Measuring the net circular polarization of the stochastic gravitational wave background with interferometers

Domcke, Garcia-Bellido, Peloso, Pieroni,
Ricciardone, LS \& Tasinato 1910.08052, JCAP

Amherst

Motivation

How to disentangle stochastic GW background of primordial origin
 from that of astrophysical origin?

One possibility:
we do not expect astrophysical stochastic GWs to have net chirality (requires parity violation)

Motivation

There are models with parity violating dynamics leading to net helicity for primordial stochastic GW background

$\begin{gathered}\text { Parity-violating } \\ \text { dynamics }\end{gathered}>\binom{$ Helical gauge }{ fields }\leadsto Helical SGWB
$\phi \epsilon_{\mu \nu \rho \lambda} R^{\mu \nu \alpha \beta} R^{\rho \lambda}{ }_{\alpha \beta}$
$\phi \epsilon_{\mu \nu \rho \lambda} F^{\mu \nu} F^{\rho \lambda}$

Stochastic GW background: power spectra

The transverse-traceless perturbation of the metric

$$
\begin{gathered}
h_{i j}(t, \vec{x})=\left[g_{i j}(t, \vec{x})-\eta_{i j}\right]^{T T} \\
\text { is Fourier-transformed to } \\
h_{i j}(t, \vec{x})=\int d^{3} k e^{-2 \pi i \vec{k} \cdot \vec{x}} \sum_{\lambda} e_{i j, \lambda}(\hat{k}) j^{\lambda}(t, \vec{k})
\end{gathered}
$$

Note the "cosmology" convention, instead of the GW convention

$$
h_{i j}(t, \vec{x})=\int_{-\infty}^{+\infty} d f \int d^{2} \hat{k} e^{2 \pi i f(t-\hat{k} \cdot \vec{x})} \sum_{\lambda} e_{i j, \lambda}(\hat{k}) h^{\lambda}(f, \hat{k})
$$

Stochastic GW background: power spectra

The modes of the graviton have time-dependence

$$
h^{\lambda}(t, \vec{k})=A_{\vec{k}}^{\lambda} \cos (2 \pi k t)+B_{\vec{k}}^{\lambda} \sin (2 \pi k t)
$$

Statistically homogeneous \& isotropic power spectra

$$
\left\langle A_{\vec{k}}^{\lambda} A_{\vec{k}^{\prime}}^{\lambda^{\prime}}\right\rangle=\left\langle B_{\vec{k}}^{\lambda} B_{\vec{k}^{\prime}}^{\lambda^{\prime}}\right\rangle=\frac{P_{\lambda}(k)}{4 \pi k^{3}} \delta_{\lambda \lambda^{\prime}} \delta\left(\vec{k}+\vec{k}^{\prime}\right), \quad\left\langle A_{\vec{k}}^{\lambda} B_{\vec{k}^{\prime}}^{\lambda^{\prime}}\right\rangle=0
$$

Equal time spectra

Motivation

Q: can we detect a nonvanishing

$$
P_{+}(k)-P_{-}(k)
$$

with interferometers?

A: not for isotropic spectra with one interferometer
(Seto \& Taruya 07, Caldwell \& Smith 16)

Motivation

Idea

Two possible ways out:

(1) assume SGWB is not isotropic (dipole)

(Seto 06, 07)
(2) use >1 non-coplanar detectors
(Seto \& Taruya 07, 08, Crowder et al 12)
(1) assume SGWB is not isotropic (dipole)

SGWB dipole with circular polarization

Start from isotropic spectrum and boost observer

$$
\begin{array}{r}
\left\langle h^{\lambda}(\vec{k}, t) h^{\lambda^{\prime}}\left(\vec{k}^{\prime}, t^{\prime}\right)\right\rangle=\delta_{\lambda \lambda^{\prime}} \frac{\delta^{(3)}\left(\vec{k}+\vec{k}^{\prime}\right)}{4 \pi k^{3}}\left\{P^{\lambda}(k) \cos \left[2 \pi k\left(t-t^{\prime}\right)\right]+i(\hat{k}, \vec{v})\left[2 P^{\lambda}(k)-k P^{\lambda^{\prime}}(k)\right] \sin \left[2 \pi k\left(t-t^{\prime}\right)\right]\right\} \\
\text { observer's velocity }
\end{array}
$$

