CP probes of the Higgs-top interaction

Top LHC France 2021

Matthias Saimpert (CEA-Saclay)

more details in JHEP 11 (2020) 127

Motivation & Model description

- CP structure of Higgs Yukawa-like couplings not constrained with high precision
- New source of CP violation required to explain baryon asymmetry
- Pheno study focusing on Higgs-Top coupling at the LHC: 1

intermediate tops (ggH, H $ightarrow \gamma \gamma$, gg ightarrow ZH)

final state tops (ttH, tHq, tWH)

CP-odd introduced using the Higgs characterization model - JHEP 11(2013) 043:

$$\mathcal{L}_{\rm yuk} = -\frac{y_t^{\rm SM}}{\sqrt{2}} \bar{t} \left(c_t + i \gamma_5 \overline{c}_t \right) t H,$$

¹ not considered here although also relevant: intermediate Higgs with final state tops, e.g. 4 tops

o $+ c_V$ rescale CP-even coupling to W, Zo $+ c_{\gamma}, c_g$ BSM direct coupling to γ and g

Coupling dependence

- Production cross sections / decay rates parametrized w.r.t c_t , \tilde{c}_t , c_v , c_g , c_γ .
- $\begin{array}{ll} \bullet \quad \text{Ex:} & \quad \mu_{tiH} \equiv \frac{\sigma_{pp \to tiH}}{\sigma_{ph \to tiH}^{\text{SM}}} = 1.00c_t^2 + 0.42\tilde{c}_t^2, \quad \quad \mu_{tH} \equiv \frac{\sigma_{pp \to tH}}{\sigma_{ph \to tiH}^{\text{SM}}} = 3.28c_t^2 + 1.00\tilde{c}_t^2 + 3.82c_V^2 6.10c_Vc_t, \\ & \quad \quad \mu_{tWH} \equiv \frac{\sigma_{pp \to tWH}}{\sigma_{ph \to tWH}^{\text{SM}}} = 2.73c_t^2 + 2.07\tilde{c}_t^2 + 2.01c_V^2 3.74c_Vc_t. \end{array}$

p_{T}^{Z} distribution in pp o ZH

- sensitivity of gg component at high p_T
- impact on $p_{\rm T}^Z$ shape
- fraction of events in each STXS bin

Signal strengths μ of 'ttH+ttH+tWH'

- orange cross: SM, gray line: $\mu=1$
- ullet red contour: $\kappa_g=1.0\pm0.2$, $(c_g=0)$
- white contour: BR($\gamma\gamma$) \pm 20% wrt SM ($c_{\gamma}=0$)

Current LHC constraints

- Fit model based on all relevant inclusive & differential Higgs boson rate measurements available a
- Focus on fit results with c_t , \tilde{c}_t , c_v , c_g , c_γ free (5D parameter space)

^adedicated ATLAS/CMS CP analysis in $ttH(o \gamma\gamma)$ channel excluded due to differences in the fit model

Future sensitivity

- Exploring the idea of a clean, independent measurement of ttH + tWH(2-lepton) and tH (1-lepton) production. Use $H \rightarrow \gamma \gamma$ only.
- Result shall not depend on CP to be able to use it in global fit (i.e. selection acceptance of ttH + tWH and tH)

120.7

- 2L region pure in ttH+tWH, but 1L region tH/ttH+tWH mixed
 - ← careful choice of discriminating observable to reject ttH + tWH
- Requires HL-LHC high statistics \leftarrow O(10-100) events / region with 3 ab⁻¹
- May lead to clear hint at a non-zero CP-odd top-Yukawa coupling (and lower CP-even) than SM
 - in addition, $\mu_{tH} < 2.21$ if σ^{tH} is SM-like. Result largely independent from CP.

SM total CP-odd, tH

CP-odd, rWH CP-odd total finel. SM WH = mZH)