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Motivation

How to disentangle stochastic GW background

of primordial origin 

from that of astrophysical origin?

One possibility:

we do not expect astrophysical 


stochastic GWs to have net chirality

(requires parity violation)

(But: lesson from BICEP + dust?)



Motivation
There are models with


parity violating dynamics 

leading to net helicity 


for primordial stochastic GW background 

Parity-violating 

dynamics

Helical gauge 

fields Helical SGWB( )
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Stochastic GW background: power spectra  

The transverse-traceless perturbation of the metric 

is Fourier-transformed to  

Section 5. Four appendices provide further technical details. In App. A, we specify the GW
polarization operators employed in this work. App. B compares our findings with those of ref. [25]
for the measurement of the SGWB circular polarization with LISA. App. C lists the position of
the ground-based detectors considered, and App. D contains the derivation of the analytical
expressions for the monopole and dipole overlap functions for ground-based detectors.

2 Dipolar anisotropy of a cosmological SGWB

Let us assume that there exists a frame in which the SGWB is (statistically) isotropic. It is
natural to associate this frame to the cosmological frame, in which the CMB is isotropic. The
peculiar motion of the solar system in this frame will kinematically make the observed SGWB
anisotropic, as is this the case for the CMB, where it is found that our local system is moving
with speed v = 1.23 ⇥ 10�3 in a direction (�E , ✓E) = (172�, �11�) in ecliptic coordinates (see
e.g. [31]). The possibility to detect a kinematically-induced dipolar anisotropy with ground based
experiments was first quantitatively explored in [32], and more recently re-assessed in [33] for the
space-based experiment DECIGO. In this Section, we derive general formulas describing how a
dipolar anisotropy is induced on an otherwise isotropic SGWB. In Section 3, we use these results
to study how such dipolar anisotropy can enable the detection of the net circular polarization of
a SGWB with the LISA instrument.

We compute the GW two-point function seen by an observer who is moving with a constant
velocity ~v with respect to a frame in which the SGWB is isotropic. The motion with velocity ~v of
the observer generates a dipole in the observed GW power spectrum at order v, a quadrupole at
order v2 and so on. Under the assumption that v ⌧ 1 (as it is the case if the isotropic frame of
the SGWB and of the CMB coincide), we only focus on the dipole component, considering terms
up to O(v).

We start the computation by considering a frame {t, ~x} in which the SGWB is isotropic.
In this frame, we decompose the tensor field into modes of definite circular polarization, with
� = ±1 denoting right- and left-handed modes, respectively,

hij(t, ~x) =

Z
d3k e�2⇡i~k·~x

X

�

eij,�(k̂)h
�(t,~k) , (1)

where the GW polarization operators in the chiral basis eab,�(k̂) are introduced in Appendix
A. The mode momentum-space operators of definite helicity satisfy the condition h�(t,~k) =
h�(t,�~k)⇤ which, together with the property (A3), ensures that the expression (1) is real. This
expression satisfies the wave equation for a massless particle, which is solved by

h�(t,~k) = A�
~k
cos(2⇡k t) +B�

~k
sin(2⇡k t) , (2)

where A�
~k
= (A�

�~k
)⇤ and B�

~k
= (B�

�~k
)⇤ are stochastic variables that obey

hA�
~k
A�0
~k0
i = hB�

~k
B�0
~k0
i =

P�(k)

4⇡k3
���0�(~k + ~k0) , hA�

~k
B�0
~k0
i = 0 , (3)

where P�(k) is the GW helicity-� power spectrum, depending only on the absolute value k due to
statistical isotropy. We note that, with our 2⇡ convention, k = |~k| is the frequency of the mode.
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hij(t, ~x) = [gij(t, ~x)� ⌘ij ]
TT

Note the “cosmology” convention, instead of the GW convention   

Polarization tensors

in chiral basis
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hij(t, ~x) =

Z +1

�1
df

Z
d2k̂e2⇡if(t�k̂·~x)

X

�

eij,�(k̂)h
�(f, k̂)



Stochastic GW background: power spectra  
The modes of the graviton have time-dependence

Section 5. Four appendices provide further technical details. In App. A, we specify the GW
polarization operators employed in this work. App. B compares our findings with those of ref. [25]
for the measurement of the SGWB circular polarization with LISA. App. C lists the position of
the ground-based detectors considered, and App. D contains the derivation of the analytical
expressions for the monopole and dipole overlap functions for ground-based detectors.

2 Dipolar anisotropy of a cosmological SGWB

Let us assume that there exists a frame in which the SGWB is (statistically) isotropic. It is
natural to associate this frame to the cosmological frame, in which the CMB is isotropic. The
peculiar motion of the solar system in this frame will kinematically make the observed SGWB
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experiments was first quantitatively explored in [32], and more recently re-assessed in [33] for the
space-based experiment DECIGO. In this Section, we derive general formulas describing how a
dipolar anisotropy is induced on an otherwise isotropic SGWB. In Section 3, we use these results
to study how such dipolar anisotropy can enable the detection of the net circular polarization of
a SGWB with the LISA instrument.