[First correction $=0$ at equal times]

LISA observables

Basic quantity: time delay δt_{i}, due to GWs, between photons on two-way trips along two arms ending at vertex $i \in\{X, Y, Z\}$

Time Delay Interferometry LISA channels $\{A, E, T\}$

$$
\begin{aligned}
\Sigma_{A} & =\frac{2 \delta t_{X}-\delta t_{Y}-\delta t_{Z}}{6 L} \\
\Sigma_{E} & =\frac{\delta t_{Z}-\delta t_{Y}}{2 \sqrt{3} L} \\
\Sigma_{T} & =\frac{\delta t_{X}+\delta t_{Y}+\delta t_{Z}}{6 L}
\end{aligned}
$$

LISA observables and dipole

Inserting the expression for power spectrum

$$
\left\langle\Sigma_{O}(t) \Sigma_{O^{\prime}}\left(t^{\prime}\right)\right\rangle=\frac{1}{4} \sum_{\lambda} \int \frac{d k}{k}\left[\left(\mathcal{M}_{O O^{\prime}}(A)\right) P_{\lambda}(k) \cos \left[2 \pi k\left(t-t^{\prime}\right)\right]\right.
$$

LISA observables and dipole

Inserting the expression for power spectrum

LISA observables and dipole

Inserting the expression for power spectrum

$$
\begin{aligned}
& \left\langle\Sigma_{O}(t) \Sigma_{O^{\prime}}\left(t^{\prime}\right)\right\rangle=\frac{1}{4} \sum_{\lambda} \int \frac{d k}{k}\left[\mathcal{M}_{O O^{\prime}}^{\lambda}(k) P_{\lambda}(k) \cos \left[2 \pi k\left(t-t^{\prime}\right)\right]\right. \\
& \text { monopole response function } \left.+v \xrightarrow[O_{0}^{\prime}]{\text { dipole response function }}\left(2 P_{\lambda}(k)-k P_{\lambda}^{\prime}(k)\right) \sin \left[2 \pi k\left(t-t^{\prime}\right)\right]\right]
\end{aligned}
$$

$$
\mathcal{D}_{A E}^{+}=-\mathcal{D}_{A E}^{-}
$$

$$
\begin{array}{r}
\left\langle\Sigma_{A} \Sigma_{E}\right\rangle=0 \\
P+(k)=P_{-}(k)
\end{array}
$$

SNR for LISA \& parity-odd dipole

Observable:

$$
\left\langle\Sigma_{A}(f) \Sigma_{E}\left(f^{\prime}\right)\right\rangle
$$

Optimal SNR for LISA
(assuming scale-invariant $\Omega_{G W}$)
yearly modulation

$$
S N R \simeq 8.5 \times 10^{13} v\left|\sum_{\lambda} \lambda \Omega_{G W}^{\lambda} h^{2}\right| \sqrt{\int_{0}^{\frac{T}{1 \text { year }}}(\hat{v} \cdot \hat{n}(t))^{2} d t}
$$

SNR for LISA \& parity-odd dipole

Observable:

$$
\left\langle\Sigma_{A}(f) \Sigma_{E}\left(f^{\prime}\right)\right\rangle
$$

Optimal SNR for LISA
 (assuming scale-invariant $\Omega_{G W}$)

$S N R \simeq 2000\left(\frac{v}{10^{-3}}\right) \frac{\left|\sum_{\lambda} \lambda \Omega_{G W}^{\lambda}\right|}{6 \times 10^{-8}} \sqrt{\frac{T}{3 \text { years }}}$

