Search for hints of new physics through exotic signatures.
Combining the expertises of the CMS team @ Strasbourg :

- Top physics
- Tracker/tracking development
- Phenomenology

Models under study :

1. Minimal SuperSymmetric Model with R-parity violation where neutralino is the long-lived particle
2. Gauge-Mediated Supersymmetry Breaking where stop is the long-lived particle
3. Split SUSY where gluino is the long-lived particle

## Goal :

Identifying the most sensible way to reconstruct a displaced top
Several possible options :

- Displaced tracks
- Displaced vertices
- Displaced jets
- A combination of them


## Iterative Tracking in CMS:

12 iterations targeting different kinds of tracks, allows the trajectories of charged particles to be reconstructed with great precision while keeping the combinatorics under control ${ }^{[1]}$
For each step :
Seeding $\longrightarrow$ Track building. $\rightarrow$ Track fitting $\longrightarrow$ Track classification (pattern recognition)

Long-lived particle:
Travels for some distance before decaying If decays into SM particles: expecting tracks far from the primary vertex (high R and Z) \& not pointing to the primary vertex (high impact parameter values dxy and dz)

Development of a new tracking iteration :
DisplacedGeneralStep
(Integrated to the official release of CMS-software)

Strategy :

- Using only strip hits for seed building
- Combining the different partitions of the strip tracker (TIB+TID+TOB+TEC ring5-7)
- Larger tracking region (max dxy and dz for seed) than PixelLess and TobTec

Tracking efficiency as a function of the transverse impact parameter

Tracking efficiency as a function of the transverse vertex position
On displaced SUSY sample (Stop to botto
Challenges :

- Additional reco timing
- Increase of fake rate

$$
\text { , ctau }=50 \mathrm{~cm} \text {, Run } 3 \text { conditions, }\langle\mathrm{PU}\rangle=65 \text { ) }
$$

CMS Simulation work in progress
1.2 CMS Simulation work in progress
 Sim. track prod. vertex radius (cm)
Tracking efficiency as a function of pseudorapidity
CMS Simulation work in progress


Recovery of the efficiency in the barrel region (up to $50 \%$ more)

Displaced track in transverse plane of tracker




Efficiency gain : comparison between data (UL17) and MC (ttbar) using $K_{0}^{S}$ and $\Lambda$ mass peak


Data-driven estimation gives similar results for $K_{0}^{S}$ and $\Lambda$ when applied on data or MC
Zoom on RPV-SUSY model :
Superpotential function ${ }^{[2]}:$
$V=\epsilon_{i}\left(H_{u} \cdot L_{i}\right)+\frac{1}{2} \lambda_{i j k}\left(L_{i} \cdot L_{j}\right) E_{k}^{c}+\underbrace{\lambda_{i j}^{\prime}\left(L_{i} \cdot Q_{j}\right)}_{i j k} D_{k}^{c}+\frac{1}{2} \lambda_{i j k}^{\prime \prime} U_{i}^{c} D_{j}^{c} D_{k}^{c}$
$\tilde{t} \rightarrow d \mu$

Neutralino production via slepton


Neutralino (llp) decay


Cross section of slepton production


$$
\begin{aligned}
& \tilde{\chi}_{1}^{0} \rightarrow \bar{t} \bar{d} \bar{s} \\
& \tilde{\chi}_{1}^{0} \rightarrow t d s
\end{aligned}
$$

$$
\lambda_{312}^{\prime \prime}=-\lambda_{321}^{\prime \prime}
$$

Free parameters:

- Smuon ( $50 \%$ right, $50 \%$ left) mass
- Neutralino (Bino) mass
- Stop ( $50 \%$ right, $50 \%$ left $)$ mass
- $\lambda^{\prime \prime}$

Preliminary results for a future study :
Search for long lived particles decaying into a top quark inside the CMS tracker volume

Scan on stop (off-shell) and neutralino mass for benchmarks definition Flight distance ( $\mathrm{w} /$ relativistic correction) for two values of $\lambda^{\prime \prime}$


- Interesting parameter space allowing for signal with a displaced top quark coming from a long-lived neutralino
- Same procedure has been used for $\operatorname{UDD}\left(\lambda^{\prime}\right)$ and LQD ( $\lambda^{\prime}$ ) couplings
- Same procedure has been used for GMSB and Split SUSY study
- Phenomenology paper and MC production (Run 3 conditions) in CMSSW under preparation

