is

∂~θ lnL(~θ0) = 0

The Fisher matrix (i.e. the inverse of the covariance matrix Cij ) is

F ≡ C−1
ij = −〈∂i∂j lnL|~θ0

〉

Gaussian approximation of L around ~θ0

L(~θ) ' 1√
det(2πC)

exp

{
−1

2
(~θ − ~θ0)T C−1(~θ − ~θ0)

}
Confidence intervals are obtained by solving

−2
[
lnL(~θ)− lnL(~θ0)

]
= vnσ(k)

Akaike Information Criterion (AIC) for a fit with k parameters:

AIC = −2 lnL+ 2k = χ2 + 2k
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