SNR for LISA \& parity-odd dipole

Observable:

$$
\left\langle\Sigma_{A}(f) \Sigma_{E}\left(f^{\prime}\right)\right\rangle
$$

Optimal SNR for LISA
(assuming scale-invariant $\Omega_{G W}$)

$$
S N R \simeq\left(\frac{v}{10^{-3}}\right) \frac{\left|\sum_{\lambda} \lambda \Omega_{G W}^{\lambda}\right|}{3 \times 10^{-11}} \sqrt{\frac{T}{3 \text { years }}}
$$

SNR for Einstein Telescope \& parity-odd dipole

Einstein Telescope=Proposed underground LISA (10km arms)

Optimal SNR for ET (assuming scale-invariant $\Omega_{G W}$)

$$
S N R \simeq 2000\left(\frac{v}{10^{-3}}\right)\left(\frac{\left|\sum_{\lambda} \lambda \Omega_{G W}\right|}{6 \times 10^{-8}}\right) \sqrt{\frac{T}{3 \text { years }}}
$$

(Same as LISA!)
But note sensitivity at $\sim 100 \mathrm{~Hz}$ instead of $\sim .01 \mathrm{~Hz}$
(2) use >1 non-coplanar detectors

Ground based interferometers

> In small frequency approximation (good for ground-based interferometers)

$$
2 \pi k L \ll 1
$$

response functions simplify: analytical expressions!

Ground based interferometers

Defining...

$$
\begin{gathered}
\kappa \equiv 2 \pi k\left|\vec{x}_{i}-\vec{x}_{j}\right|, \quad \hat{s}_{i j} \equiv \frac{\vec{x}_{j}-\vec{x}_{i}}{\left|\vec{x}_{i}-\vec{x}_{j}\right|} \\
\begin{array}{c}
\text { Iocation of } \\
i \text {-th interferometer }
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& f_{A}(\kappa) \equiv \frac{j_{1}(\kappa)}{2 \kappa}+\frac{1-\kappa^{2}}{2 \kappa^{2}} j_{2}(\kappa) \quad, \quad f_{B}(\kappa) \equiv \frac{j_{1}(\kappa)}{\kappa}-\frac{5-\kappa^{2}}{\kappa^{2}} j_{2}(\kappa) \\
& f_{C}(\kappa) \equiv \frac{-7 j_{1}(\kappa)}{4 \kappa}+\frac{35-\kappa^{2}}{4 \kappa^{2}} j_{2}(\kappa), \\
& f_{D}(\kappa) \equiv \frac{j_{1}(\kappa)}{2}-\frac{j_{2}(\kappa)}{2 \kappa} \quad, \quad f_{E}(\kappa) \equiv-\frac{j_{1}(\kappa)}{2}+5 \frac{j_{2}(\kappa)}{2 \kappa},
\end{aligned}
$$