We compute the GW two-point function seen by an observer who is moving with a constant
velocity ~v with respect to a frame in which the SGWB is isotropic. The motion with velocity ~v of
the observer generates a dipole in the observed GW power spectrum at order v, a quadrupole at
order v2 and so on. Under the assumption that v ⌧ 1 (as it is the case if the isotropic frame of
the SGWB and of the CMB coincide), we only focus on the dipole component, considering terms
up to O(v).

We start the computation by considering a frame {t, ~x} in which the SGWB is isotropic.
In this frame, we decompose the tensor field into modes of definite circular polarization, with
� = ±1 denoting right- and left-handed modes, respectively,
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where the GW polarization operators in the chiral basis eab,�(k̂) are introduced in Appendix
A. The mode momentum-space operators of definite helicity satisfy the condition h�(t,~k) =
h�(t,�~k)⇤ which, together with the property (A3), ensures that the expression (1) is real. This
expression satisfies the wave equation for a massless particle, which is solved by

h�(t,~k) = A�
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cos(2⇡k t) +B�
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where A�
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where P�(k) is the GW helicity-� power spectrum, depending only on the absolute value k due to
statistical isotropy. We note that, with our 2⇡ convention, k = |~k| is the frequency of the mode.
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Stochastic variables
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dipolar anisotropy is induced on an otherwise isotropic SGWB. In Section 3, we use these results
to study how such dipolar anisotropy can enable the detection of the net circular polarization of
a SGWB with the LISA instrument.

We compute the GW two-point function seen by an observer who is moving with a constant
velocity ~v with respect to a frame in which the SGWB is isotropic. The motion with velocity ~v of
the observer generates a dipole in the observed GW power spectrum at order v, a quadrupole at
order v2 and so on. Under the assumption that v ⌧ 1 (as it is the case if the isotropic frame of
the SGWB and of the CMB coincide), we only focus on the dipole component, considering terms
up to O(v).

We start the computation by considering a frame {t, ~x} in which the SGWB is isotropic.
In this frame, we decompose the tensor field into modes of definite circular polarization, with
� = ±1 denoting right- and left-handed modes, respectively,
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where the GW polarization operators in the chiral basis eab,�(k̂) are introduced in Appendix
A. The mode momentum-space operators of definite helicity satisfy the condition h�(t,~k) =
h�(t,�~k)⇤ which, together with the property (A3), ensures that the expression (1) is real. This
expression satisfies the wave equation for a massless particle, which is solved by
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where P�(k) is the GW helicity-� power spectrum, depending only on the absolute value k due to
statistical isotropy. We note that, with our 2⇡ convention, k = |~k| is the frequency of the mode.
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Statistically homogeneous & isotropic power spectra  

Equal time spectra

Moreover, we have

no net circular polarization , PR (k) = PL (k) ,

X

�

�P� (k) = 0 . (4)

Equations (3) derive from the requirement that the equal time correlator takes the time-independent
form4

hh�(t,~k)h�
0
(t,~k0)i ⌘

P�(k)

4⇡k3
���0�(~k + ~k0) . (5)

The gravitational wave correlator at arbitrary times then reads

hhij(~x, t)hi0j0(~x
0, t0)i =

X

�

Z
d3k

4⇡k3
e�2⇡i~k·(~x�~x 0) eij,�(k̂)ei0j0,�(�k̂)P �(k) cos(2⇡k(t� t0))

=
1

2

X

�

Z
d3k

4⇡k3
e�2⇡i~k·(~x�~x 0)+2⇡ik(t�t0) eij,�(k̂)ei0j0,�(�k̂)P �(k)

+
1

2

X

�

Z
d3k

4⇡k3
e�2⇡i~k·(~x�~x 0)�2⇡ik(t�t0) eij,�(k̂)ei0j0,�(�k̂)P �(k) . (6)

We now perform a boost to a frame {⌧, ~y} that is moving with constant velocity ~v, directed
along the first coordinate, with respect to the {t, ~x} frame

t = �(⌧ � v y1) , x1 = �(y1 � v ⌧) , x2 = y2 , x3 = y3 , (7)

where � ⌘ 1/
p
1� v2. Being a rank-2 tensor, hij transforms as

hij(x1, x2, x3, t) = hab(�(y1 � v ⌧), y2, y3, �(⌧ � v y1))
@ya
@xi

@yb
@xj

' hij(�(y1 � v ⌧), y2, y3, �(⌧ � v y1)) +O
�
v2
�
. (8)

Let us perform this transformation on the decomposition (6). To preserve the same plane wave
structure of the phase in the decomposition, we simultaneously perform a change in the integration
variable, which can be also thought of as a boost on the momenta, with opposite signs of the
boost parameter depending on whether we are in the negative (second line of eq. (6), ~k 7! ~q) or
positive (third line of eq. (6), ~k 7! ~p) frequency component of the unequal-time correlator,

second line of eq. (6) third line of eq. (6)
8
>><

>>:

k1 = �(q1 � v q)
k2 = q2
k3 = q3
k = �(q � v q1)

,

8
>><

>>:

k1 = �(p1 + v p)
k2 = p2
k3 = p3
k = �(p+ v p1)

