SGWB characterization with LISA

Mauro Pieroni

Imperial College

&5 London

S

mpieroni@ic.ac.uk

GW primordial cosmology workshop

May 17, 2021

1/28



Outline

@ Introduction
@ Signals at LISA
@ Data generation and pre-processing

e Binned reconstruction (SGWBinner)
@ Methodology
@ Some examples

e PCA reconstruction
@ Methodology
@ Some examples

@ Conclusions

2/28



Introduction
@00000

Signals at LISA

SGWBs at GW detectors

The data d (in frequency space) can be expressed as

d=35+h
For an isotropic SGWB —  ((k) P (K)) = Py (K)(27)%0sn8(k — K')
Assuming (8h) = 0 and Gaussian signal

<Z12> = <§2> + <F72> =RP)+N=TR [P,? +Sn}

where we have introduced
@ The response function of the instrument R
@ The noise power spectrum N
@ The (square of the) Strain sensitivity S, (in 1/Hz)
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SGWBs at GW detectors

The data d (in frequency space) can be expressed as

d=35+h
For an isotropic SGWB —  ((k) P (K)) = Py (K)(27)%0sn8(k — K')
Assuming (8h) = 0 and Gaussian signal

<Z12> = <§2> + <F72> =RP)+N=TR [P,? +Sn}

where we have introduced
@ The response function of the instrument R
@ The noise power spectrum N
@ The (square of the) Strain sensitivity S, (in 1/Hz)

In order to compare with cosmological predictions it's customary to introduce

1 9 4
Qu(f) = f3sn( ), and Qow= pow _ 3;2 fSZPh

3H2 3HEMZ @ Inf

where Hy ~ 3.24 x 10~ hy Hz is the Hubble constant today.
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Signals at LISA

Laser Interferometer Space Antenna

Few details on LISA:

First direct GW detector in space
Constellation of three satellites

2.5 million km arm lengths

Peak sensitivity 1072 +~ 10~2Hz

Three correlated interferometers (XYZ basis)
~ two independent detectors (AET basis)
Expected launch in 2034

Operating for 4yrs (nominal)

Very interesting for cosmology since we can:

@ Measure Hp (see 1601.07112)

@ Test modified gravity (see1906.01593)

@ (Hopefully) detect and characterize SGWBSs! (This talk!) 4/28
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Signals at LISA

LISA response function

For an isotropic and non-chiral spectrum we get (see 2009.11845):
(AFIEARE) = [ akPuRyK) . Ry(K) = 4 (kLY WKL) Ao (K).
where R (k) is the LISA response function.

For XYZ/AET (AET is noise diagonal) combinations we get:

. LISA geometrical factor . LISA response function
101 1071
1073
1072 10-5
=) )
R & 107
-3
10 -
107 4 10714
10713 4
b m"“ 10"3 m"? 10|’1 10"4 1(:;’3 10|’2 10"1

Frequency [Hz] Frequency [Hz] 5/28



Introduction
[e]e]e] le]e]

Signals at LISA

The noise model |

Two analytical approximations for acceleration and interferometric noise:
c (AN T T (Y Y (e
f 8-10-3 2rf c ’
(2-10—3)4' (27rf)2
1+ —
f c

The power spectral densities are (L = 2.5 x 10°m is the arm length):

PX%o(f) = 16sin? (2%&) {P,Ms(ﬂ P) + 3—|—cos<47;f )} Pace(f, A)}

PAY(f) = —8sin? (2%&) cos <2”fL) {Pms(f, P) + 4Pacc(f, A)} |

which for the TT combination gives:

2
PREo(f, A, P) = 165si (27;’1> {2{1cos<27TCfL)} Paco(f, A) +

+ {1 ~ cos (ZLJL” Pus(f, P)} .

Pace(f, A) = A% 107%.

