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Motivation

The example of the cosmic microwave background (CMB):

Planck (2018)
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Combination of LSS probes Problem:

Jullo et al. (2019)

e.g.  galaxy-galaxy lensing and redshift space galaxy clustering  

Motivation
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likelihood

From measurements to cosmological constraints :

posterior

prior

Motivation
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where

Usual hypothesis: The likelihood is Gaussian

is the covariance matrix  

is the expectation value given the model 

minimisation of

precision matrix 

Motivation
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predict the precision matrix in any cosmological model

The key ingredient is the precision matrix :

1) N-body simulations

2) Approximate methods 

3) Monte Carlo realisations

estimate the covariance matrix from sample realisations 
in a given cosmological model

INSTEAD

ONE SHOULD 

Motivation
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Monte Carlo method

The galaxy/matter density field is a non-gaussian field 

Problem:

use a local transform to generate non-Gaussian PDFs 

the 1-point PDF is also non-gaussian 
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Local transform (probability conservation):

target PDF

PΓ (δ ')dδ '
−1

δ

∫ = G(ν ')dν
−∞

ν

∫ '

δ = L(ν )

Centred reduced Gaussian

Monte Carlo method
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δ = L(ν )

1+δ

ν

Monte Carlo method
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The Gaussian field must be specified in 
Fourier space through its power spectrum:

Minimum requirement: 

match the power spectrum of the non-Gaussian density field 

(2-point correlation function)

Monte Carlo method
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One can express the 2-point correlation as:

ξδ = L(ν1)L(ν2 )B(ν1,ν2,ξν )d
2 ν∫

ξδ = λ(ξν )

:  Centred reduced bivariate GaussianB(ν1,ν2,ξν )

Monte Carlo method
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ξδ

δ ≡ 0

ξδ = λ(ξν )

Monte Carlo method
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Be              the power spectrum of the galaxy field

ξδ (r) = 4π k3P(k) sin(kr)
kr

d lnk
0

∞

∫

ξν = λ
−1(ξδ )

P(k)

Pν (k) =
1
2π 2 r3ξν (r)

sin(kr)
kr

d ln r
0

∞

∫

Monte Carlo method
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Be              the power spectrum of the galaxy field

ξδ (r) = 4π k3P(k) sin(kr)
kr

d lnk
0

∞

∫

ξν = λ
−1(ξδ )

P(k)

Key: 3D Fourier transform and aliasing

Monte Carlo method
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We adopted the following pipeline: Baratta et al. (2020)

Monte Carlo method
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3-D mesh in Fourier space  

ν k (

k )

Box of size L

Monte Carlo method
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3-D mesh in Fourier space  

ν k (

k ) Backward FFT ν (x)

3-D mesh in real space  

Box of size L

Monte Carlo method



16

P(ν )

P(ν ) /G(ν )−1

ν

Monte Carlo method
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3-D mesh in Fourier space  

ν k (

k ) Backward FFT ν (x)

3-D mesh in real space  

Box of size L

Monte Carlo method
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3-D mesh in Fourier space  

Backward FFT

3-D mesh in real space  

δ = L(ν )

3-D galaxy density field

ν k (

k ) ν (x)

δ(x)
Box of size L

Monte Carlo method
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P(δ)

P(δ) / PΓ (δ)−1

δ

Monte Carlo method
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Baratta et al. (2020)

with 10 000 realisations

Monte Carlo method
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Local Poisson process approximation: [ ] L-L
=L e
N

NP
N

!
(Layser 1956)

Point process: 
populate the density field with objects

Monte Carlo method
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Point process: 
populate the density field with objects

100 realisations

Baratta et al. (2020)

Monte Carlo method
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Redshift space power spectrum

! [ℎ $%&!"] ! [ℎ $%&!"]

1000 realisations
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Power spectrum covariance matrix

Comparison with the DEMNUni series of 50 N-body 
simulations (Carbone et al. 2016).  
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Redshift space covariance matrix
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1) The covariance matrix is a key ingredient to constrain
cosmological parameters

2) We developed a Monte Carlo method to estimate the 
covariance matrix of clustering observables (Baratta et al. 
2020)

3) We have shown that we are able to predict the expected 
power spectrum even on scales below Nyquist (Baratta et 
al. 2020)

4) We are comparing the method to N-body simulations in 
real and in redshift space

5) We are testing how the Gaussian hypothesis for the 
likelihood could affect cosmological inferences (Euclid 
Work Package)

6) Extend the Monte Carlo to spatially curved universes
7) Study the cosmological dependence of the covariance

In a nutshell:



Ø 8x106 cpu-hours on BGQ/FERMI at CINECA (PI: C. Carbone)

Ø 10 mixed dark matter cosmological simulations for CMB and LSS 
analysis in the presence of evolving dark-energy (w0, wa) and massive 
neutrinos

Ø Baseline Planck cosmology

Ø Gadget-3 with n-particle component (Viel et al. 2010)

Ø box-side size: 2 Gpc/h

Ø particle number: 2 x 20483 (CDM+n)

Ø CDM mass: 8 x 1010 M¤/h (neutrino particle mass depends on Mn)

Ø softening length: 20 kpc/h

Ø starting redshift: zin=99

DEMNUni simulations (phase II)
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Interest: 
the full hierarchy of N-point correlation 

functions can be predicted

Cij = ξν (xi, x j )

GN (

ν,C) = 1

(2π )N /2 C 1/2 exp −
1
2
v TCv

"
#
$

%
&
'

where

and

!(")