(9)

with q ⌘ |~q| and p ⌘ |~p|. Therefore, the unequal time correlator in the boosted frame can be
written as

hhij(~y, ⌧)hi0j0(~y
0, ⌧ 0)i =

1

2

X

�

Z
d3k

4⇡k3
e�2⇡i~q·(~y�~y 0)+2⇡iq(⌧�⌧ 0) eij,�(k̂)ei0j0,�(�k̂)P �(k)

4Here we are considering the present-day SGWB, evaluated at times relevant for the detection. When considering
cosmological time scales (e.g. when comparing with the primordial power spectrum), the expansion of the Universe
must be taken into account, encoded in the cosmic transfer function .
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P+(k)≠P-(k)⇒ net circular polarization



Motivation

Q: can we detect a nonvanishing


P+(k)-P-(k) 

with interferometers?

A: not for isotropic spectra with one interferometer

(Seto & Taruya 07, Caldwell & Smith 16)



=

Motivation

A: not for isotropic spectra with one interferometer

(Seto & Taruya 07, Caldwell & Smith 16)



Idea

Two possible ways out:


(1) assume SGWB is not isotropic (dipole) 

(2) use >1 non-coplanar detectors
(Seto 06, 07)

(Seto & Taruya 07, 08, 

Crowder et al 12)

Domcke, Garcia-Bellido, Peloso, Pieroni, Ricciardone, LS & Tasinato 1910.08052  
Completes and updates those analyses in various directions



(1) assume SGWB is not isotropic (dipole)



SGWB dipole with circular polarization

Start from isotropic spectrum and boost observer
<latexit sha1_base64="PHm/NpfcchxH9UWdXdF6afRmmIc="></latexit>

hh�(~k, t)h�0
(~k 0, t0)i =���0

�(3)(~k + ~k 0)

4⇡ k3

(
P�(k) cos[2⇡k(t� t0)] + i(k̂ · ~v)

⇥
2P�(k)� k P�0(k)

⇤
sin[2⇡k(t� t0)]

)
+O(v2).

+O(v2)
observer’s velocity  

[First correction =0 at equal times]



LISA observables
Basic quantity: time delay δti , due to GWs, between photons 

on two-way trips along two arms ending at vertex i ∈ {X, Y, Z}

Time Delay Interferometry LISA channels  {A, E, T}
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⌃A =
2 �tX � �tY � �tZ

6L

⌃E =
�tZ � �tY
2
p
3L

⌃T =
�tX + �tY + �tZ

6L

Performing linear combinations of the interferometers ~xi we can construct the Time Delay
Interferometry (TDI) LISA channels {A,E, T} [39]

⌃A ⌘
1

3
(2�X � �Y � �Z) , ⌃E ⌘

1
p
3
(�Z � �Y ) , ⌃T ⌘

1

3
(�X + �Y + �Z) . (18)

For an isotropic background, we can exploit the symmetry under the exchange of the vertices
of the equilateral triangle to see that all self correlators among �X , �Y , �Z are equal to each
other, as are all cross correlations. This in particular implies h⌃A⌃Ai = h⌃E⌃Ei, while the cross
correlations among ⌃A, ⌃E and ⌃T vanish. As we will see explicitly below, these statements do
not apply to anisotropic components of the SGWB.

The signal induced by a passing gravitational wave in the channels O = {A,E, T} is

⌃O(t) =
X

�

Z
d3k h�(~k, t� L) eab,�(k̂)Q

O
ab(~k; {x̂j}) , (19)

with Q
O
ab(

~k; {x̂j}) =
P

i c
O
i Q

i
ab(~xi,

~k; {Ûj}), where the matrix c is given by

c =

0

B@

2
3 �

1
3 �

1
3

0 �
1p
3

1p
3

1
3

1
3

1
3

1

CA . (20)

For more details on the derivation and notation, see Ref. [38].

3.1.1 Response function to the SGWB monopole and dipole components

Combining eq. (14) and (19) yields the two-point correlation function in the time domain,

⌦
⌃O(t)⌃O0(t0)

↵
=

1

4

X

�

Z
dk

k

h
M

�
OO0(k)P�(k) cos

⇥
2⇡k(t� t0)

⇤

+ vD�
OO0

�
2P�(k)� kP 0

�(k)
�
sin

⇥
2⇡k(t� t0)

⇤i
, (21)

where we have introduced the monopole and dipole response functions

M
�
OO0 (k) ⌘ 4

Z
d⌦k̂

4⇡
eab,�(k̂)ea0b0,�(�k̂)QO

ab(~k)Q
O0
a0b0(�~k) , (22)

D
�
OO0 (k, v̂ · n̂) ⌘ 4i

Z
d⌦k̂

4⇡
eab,�(k̂)ea0b0,�(�k̂)QO

ab(~k)Q
O0
a0b0(�~k) k̂ · v̂ , (23)

where n̂ is the normal to the plane of LISA, that, for definiteness, we take it to be oriented
upwards for an observer for whom the vertices labeled as ~x1, ~x2, ~x3 follow one another in the
anti-clockwise direction.