Pws(f, P) = P*-102*.
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Signals at LISA

The noise model Il

At low frequencies this becomes (f. = (2wL/c)~" ~ 0.019 Hz):

AT f\?
PRRo(f A P) =8 (1 ) s () {(f) Pace(£, A) + Puss(f, P)| .

10-3 Noise components Comparison TT noise components
107371 Pace 10738 —— 2*%[1—cos(f/f+)]*Pacc /
10-38] — Pus 10-39 — Puus
o o 10740
‘N 10739_ |N 10
= 107404 = 10
? B 10742
o 10741_ a
—42 107
10 43- L0-44
1074
1074 1073 1072 107t 1074 1073 1072 1071
Frequency [Hz] Frequency [Hz]

The interferometric noise dominates TT at all frequencies!
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Signals at LISA

Analytical vs numerical

An approximation of the response function and the strain sensitivity are:

B — 0.3 So(F. P, A) — Pesp(f, P, A)
C1406(2E)? T T R() x 16sin? () x (22)?
: c c c
LISA strain 10-2 LISA Sensitivity
1071 10-3
1074
-16
10 10-5
N
li 107V g ’
= < /
= § 107 4
< ~
:?10713 < 10-®
10°°
1071 10-10
10711
10720
10712
1074 1073 1072 107t 1074 1073 1072 107t
f [Hz] f [Hz]

Central values in black (analytical) / 8/28
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Data generation and pre-processing

Data generation

Assume signal and noise (2 units) to be Gaussian distributed
The spectra (6w and Q,) quantify the variance of fluctuations

G(0, \/Qaw(F)) + i G(O, m)'

Sq(fi) = ' 7
2 o | G(0,v/Qn(F)) + 1 G(0, /Qn(F))
he(f) = y

For each data segment and frequency we generate a gaussian realization.
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Data generation and pre-processing

Data generation

Assume signal and noise (2 units) to be Gaussian distributed
The spectra (6w and Q,) quantify the variance of fluctuations

G(0, \/Qaw(F)) + i G(O, m)'

§c(fl) = '

V2
= o[G0,/ Q(F)) + i GO, \/Qn(F))
ne(f) = 7

For each data segment and frequency we generate a gaussian realization.

Given that:
@ LISA will be operating for 4yrs (75% efficiency)
@ We choose data segments of roughly 12 days
we conclude that:
@ Roughly 95 independent measurements at each frequency.
@ The resolution of the detector is roughly 10 °Hz
9/28
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Data generation and pre-processing

Data pre-processing and likelihood

Starting from Dc(f;) (our data), defined as:
De(f)) = (05 (f)) = ((3o(F) + Pe(£))?) = (82()) + (AE(£)) -
we can reduce the complexity of the problem by performing two operations:
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Data generation and pre-processing

Data pre-processing and likelihood

Starting from Dc(f;) (our data), defined as:
De(f)) = (05 (f)) = ((3o(F) + Pe(£))?) = (82()) + (AE(£)) -
we can reduce the complexity of the problem by performing two operations:

@ We average over the (95) data segments:
This leaves us with some D(f;) (the averaged data) and
an estimate of the error o(f;) (the standard deviation or the data).
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Data generation and pre-processing

Data pre-processing and likelihood

Starting from Dc(f;) (our data), defined as:
De(f) = (d2(£)) = ((Bo(F) + Pe())?) = (82(F)) + (PE(F)) -
we can reduce the complexity of the problem by performing two operations:
@ We average over the (95) data segments:
This leaves us with some D(f;) (the averaged data) and
an estimate of the error o(f;) (the standard deviation or the data).
@ We coarse grain the data:
i.e. from the initial linear 10~®Hz spacing (~ 5 x 10° points)

— we go to some final (and less dense) set of frequencies f;
This leaves us with the final data set D; and errors o;.
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Data generation and pre-processing

Data pre-processing and likelihood

Starting from Dc(f;) (our data), defined as:
De(f) = (d2(£)) = ((Bo(F) + Pe())?) = (82(F)) + (PE(F)) -
we can reduce the complexity of the problem by performing two operations:
@ We average over the (95) data segments:
This leaves us with some D(f;) (the averaged data) and
an estimate of the error o(f;) (the standard deviation or the data).
@ We coarse grain the data:
i.e. from the initial linear 10~®Hz spacing (~ 5 x 10° points)

— we go to some final (and less dense) set of frequencies f;
This leaves us with the final data set D; and errors o;.