Ground based interferometers

Domcke, Garcia-Bellido, Peloso, Pieroni, Ricciardone, LS, Tasinato 1910.08052

$$
\begin{aligned}
& \mathcal{M}_{i j}^{\lambda}(k)=f_{A}(\kappa) \operatorname{tr}\left[D_{i} D_{j}\right]+f_{B}(\kappa)\left(D_{i} \hat{s}_{i j}\right)^{a}\left(D_{j} \hat{s}_{i j}\right)^{a}+f_{C}(\kappa)\left(D_{i} \hat{s}_{i j} \hat{s}_{i j}\right)\left(D_{j} \hat{s}_{i j} \hat{s}_{i j}\right) \\
& +\lambda f_{D}(\kappa)\left[D_{i} D_{j}\right]^{a b} \epsilon_{a b c} \hat{s}_{i j}^{c}+\lambda f_{E}(\kappa)\left(D_{i} \hat{s}_{i j}\right)^{a}\left(D_{j} \hat{s}_{i j}\right)^{b} \epsilon_{a b c} \hat{s}_{i j}^{c} \\
& \mathcal{D}_{i j}^{\lambda}(k, \hat{v})=f_{A}^{\prime}(\kappa) \hat{v}_{e} \hat{s}_{e}\left(D_{i} D\right) \\
& +\left[f^{\prime} B(\kappa)-2 \frac{f_{B}(\kappa)}{\kappa}\right] \hat{v}_{e} \hat{s}_{e}\left(D_{i} \hat{s}_{b}\right)^{a}\left(D_{j} \hat{s}\right)^{a}+\frac{f_{B}(\kappa)}{\kappa}\left[\left(D_{i} \hat{v}\right)^{a}\left(D_{j} \hat{s}\right)^{a}+\left(D_{i} \hat{s}\right)^{a}\left(D_{j} \hat{v}\right)^{a}\right] \\
& +\left[f^{\prime}(\kappa)-4 \frac{f_{C}(\kappa)}{\kappa}\right] \hat{v}_{e} \hat{s}_{e}\left(D_{i} \hat{s} \hat{s}\right)\left(D_{j} \hat{s} \hat{s}\right)+2 \frac{f_{C}(\kappa)}{\kappa}\left[\left(D_{i} \hat{s} \hat{v}\right)\left(D_{j} \hat{s} \hat{s}\right)+\left(D_{i} \hat{s} \hat{s}\right)\left(D_{j} \hat{s} \hat{s}\right)\right] \\
& \geq \lambda\left[f_{D}^{\prime}(\kappa)-\frac{f_{D}(\kappa)}{\kappa}\right] \hat{v}_{e} \hat{s}_{e}\left(D_{i} D_{j}\right)^{a b} \epsilon_{a b c} \hat{s}_{c} \nrightarrow \lambda \frac{f_{D}(\kappa)}{\kappa}\left(D_{i} D_{j}\right)^{a b} \epsilon_{a b c} \hat{v}_{c} \\
& \pm \lambda\left[f_{E}^{\prime}(\kappa)-3 \frac{f_{E}(\kappa)}{\kappa}\right] \hat{v}_{e} \hat{s}_{e}\left(D_{i} \hat{s}\right)^{a}\left(D_{j} \hat{s}\right)^{b} \epsilon_{a b c} \hat{s}_{c} \\
& +\lambda \frac{f_{E}(\kappa)}{\kappa}\left\{\left[\left(D_{i} \hat{v}\right)^{a}\left(D_{j} \hat{s}\right)^{b}+\left(D_{i} \hat{s}\right)^{a}\left(D_{j} \hat{v}\right)^{b}\right] \epsilon_{a b c} \hat{s}_{c}+\left(D_{i} \hat{s}\right)^{a}\left(D_{j} \hat{s}\right)^{b} \epsilon_{a b c} \hat{v}_{c}\right\}
\end{aligned}
$$

Ground based interferometers

Crowder, Namba, Mandic, Mukohyama, Peloso 12

assuming a SGWB with maximal parity violation $(\Pi=+1)$, the lines denote Ω_{α} needed for a given α to detect the SGWB and exclude $\Pi=0$ at 95% confidence, using two second-generation detector networks and the example of a third-generation detector pair.

Ground based interferometers

$$
\begin{gathered}
\text { Monopole sensitivity to chiral GW } \\
\mathcal{M}_{i j}^{+}-\mathcal{M}_{i j}^{-}=\frac{\kappa^{2}(-3+\cos \phi) j_{0}(\kappa)+\left[3\left(7-\kappa^{2}\right)+\left(9+\kappa^{2}\right) \cos \phi\right] j_{2}(\kappa)}{24 \kappa} \sin \left(\frac{\phi}{2}\right) \sin [2(\alpha+\beta)]
\end{gathered}
$$

Maximized with detectors at antipodes rotated by 45°

Ground based interferometers

To sum up...

- Theoretical motivation for chiral SGWB, smoking gun of primordial origin?
- Parity violating SGWB detectable by existing network of ground-based detectors if $\Omega_{G W} \sim 10^{-8}$
- Detectable by LISA (@. 01 Hz) or ET (@100 Hz) if $\Omega_{G W \sim 10-11}$