The two response functions satisfy the following properties

1. M
�
OO0 and D

�
OO0 are real,

2. M
�
OO0 does not depend on the orientation of the detector; D�

OO0 depends on the direction
of the detector only through the cosine of the angle between n̂ and v̂,
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Depends on GW

momentum and 


detector geometry

X

Y

Z

{
L



LISA observables and dipole
Inserting the expression for power spectrum 
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M
�
OO0 (k) ⌘ 4

Z
d⌦k̂

4⇡
eab,�(k̂)ea0b0,�(�k̂)QO

ab(~k)Q
O0
a0b0(�~k) , (22)

D
�
OO0 (k, v̂ · n̂) ⌘ 4i

Z
d⌦k̂

4⇡
eab,�(k̂)ea0b0,�(�k̂)QO

ab(~k)Q
O0
a0b0(�~k) k̂ · v̂ , (23)

where n̂ is the normal to the plane of LISA, that, for definiteness, we take it to be oriented
upwards for an observer for whom the vertices labeled as ~x1, ~x2, ~x3 follow one another in the
anti-clockwise direction.

The two response functions satisfy the following properties

1. M
�
OO0 and D

�
OO0 are real,

2. M
�
OO0 does not depend on the orientation of the detector; D�

OO0 depends on the direction
of the detector only through the cosine of the angle between n̂ and v̂,
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Figure 1: Monopole response function. It vanishes in the AE cross-correlation channel while is
identical in the AA and EE auto-correlation channels and is insensitive to the chirality of the
SGWB.

we simultaneously change the GW chirality. Namely, eab,�Qi
ab

�
k//, k?

�
= eab,��Qi

ab

�
k//, �k?

�
,

as we already proved in [38]. Under the mirror transformation, v? changes sign. Therefore, the
integrand of the monopole response function is unchanged if we perform this mirror symmetry,
and we flip the two helicities, while the integrand of the dipole response function changes sign
under the same transformations. The change of ~k can be then “undone” by a change of the
integration variable. This implies that the monopole response function is invariant when we flip
the two helicities, while the dipole response function changes sign.

Having proved the above properties, let us now consider a re-labeling of two satellites, say
~x2 $ ~x3. We see from the definitions (18) that the ⌃A measurement is invariant under this
re-labeling, while ⌃E changes sign. Therefore, the self-correlators h⌃A⌃Ai and h⌃E⌃Ei are even
under the re-labeling, while the cross-correlator h⌃A⌃Ei is odd. The re-labeling has the e↵ect
of inverting the direction of the normal to the plane of the instrument, as we have defined it
below eq. (23). Due to the property (2.) demonstrated above, the monopole response function is
invariant under this inversion, while the dipole response function changes sign. Therefore

M
�
AE = 0 , D

�
AA = D

�
EE = 0 . (26)

These relations can be immediately verified by a direct evaluation of eqs. (22) and (23).5 In
Figs. 1 and 2 we depict the monopole response functions for the AA and EE channel as well as
the dipole response function for the AE channel. We recall (property (4.) above) that the dipole
response function is odd under a flip of helicity, � 7! ��, again reflecting that the dipole response
function is parity odd. In particular, due the summation over helicity, the total two-point function
h⌃A⌃Ei will only be non-zero if the stochastic background is chiral, i.e. if P�(k) 6= P��(k).

An important consequence of this is that one should be careful in assuming that a nonvanishing
value for h⌃A⌃Ei would be due only to noise. As we proved above, this cross-correlator vanishes

5Similarly, re-labeling of the tensor indices in eq. (23) while simultaneously flipping k̂ 7! �k̂ yieldsD�
AE = �D�

EA.
Consequently, since h⌃A(t)⌃E(t

0)i = h⌃E(t
0)⌃A(t)i, we conclude that the dipole contribution to h⌃A(t)⌃E(t

0)i
must be odd under the exchange t $ t0, as reflected by the sine function in eq. (21). On the contrary, the
auto-correlations h⌃A(t)⌃A(t

0)i and h⌃E(t)⌃E(t
0)i trivially have to be even under t $ t0.
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AA = D�

EE = 0

LISA observables and dipole
Inserting the expression for power spectrum 

Performing linear combinations of the interferometers ~xi we can construct the Time Delay
Interferometry (TDI) LISA channels {A,E, T} [39]

⌃A ⌘
1

3
(2�X � �Y � �Z) , ⌃E ⌘

1
p
3
(�Z � �Y ) , ⌃T ⌘

1

3
(�X + �Y + �Z) . (18)

For an isotropic background, we can exploit the symmetry under the exchange of the vertices
of the equilateral triangle to see that all self correlators among �X , �Y , �Z are equal to each
other, as are all cross correlations. This in particular implies h⌃A⌃Ai = h⌃E⌃Ei, while the cross
correlations among ⌃A, ⌃E and ⌃T vanish. As we will see explicitly below, these statements do
not apply to anisotropic components of the SGWB.