Finally we assume the data to be described by the likelihood:

c (@ ﬁ) o exp | - Notue 2 (Di e (ﬁ’ 5) S ) |

2 aj

i

with / labeling the data points and Qcw, 2, models for signal and noise. 10/28



Binned reconstruction (SGWBinner)
@000

Methodology

SGWBInner algorithm

Based on two LISA COSWG projects:
@ 1906.09244: C. Caprini, D. Figueroa, R. Flauger, M.P., G. Nardini, M. Peloso, A. Ricciardone, G. Tasinato
@ 2009.11845: R. Flauger, N. Karnesis, G. Nardini, M. P.,, A. Ricciardone, J. Torrado
We look for best approximation of the signal with a multi-PL
Pi

W Qow (f,8) = > 10% ) O~ ) O (s — £ -

min, / fmax,i
where © is the Heaviside step function.
N bins — 4N (fmin,h fmux,f-, Qj, p/) +2N (nOise) paramEterS-
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@000

Methodology

SGWBInner algorithm

Based on two LISA COSWG projects:
@ 1906.09244: C. Caprini, D. Figueroa, R. Flauger, M.P., G. Nardini, M. Peloso, A. Ricciardone, G. Tasinato
@ 2009.11845: R. Flauger, N. Karnesis, G. Nardini, M. P.,, A. Ricciardone, J. Torrado

We look for best approximation of the signal with a multi-PL

Pi
WS (1, 0) = 3 10" <f> O (F — fuin) © (v — 1)

min, / fl
where © is the Heaviside step function.
N bins — 4N (fuin,i, fnax,i> @i, Pi) +2N (noise) parameters.

The basic procedure is composed of four steps

@ Build a robust prior for the noise model
(to force bin-by-bin measurements)

@ Divide the frequency range in a set of bins and reconstruct the signal
© Merge as many bins as possible (to avoid overfitting)

@ Define a procedure to compute the error on the reconstruction

© Final MCMC run with common noise parameters

Few more detail on steps 1 and 3 ... 11/28



Binned reconstruction (SGWBinner)
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Methodology

Characterizing the noise

Bad noise N @ No detection/false detections

reconstruction .
@ Bad parameter reconstruction

Some useful observations:
@ Noise parameters are correlated over the full frequency range!
@ Noise is expected to dominate at small and at large frequencies
@ Noise dominates over signal in TT
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Binned reconstruction (SGWBinner)
[o] le]e}

Characterizing the noise

Bad noise

. @ No detection/false detections

reconstruction

@ Bad parameter reconstruction

Some useful observations:
Noise parameters are correlated over the full frequency range!
Noise is expected to dominate at small and at large frequencies
Noise dominates over signal in TT

As a consequence (single channel version):

We divide the range into three bands
(small and large frequencies + a central band)

Estimate signal and noise parameters in the external bands
Use this as a prior for the measurements in the bins in the central part

As a consequence (three channels version):
Estimate signal and noise parameters in TT
Use this as a prior for the AA/EE.

12/28



Binned reconstruction (SGWBinner)
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Methodology

Criterion for merging

Two motivations for merging:
@ Larger N means smaller bins which implies larger errors

@ For large values of N, the reconstruction with N bins
(i.e. 2N parameters) may overfit the signal

Typically reducing the number N of bins may improve the analysis!

13/28



Binned reconstruction (SGWBinner)
[e]e] T}

Methodology

Criterion for merging

Two motivations for merging:
@ Larger N means smaller bins which implies larger errors

@ For large values of N, the reconstruction with N bins
(i.e. 2N parameters) may overfit the signal

Typically reducing the number N of bins may improve the analysis!
AIC for model comparison we use:

AIC = —2In L + 2k = \® + 2k
For a couple of consecutive bins (i, i + 1) we can compute
A AIC = AlCqtier merging — AlChefore merging = Xafer merging — Xbetore merging — 2 Ki-bin
According to the AIC definition:

AAIC <0 — It is convenient to merge the two bins

13/28



Binned reconstruction (SGWBinner)
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Methodology

A more accurate likelihood

A Gaussian likelihood would give a systematic low bias!
(astro-ph/9808264, astro-ph/0205387, astro-ph/0302218, 0801 .0554)

Consider the Gaussian likelihood:
DY — HPQaw (f.(.k), 5) — KQ, (f.(k),ﬁ) ?
InL 0 chunks ] Ui
" G( n)O( ZZ ( h2Qow (f,-,(-k)ﬁ)Jrh?Qn (f,-,‘“,ﬁ) )

and the Lognormal likelihood:

(k) (k) =
i) g sy (M P (00

k
Dy

Then we define our likelihood as (astro-ph/0302218, 2009.11845 )

1 2
InL = §In£g+§|n£LN

which removes the skewness contributions and thus is more accurate.
14/28



Binned reconstruction (SGWBinner)
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Some examples

Linear signal + “LIGO binaries”

As a first example let us consider

B B f 2/3
Qo (F) = PP Qo (F)+FP Qowpnonss () = 101 +5.4x10 (W)

Power law reconstruction 10 bins Power law reconstruction 3 bins (after merging)
Data (used by the binner)

Data (used by the binner)

107% LISA Sensitivity 10-7 LISA sensitivity
— LISAPLS 3yrs SNR = 10 — USAPLS 3yrs SNR = 10
Input signal Input signal
Reconstructed sensitivity Reconstructed sensitivity
1077 Reconstructed signal

Reconstructed signal
Bin extremes
Regions for noise prior

Bin extremes
10 region
20 region
Regions for noise prior

1074 1073 102 1071 1074 1072 102 1071
Frequency [Hz] Frequency [Hz]

After the merging procedure only 3 bins with small error bands are left.
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Binned reconstruction (SGWBinner)
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Some examples

Linear signal + “LIGO binaries” contour plots

Let us have a closer look at the contour plots in each bin

Contour plot for the signal in bin 1 (£, = 5.03x10) Contour plot for the signal parameters in bin 2 (f. = 2.17x10-3) Goptour plot for the signal parameters in bin 3 (f, = 1.66x10°%)
030
036
048
035
= Y
£ 03 s
E = oas
£om g
g % 04
gon 2
& < 0.4a
031
010 043
030
EEIETT ST TRTY 0728 3072 1078 1722 30720 078 10716 10365 10360 —10355 ~10.350 —10345 10340 ~10.335
oo of the ampitude 1) 2 logu0 of the amplitude in f.) . ogio of the ampitude in -)

The three contour plots clearly show a progressive increase in the slope
Consistent with the values of the ratio Qcw.const/ Qcwpinaries iN the three bins!
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Binned reconstruction (SGWBinner)
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Some examples

More cases

Power law reconstruction 3 bins (after merging)

Power law reconstruction 6 bins (after merging)