The signal induced by a passing gravitational wave in the channels O = {A,E, T} is

⌃O(t) =
X

�

Z
d3k h�(~k, t� L) eab,�(k̂)Q

O
ab(~k; {x̂j}) , (19)

with Q
O
ab(

~k; {x̂j}) =
P

i c
O
i Q

i
ab(~xi,

~k; {Ûj}), where the matrix c is given by

c =

0

B@

2
3 �

1
3 �

1
3

0 �
1p
3

1p
3

1
3

1
3

1
3

1

CA . (20)

For more details on the derivation and notation, see Ref. [38].

3.1.1 Response function to the SGWB monopole and dipole components

Combining eq. (14) and (19) yields the two-point correlation function in the time domain,

⌦
⌃O(t)⌃O0(t0)

↵
=

1

4

X

�

Z
dk

k

h
M

�
OO0(k)P�(k) cos

⇥
2⇡k(t� t0)

⇤

+ vD�
OO0

�
2P�(k)� kP 0

�(k)
�
sin

⇥
2⇡k(t� t0)

⇤i
, (21)

where we have introduced the monopole and dipole response functions

M
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OO0 (k) ⌘ 4

Z
d⌦k̂

4⇡
eab,�(k̂)ea0b0,�(�k̂)QO

ab(~k)Q
O0
a0b0(�~k) , (22)

D
�
OO0 (k, v̂ · n̂) ⌘ 4i

Z
d⌦k̂

4⇡
eab,�(k̂)ea0b0,�(�k̂)QO

ab(~k)Q
O0
a0b0(�~k) k̂ · v̂ , (23)

where n̂ is the normal to the plane of LISA, that, for definiteness, we take it to be oriented
upwards for an observer for whom the vertices labeled as ~x1, ~x2, ~x3 follow one another in the
anti-clockwise direction.

The two response functions satisfy the following properties

1. M
�
OO0 and D

�
OO0 are real,

2. M
�
OO0 does not depend on the orientation of the detector; D�

OO0 depends on the direction
of the detector only through the cosine of the angle between n̂ and v̂,

8

dipole response function

monopole response function

DAE
R = - DAE

L

0.01 0.05 0.10 0.50 1 5 10

10-6

10-5

10-4

0.001

0.010

0.100

k L

|D
A

E
R

(k
,
v�
)|
/c

o
s
(�

)

Figure 2: Absolute value of the dipole response function. The dashed (solid) line indicates positive
(negative) values for D

R
AE = �D

L
AE. The angle ↵ denotes the angle between the orientation of

the dipole v̂ and the plane of the detector.

in presence of the monopole only, and one might be tempted to use any non-zero result as a
toll for noise characterization. We have shown that this quantity is actually non-vanishing if the
SGWB has a net polarization.

3.1.2 Dipole antenna pattern

As discussed above, the dipole response function (23) depends only on the angle between the
dipole and the normal vector of the detector plane, v̂ · n̂. The directional sensitivity of the
integrand of eq. (23) is more involved, encoding the geometrical sensitivity of the detector to
di↵erent sky regions, the so-called antenna pattern. The antenna pattern of the monopole re-
sponse function shows that GW interferometers are most sensitive to GWs arriving orthogonally
to the detector plane (see e.g. [37]). In Fig. 3 we depict the corresponding dipole antenna pat-
tern, taking into account that, due to the motion of the LISA-plane around the sun, the e↵ective
dipole will receive an annual modulation. See Section 3.2 for more details about the LISA orbit
parametrization.

These antenna patterns give allow for a qualitative understanding of the resolution of GW
detectors to higher order parity odd anisotropies. Moreover, as we will discuss in Sec. 3.2, the
expected annual modulation of the dipole response function can be used to optimize the signal-
to-noise ratio of this measurement. This is in particular true if the SGWB dipole coincides with
the (known) dipole of the CMB.

3.1.3 Small frequency limit of the response functions

In the small frequency limit, k L ⌧ 1, we can Taylor-expand the integrands of eqs. (22) and (23),
and then perform the integrals numerically. We obtain

M
�
AA (k) = M

�
EE (k) =

3

10
�

169⇡2

420
k2 L2 +O

�
k4L4

�
,
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LISA observables and dipole
Inserting the expression for power spectrum 

Performing linear combinations of the interferometers ~xi we can construct the Time Delay
Interferometry (TDI) LISA channels {A,E, T} [39]
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1

3
(2�X � �Y � �Z) , ⌃E ⌘

1
p
3
(�Z � �Y ) , ⌃T ⌘
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3
(�X + �Y + �Z) . (18)

For an isotropic background, we can exploit the symmetry under the exchange of the vertices
of the equilateral triangle to see that all self correlators among �X , �Y , �Z are equal to each
other, as are all cross correlations. This in particular implies h⌃A⌃Ai = h⌃E⌃Ei, while the cross
correlations among ⌃A, ⌃E and ⌃T vanish. As we will see explicitly below, these statements do
not apply to anisotropic components of the SGWB.

The signal induced by a passing gravitational wave in the channels O = {A,E, T} is

⌃O(t) =
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with Q
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For more details on the derivation and notation, see Ref. [38].