10
Data (used by the binner) 10
s LA Sensituty
10 —— LISAPLS 3yrs SNR = 10
nput sgnat
Reconstructed sensitity
- Reconstructed sgnal
10 Bin extremes.
ay 10 region
“ 20 region
w 1070 Regions for noise prior b3
§ 8 Jo-ut ! oats (st by the e
G q 10 LISA Sensitivity
" — USARLS 3yrs SR = 10
10 Input signal
Reconstructed senscity
Reconstruced signal
10-13 i extremes
10 region
1 -7 Regions for noise prior
10~
107 1073 1072 1073 1072
Frequency [Hz] Frequency [Hz]
Power law reconstruction 9 bins (after merging) 109, Power law reconstruction 24 bins (after merging)
1010 y /
7 1010 /
1071 \ ! P4 /
®© ® W, N )
S ERCE R N
§ ] Osta (ufed by the binner) § N\ Oata (used by the bnner)
10-12 ! LISA Sensitivity. |’ LISA Sensitivity
/ — USAPLS3yrsSNR =10 | — LISAPLS 3yrs SNR = 10
Input signal Y Input sig
Reconstructed senitvty Reconstructed sensitity
L Reconstructea signal \ 10712 Reconstructed sgns!
107134/ 1 Bin extremes. Bin extremes.
i 10 regon 10 egion
20 region 20 region
egions for noiseprior Regions fo nose prior
, s 10713
1073 1072 107 1074 1073 1072 107!

Frequency [Hz] Frequency [Hz]
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Binned reconstruction (SGWBinner)
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Some examples

Degenerate cases

Since the noise in TT has a different shape
this may help in breaking degeneracies!

Binned reconstruction (19 bins)

Data (used by the binner)
10-5 LISA SciRD
LISA PLS 4.0y, 0.75% eff, SNR=10
Input signal
Reconstructed sensitivity
1077 Reconstructed signal
Bin extremes
10 region
—9 20 region
é% 10
T
10-11
10-13
10715

107 1073 1072 10!
Frequency [Hz]
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Binned reconstruction (SGWBinner)
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Some examples

Foreground removal

The code can now account for perform component separation too!
Consider for example the signal due to Galactic binaries:
R Qaw = 10°F6 f2/3e=aftalsn(@h) (4 | tanh [a4(f — )]} .

Binned reconstruction (8 bins)

Data (used by the binner)
LISA SciRD

LISA PLS 4.0y, 0.75% eff, SNR=10
Input signal
Reconstructed sensitivity
Reconstructed foreground
Reconstructed signal

Bin extremes

Foreground 1o region
Foreground 20 region
Signal 1o region

Signal 20 region

107 1073 1072 107t
Frequency [Hz]
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PCA reconstruction
@00

Methodology

An exact solution for the parameters

Based on 2004.01135, in collaboration with Enrico Barausse

If the model (for both signal and noise) is linear in the 0:

@ The log likelihood is quadratic in the parameters
@ The Fisher matrix does not depend on the parameters
@ Finding the best fit reduces to solving a linear equation

20/28



PCA reconstruction
@00

Methodology

An exact solution for the parameters

Based on 2004.01135, in collaboration with Enrico Barausse

If the model (for both signal and noise) is linear in the 0:

@ The log likelihood is quadratic in the parameters
@ The Fisher matrix does not depend on the parameters
@ Finding the best fit reduces to solving a linear equation

Starting from:

B ’ D,-—M(f,-,é) ?
—InL(H,ﬁ) O(EZ (m) s

for a linear model we get:

OM (f,0) oM (£, 6 oM (f,, 0
Sl CULLIGU SIS PRI

where 0, is the MLE for the parameters.
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PCA reconstruction
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Methodology

A simple model for the signal

Assume the signal can be expressed as:

where:
@ g; are the parameters
@ w is some correlation length
@ 6y (f — f;) are some functions

The choice of 6, (f — f;) defines a basis to express the signal.
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PCA reconstruction
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Methodology

A simple model for the signal

Assume the signal can be expressed as:

where:
@ g; are the parameters
@ w is some correlation length
@ 6y (f — f;) are some functions

The choice of 6, (f — f;) defines a basis to express the signal.

Depending on the choice of w we have two regimes:
@ Small w: the measurements in f; are not correlated
@ Large w: the measurements in f; are correlated

Properly choosing w we can smooth the signal!

21/28



PCA reconstruction
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Methodology

Principal component analysis

It is interesting to notice that:
@ In general the parameters g; are correlated

@ Eigenvectors e of Fx are uncorrelated combinations of a;.
fi J

@ Eigenvalues A\ of F give the information on the e/(i) .

22/28



PCA reconstruction
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Methodology

Principal component analysis

It is interesting to notice that:
@ In general the parameters g; are correlated

@ Eigenvectors ej(.’) of Fi are uncorrelated combinations of a;.

@ Eigenvalues A\ of F give the information on the e/(i) )

Principal Component Analysis (PCA):
@ Compute the eigensystem of Fy
Q cCut e}') corresponding to A) smaller than some threshold
@ Project 5 (f — f) and & on this subset of ej(’) (say n«(f), bx)

© Reconstruct the signal as: S(f) = 3=, bink(f)

Corresponds to reconstructing the signal in terms of
the components which can be well determined!

In the following plots all parameters are normalized to 1!
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PCA reconstruction
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Some examples

Subtracting the foreground 1

Flat signal (SNR ~ 30) + LIGO binaries (gaussian prior c = 0.5)

Inputs and generated data

Signal reconstruction

Frequency [Hz]

Frequency [Hz]

L=1.011+0.111, A~ 0.972 £ 0.005 and O ~ 0.973 + 0.001

10712 Generated data
100 4 6x10-13 Input signal
4x10-12 LIGO binaries
0] 3%20: & Input noise
= 10 9.9% Reconstructed data
'5 Signal linear fit
S 10-114 \ PCA signal fit (20)
= \ Binaries linear fit
012 10-124 \N—/ PCA binaries fit (20)
\ 7 Noise linear fit
PCA noise fit (20)
10713 10-134
107* 1073 1072 107* 1073 1072
Frequency [Hz] Frequency [Hz]
Binaries reconstruction Noise reconstruction
9x10° T 10-11
10-°
1074
ax 10713 s, x 10~ 13 4
< 1073 o 2%10-3 = - -
Z - < 2.4 10 2.6 % 10
\ / |
o / c
5 10-10 4
Et 101 \ v = /
\
\ / /
\
10-12 \
10-11 4
1074 1073 1072 107* 1073 1072
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Some examples

PCA reconstruction
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Subtracting the foreground 2

h? Qay(f)

h? Qan(fy

10-11

10-12

10-13

10-10

10-11

10-12

Flat signal (SNR ~ 520)+ LIGO binaries (gaussian prior ¢ = 0.5)

Inputs and generated data

Signal reconstruction

10-°

\ 1.05x10 1T
9.5x 1072
15x 1073
= =
S 10104
g
=]
&
/ 107114
107* 1073 1072 107* 1073 1072
Frequency [Hz] Frequency [Hz]
Binaries reconstruction Noise reconstruction
9Xx10°F 10-11
/ 1079 4
ax 10783 s x 1013 4
-3 ]
10‘4\,,\ 2/?/“‘ S§ 2.4 % 103 2.6 %1073
s |
c
\ / 107104 /
\ / <
\ / /
\ /
\
10-11 4
1074 1073 1072 107* 1073 1072

Frequency [Hz]

Frequency [Hz]

L =0.989+0.141, A= 0.971 £ 0.005, O = 0.977 + 0.001

Generated data
Input signal

LIGO binaries

Input noise
Reconstructed data
signal linear fit
PCAsignal fit (20)
Binaries linear fit
PCA binaries fit (20)
Noise linear fit
PCA noise fit (20)
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Some examples

No degeneracy 1

Broken PL ( SNR ~ 30) + LIGO binaries (gaussian prior ¢ = 0.5)

Inputs and generated data

PCA reconstruction
[e]e] 6]