3.1.1 Response function to the SGWB monopole and dipole components

Combining eq. (14) and (19) yields the two-point correlation function in the time domain,
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where we have introduced the monopole and dipole response functions

M
�
OO0 (k) ⌘ 4

Z
d⌦k̂

4⇡
eab,�(k̂)ea0b0,�(�k̂)QO

ab(~k)Q
O0
a0b0(�~k) , (22)

D
�
OO0 (k, v̂ · n̂) ⌘ 4i

Z
d⌦k̂

4⇡
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ab(~k)Q
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a0b0(�~k) k̂ · v̂ , (23)

where n̂ is the normal to the plane of LISA, that, for definiteness, we take it to be oriented
upwards for an observer for whom the vertices labeled as ~x1, ~x2, ~x3 follow one another in the
anti-clockwise direction.

The two response functions satisfy the following properties

1. M
�
OO0 and D

�
OO0 are real,

2. M
�
OO0 does not depend on the orientation of the detector; D�

OO0 depends on the direction
of the detector only through the cosine of the angle between n̂ and v̂,
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SNR for LISA & parity-odd dipole
Observable: 

Optimal SNR for LISA

(assuming scale-invariant ΩGW) 

(Normalized to current LIGO upper bound on ΩGW )
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SNR for LISA & parity-odd dipole
Observable: 

Optimal SNR for LISA

(assuming scale-invariant ΩGW) 

(Compare to LISA sensitivity to ΩGW≃10-13 )

<latexit sha1_base64="uZbS0YhrR00pRpGvaqlD8HA2waw="></latexit>

h⌃A(f)⌃E(f
0)i = i �(f + f 0)Ss(f)

<latexit sha1_base64="cmJd1ew/qmEoCKCzsV/6qZf74N8="></latexit>

SNR '
⇣ v

10�3

⌘ ��P
� �⌦

�
GW

��
3⇥ 10�11

s
T

3 years



SNR for Einstein Telescope & parity-odd dipole

Einstein Telescope=Proposed underground LISA

(10km arms) 

Optimal SNR for ET

(assuming scale-invariant ΩGW) 

<latexit sha1_base64="+SKXcBC68mXcj/iiTmJAPprUPp8=">AAACi3icbVHdbtMwGHUyYKUwVsYlNxYV0pCgctppqxAXkyYEVzDGuk6qS+S4TmvNTjL7y6TKy8vskbjjbXDTIMbGkSwfnfP9+XNSKGmBkF9BuPHg4aPN1uP2k6dbz7Y7z3fObF4aLkY8V7k5T5gVSmZiBBKUOC+MYDpRYpxcHK388ZUwVubZKSwLMdVsnslUcgZeijs337+cUCu1uMR9Qgh9S5VIYZemhnF3VbmI/HDvBlVFjZwv4M1tt+bX1JY6psp3nLE/11ct5ix2n8ZN2nXl9in4JhbX9YZ/69lLA25d77RyA4od1QwWRrulYMZWHnGnS3qkBr5PooZ0UYPjuPOTznJeapEBV8zaSUQKmDpmQHIlqjYtrSgYv2BzMfE0Y36wqat3WeHXXpnhNDf+ZIBr9XaGY9rapU585GpQe9dbif/zJiWkw6mTWVGCyPi6UVoqDDlefQyeSSM4qKUnjBvpZ8V8wfxiwH9f2y8huvvk++Ss34v2e/1ve93Dk2YdLfQSvUK7KEIH6BB9RsdohHjQCnrBQTAMt8JB+D78sA4NgybnBfoH4cffBj/IJw==</latexit>

SNR ' 2000
⇣ v

10�3

⌘✓
|
P

� �⌦GW |
6⇥ 10�8

◆s
T

3 years

(Same as LISA!)

But note sensitivity at ~100 Hz instead of ~.01 Hz



(2) use >1 non-coplanar detectors



Ground based interferometers

In small frequency approximation

(good for ground-based interferometers)


2πk L≪1
response functions simplify:

analytical expressions! 

Flanagan 93, 

Allen Romano 97, 

Seto Taruya 06, 07



Ground based interferometers

Defining…

4 Measuring the SGWB net circular polarization with ground-
based interferometers

We now apply the formulas and techniques of the previous section to the case of ground-based
interferometers. We develop fully analytical, ‘covariant’ formulas for overlap functions, describing
correlations among ground based interferometers in the small antenna limit (condition (46) below)
6. Our formulas include the possibility that the SGWB is circularly polarized, do not rely
on special choices of frame (this is why we call them covariant), and apply to any detector
shape (not limited to interferometers with orthogonal arms). When correlating distinct ground
based interferometers, it is well known that the SGWB monopole is already sensitive to circular
polarization (see e.g. [22, 23, 27]). We demonstrate this fact in terms of our analytic formulas,
discuss the most convenient detector locations for maximizing sensitivity to circular polarization,
and also include the kinematically induced dipole in our analysis. In the final part of this section
we turn to the future ground-based Einstein Telescope. A single instrument of this type will
be planar, and hence measuring the chirality of the SGWB requires taking into accoung the
kinematic dipole, as in the analysis for LISA.