Signal reconstruction

5x10°1
AN "~
100 \ 109 4x1071
- 3x 1071
- -10
o 1071 _ s 10
3 e -y
o I
g o S o
T T
1012 10712
10713 10-13
107* 1073 1072
Frequency [Hz] Frequency [Hz]
Binaries reconstruction Noise reconstruction
9x10°T 10-11
10-°
107 vee
4x10713 9§ x 10713
< 07 < - .
=z 3 .4 % 1 2.6 X 10
3 I
g G 100 /
LT 10 = /
/
10712
10711
1074 1073 1072 1074 1073 1072

Frequency [Hz]

Frequency [Hz]

L ~0.960 £ 0.033,A ~ 0.990 £ 0.004,0 ~ 0.976 + 0.001

Generated data
Input signal

LIGO binaries
Input noise
Reconstructed data
signal linear fit
PCASsignal fit (20)
Binaries linear fit
PCA binaries fit (20)
Noise linear fit
PCA noise fit (20)
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PCA reconstruction
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Some examples

No degeneracy 2

Another broken PL ( SNR ~ 30) + LIGO binaries (gaussian prior ¢ = 0.5)

Inputs and generated data Signal reconstruction
2x10° T Generated data
s 10-° —— Input signal
10 1011 —— LIGO binaries
- —— Input noise
g w0 . < 10710 6 15728 Reconstructed data
s H 81x 1 signal linear fit
g n S 101 «  PcAsignal fit (20)
= = Binaries linear fit
10-12 1012 "0 ©  PCAbinaries fit (20)
Noise linear fit
PCA noise fit (20)
10713 10-13 %
107* 1073 1072 1074 1073
Frequency [Hz] Frequency [Hz]
Binaries reconstruction Noise reconstruction
9x10°T 10-11
10-°
107°
4x 10713 Mx 10784,
< 07 < - .
-E 'E .4 % 1 2.6 X 10
g G 100 /
LT 10 = /
/
10712
10711
1074 1073 1072 1074 1073 1072
Frequency [Hz] Frequency [Hz]

L ~0.972+0.054, A~ 0.987 £ 0.008, O ~ 0.982 + 0.002
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Conclusions
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Conclusions and future perspective

Conclusions
PLS is (qualitatively) useful but not the end of the story

SGWBinner: a flexible algorithm to reconstruct general signal (multiple
power lows, bumps,...)

PCA reconstruction: an alternative approach for SGWB reconstruction
In both cases it's possible to perform component separation

Future perspectives
Keep improving on detector modeling
Application to concrete case (inflation, phase transitions, ...)
New techniques?
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Last Slide

The End

Thank you
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Statistical tools

[ 1o}

Bayes theorem and data analysis

Given some events D and § we define:
P(D M 9])

P(D|6)) = P,

the conditional probability of D occurring given 6.

Since P(D N #) = P(§ N D) we get the Bayes theorem:

P(D|) - P(6) Ny

PUID) = === o P(DI) - P(7)

D is the set of data and 6 is the vector of parameters of the theory.
@ P(0|D) are the Posterior probabilities

-

) are the Prior probabilities

— -

@ P(
@ P(D|0) is the Likelihood which from now onis denoted £(6)
@ P(D) is the Model Evidence
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Statistical tools

oe

Some statistical tools

@ The maximum likelihood estimate of best fit parameters 0o is
95In L(f) =0
@ The Fisher matrix (i.e. the inverse of the covariance matrix Cj) is
F=C;'=—(a9nLl;)

@ Gaussian approximation of £ around bo

£0)~ s e { 50— )00 )}
@ Confidence intervals are obtained by solving

—2 [mc(e“) - |nc(é’o)] = Voo ()
@ Akaike Information Criterion (AIC) for a fit with kK parameters:

AIC = —2In £ + 2k = x* + 2k

2/2



	Introduction
	Signals at LISA
	Data generation and pre-processing

	Binned reconstruction (SGWBinner)
	Methodology
	Some examples

	PCA reconstruction
	Methodology
	Some examples

	Conclusions
	Appendix
	Statistical tools