Our starting point is given by relations (22) and (23), which apply also to pairs of ground-
based interferometers (we actually choose a di↵erent overall normalization, as we discuss below).
In these cases, the fact that the peak sensitivity of these detectors is at a frequency which is
small compared to their inverse arm length, results in a crucial simplification, allowing us to
obtain fully analytical expressions for the overlap functions. Covariant, analytical formulas for
the unpolarized overlap function to the SGWB monopole MR (k)+M

L (k) can already be found
in the literature [30, 42]. Here for the first time we provide covariant, analytic expressions for
the ��dependent terms (contrary to LISA, these terms do not generally vanish, since pairs of
detectors located in di↵erent locations on the Earth are generally not coplanar). Moreover, for
the first time we provide a covariant, analytic expressions for the overlap function to the SGWB
dipole.

For ground-based detectors, the crucial simplification arises from the fact that their sensitivity
region satisfies the “short arm condition” (referred to as “small kL limit” in Sec. 3.1.3)

2⇡k L ' 0.0084
k

100Hz

L

4 km
⌧ 1 , (46)

where we have normalized the frequency k to the region of best sensitivity for the existing and
forthcoming detectors, and where we recall that the arms of the two LIGO sites are L = 4
km long, while those of Virgo and KAGRA are L = 3 km long. In this limit, the quantity T

indroduced in eq. (17) evaluates to T ! 2. Using this value, eq. (15) assumes the simpler form
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i ⌘

Ûa
i Û

b
i � V̂ a

i V̂
b
i

2
, (47)

where now Ûi and V̂i are the orientations of the arms of the i�th detector, that start from the
common point located at ~xi. In the following, we refer to this point as to the “position of the
detector” for brevity. The vectors ~xi, Ûi, and V̂i for the two LIGO detectors, for Virgo, and for
KAGRA are given in Appendix C.

6As customary in the literature, we call overlap functions the response functions for GW experiments that
correlate distinct detectors.
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Using eq. (14) for the GW correlator, we then obtain an expression identical to (21), namely

⌦
⌃i(t)⌃j(t

0)
↵
=

X

�

Z
dk

k

h
M

�
ij(k)P�(k) cos

⇥
2⇡k(t� t0)

⇤

� vD�
ij

�
2P�(k)� kP 0

�(k)
�
sin

⇥
2⇡k(t� t0)

⇤i
, (48)
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In Appendix D we compute these expression analytically. Parameterizing the positions of the
di↵erent detectors as
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(where j` are spherical Bessel functions) the overlap function for the SGWB monopole is
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c
ij , (52)

while that to the SGWB dipole is
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7We use a di↵erent normalization for the overlap function for ground-based interferometers with respect to the
one used for LISA in Sec. 3, to respect the literature.
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~xj � ~xi
|~xi � ~xj |

, (50)

and introducing the functions

fA () ⌘
j1 ()

2
+

1� 2

22
j2 () , fB () ⌘

j1 ()


�

5� 2

2
j2 () ,

fC () ⌘
�7j1 ()

4
+

35� 2

42
j2 () ,

fD () ⌘
j1 ()

2
�

j2 ()

2
, fE () ⌘ �

j1 ()

2
+ 5

j2 ()

2
, (51)

(where j` are spherical Bessel functions) the overlap function for the SGWB monopole is

M
�
ij (k) = fA () tr [DiDj ] + fB () (Diŝij)
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b ✏abcŝ
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7We use a di↵erent normalization for the overlap function for ground-based interferometers with respect to the
one used for LISA in Sec. 3, to respect the literature.
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A () v̂eŝe (DiDj)
aa

+


f 0
B ()� 2

fB ()



�
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a (Dj ŝ)
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FIG. 2: Top-left: 95% CL limit curves based on the most recent LIGO result [15], for several values of α. Top-right: Expected
sensitivities (at 2σ level) for the advanced LIGO H1-L1 pair and for an example of a third-generation detector pair (see text
for more detail). Bottom-left: 95% CL contours are shown for several examples of simulated SGWB with parity violation,
assuming α = 0, standard strain sensitivities, and 1 year of observation. The x’s denote the signal simulation parameter values.
The lightest-gray line corresponds to the recovery with H1-L1, medium-gray line to the recovery with H1-L1-V1, and the black
line to the recovery with H1-L1-V1-K1 network. Bottom-right: assuming a SGWB with maximal parity violation (Π = +1), the
lines denote Ωα needed for a given α to detect the SGWB and exclude Π = 0 at 95% confidence, using two second-generation
detector networks and the example of a third-generation detector pair.

The top-right plot of Figure 2 shows the expected sensi-
tivities for the detection of a SGWB at a 2σ level of the
Advanced LIGO H1-L1 detector pair, assuming standard
expected strain sensitivity [28]. It also shows the sensi-
tivity of an example configuration of two third-generation
detectors, assuming two L-shape detectors of strain sen-
sitivity similar to the Einstein Telescope design [33], lo-
cated at opposite poles of the Earth, with respective arm
orientation rotated by π/8. Such a pair of detectors has
not been proposed yet, so this example is only meant to
illustrate the potential reach of third-generation detec-
tors, in a configuration that suppresses neither γI nor
γV terms. In both cases we assume 1 year of observa-
tion. As expected, the second-generation detectors will
provide 3-4 orders of magnitude better SGWB measure-

ment as compared to the first-generation detectors, and
the third-generation detectors could provide yet another
3-4 orders of magnitude improvement.

The bottom-left plot of Figure 2 illustrates the recovery
of several simulated parity violating SGWB signals using
different networks of second-generation GW detectors.
Having multiple detector pairs in the network does not
significantly improve the theoretical uncertainty σi (Eq.
6) over the H1-L1 detector pair. However, multiple de-
tector pairs introduce multiple γV ’s in the search, which
helps break the degeneracy between the parity conserv-
ing and violating terms in Eq. 5. As a result, the 95% CL
contours are significantly tighter in Π when using multi-
ple detector pairs. Finally, the bottom-right plot shows
the amplitude Ωα required to detect parity violation
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φ

Figure 4: First row: monopole and dipole overlap functions for the LIGO Hanford (LH) and
LIGO Livingston (LL) pair. Second row: monopole and dipole overlap functions for the Virgo
(V) and KAGRA (K) pair. In the dipole case, v̂ = (0, 0, 1) (in the coordinate system introduced in
Appendix C) has been chosen for illustrative purposes. The solid lines are the analytic expressions
(52) and (53). The dotted black lines at small frequency are the asymptotic values (55). The dots
are obtained from a numerical evaluation.

at the location of each detector). With this choice, the unit vector going from the first to the
second detector is

ŝ =
1p

2 (1� cos�)
(�1 + cos�, sin�, 0) , (57)

and the ��dependent terms in the monopole overlap function (52) give rise to
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where we note that � is the angle (centered in the center of the Earth) between the two detectors,
while ↵ and � express, respectively, the orientations of the U�arm of the two detectors. We notice
that eq. (58) always vanishes when � = 0 (the two detectors are coplanar) and when the sum
(↵ + �) is equal to zero or ⇡/2. If this condition occurs, indeed, the combination D

ac
i D

bd
j is

symmetric in the indexes (a, b): as we have discussed above, this implies null sensitivity to
parity violating e↵ects. This result can also interpreted geometrically as follows. If ↵ = ��, the
system of detectors is symmetric about the plane through the maximal circle on Earth that passes
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Figure 4: First row: monopole and dipole overlap functions for the LIGO Hanford (LH) and
LIGO Livingston (LL) pair. Second row: monopole and dipole overlap functions for the Virgo
(V) and KAGRA (K) pair. In the dipole case, v̂ = (0, 0, 1) (in the coordinate system introduced in
Appendix C) has been chosen for illustrative purposes. The solid lines are the analytic expressions
(52) and (53). The dotted black lines at small frequency are the asymptotic values (55). The dots
are obtained from a numerical evaluation.
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Figure 5: The location of all existing detectors on Earth, together with a LIGO-India detector in
Maharashtra, and a hypothetical optimal-for-chiral-SGWB detector in Perth. We also show the
antipodes of the LIGO-Livingston detector (green dot), which is not far from the Perth detector.
We note that the Figure shows the point of view of an observer at a specific location in space,
who sees less than half of the Earth. Lighter lines (red dots) are used to indicate continents
(interferometers) that are not seen by this observer.

halfway between the two detectors. As a consequence, a right-handed gravitational wave coming
from one side of this plane is indistinguishable from a left-handed one coming from the opposite
direction, so that the system, after selecting the isotropic monopole contribution, is insensitive to
chirality. This argument is analogous to, and generalizes, that given in [24], where it was shown
that coplanar detectors are insensitive to chirality (in that case, the symmetry plane coincided
with the plane of the two detectors).

In particular, if the detectors are located at the antipodes (� = ⇡), the absolute value of
eq. (58) is maximized and reduces to

�Mantipodes =
�2 j0 () +

�
3� 2

�
j2 ()

6
sin [2 (↵+ �)] . (59)

In what comes next, using our formulas we discuss more quantitatively the best choices of location
for antipodal ground based detectors in order to detect parity violating e↵ects in the SGWB.
Similar considerations can also be found in [22,23].

Choice of Earth location for optimal detection of a chiral SGWB

If we search for the antipodes of the four known detectors (Hanford, Livingston, Virgo, KAGRA),
we see that all of them fall in the Ocean (Pacific, Atlantic and Indian). The antipode of LIGO-
Livingston (L) falls in the Indian Ocean near Australia. The closest large city to it is Perth
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Antipodes to LIGO-L, LIGO-H,

Virgo and KAGRA are all in Ocean…


Antipode to LIGO-L “reasonably close”

to Perth, Australia



To sum up…

• Theoretical motivation for chiral SGWB, 
smoking gun of primordial origin?


• Parity violating SGWB detectable by existing 
network of ground-based detectors if ΩGW ~10-8


• Detectable by LISA (@.01 Hz) or ET (@100 Hz) if  
ΩGW ~10-11



