Four-top-quark signatures: from EFT to simplified models

Based on 1805.10835 with B. Fuks and M. Goodsell

And 2104.xxxx with B. Fuks and F. Maltoni

- LHC is a "top-quark factory", with the process $pp \rightarrow t\bar{t}t\bar{t}$ being particularly interesting:
 - Much rarer than top-pair production (CS in the SM $\sigma_{pp \to 4t} \sim 12 {\rm fb})$
 - Important NP search channel

 → E.g. pair production of colored
 top-philic particle
- EFT for top-physics gathered a large interest → based on SMEFT approach
 - Important part of top WG "third generation operators"

- Simplified models often include EWSB
 - → Using SU(3)_c×U(1)_{em} basis is important and leads to additional operators
- Typical SMEFT approach is redundant for top-only operators
- We perform the matching EFT/Simplified models

$$\mathcal{L}_{V_1} \supset -\frac{1}{4} V_1^{\mu\nu} V_{1\mu\nu} - \frac{1}{2} m_{V_1}^2 V_1^{\mu} V_{1\mu} + \bar{t} \gamma_{\mu} \left[g_{1L} P_L + g_{1R} P_R \right] V_1^{\mu} t$$

Luc Darmé, INFN – LNF

 $\mathcal{O}_S^1 = \bar{t}t \ \bar{t}t$ $\mathcal{O}_S^8 = \bar{t} T^A t \ \bar{t} T_A t$ $\mathcal{O}_{RR}^1 = \bar{t}_R \gamma^\mu t_R \ \bar{t}_R \gamma_\mu t_R$ $\mathcal{O}_{LL}^1 = ar{t}_L \gamma^\mu t_L \ ar{t}_L \gamma_\mu t_L$ $\mathcal{O}_{LR}^1 = \bar{t}_L \gamma^\mu t_L \ \bar{t}_R \gamma_\mu t_R$ $\mathcal{O}_{LR}^8 = \bar{t}_L T^a \gamma^\mu t_L \ \bar{t}_R T_a \gamma_\mu t_R$

1. EFT approach not accurate for models with heavy mediators

In the HL-LHC accessible regime, on-shell production dominates

LD, Fuks, Maltoni -- 2104.xxxx preliminary results

2. Dedicated search strategies for resonances in tttt promising at HL-LHC

 The process generating tttt is completely different between SM and NP
 → We add a signal region with H_T > 1.2 TeV to CMS-TOP-18-003 search

In more details ...

- EFT approach tends to underestimate the limits
- Large uncertainty regarding size of NLO correction: we vary K-factor from 1 to 2

 High –Ht approach leads to a significant improvement in the 1 TeV to 2 TeV regime

New simplified models limits

Updated limits for four simplified models:

- Vector Octet
- Scalar Octet
- Vector Singlet
- Scalar Singlet
- → The EFT approach is adequate only for heaviest vector octets

Limits are shown varying the K-factor K_{NP} between 1 and 2

Conclusion

- Fast experimental progresses on $t\bar{t}t\bar{t}$ searches
 - \rightarrow Experiments are still statistically limited
- Simplified model with heavy top-philic mediators are reproduced by EFT only for high-masses, i.e. in regions with current low sensitivity
 - \rightarrow On-shell production dominates most of the time
- Detection strategy focusing on top-philic particles on-shell production are very promising
 - Illustrated by high-Ht analysis approach → dominates our recasted limit in the 1-2 TeV range
- We found that QED LO interference important + NLO QCD corrections large, but known only for QCD SM.

→ Complete-NLO corrections would be welcome (especially for composite models where EFT is relevant)...

Backup - EFT vs simplified models

Matching and comparing CS predictions

Simplified models

• We consider singlet top-philic particles...

$$\mathcal{L}_{S_1} \supset \frac{1}{2} \partial_{\mu} S_1 \partial^{\mu} S_1 - \frac{1}{2} m_{S_1}^2 S_1^2 + \bar{t} \left[y_{1S} + y_{1P} i \gamma^5 \right] S_1 t$$

Include EWSB contributions

→ contained for instance in
 2HDM type-I or type-II

$$\mathcal{L}_{V_1} \supset -\frac{1}{4} V_1^{\mu\nu} V_{1\mu\nu} - \frac{1}{2} m_{V_1}^2 V_1^{\mu} V_{1\mu} + \bar{t} \gamma_\mu \left[g_{1L} P_L + g_{1R} P_R \right] V_1^{\mu} t$$

 \rightarrow Via mixing with new VL quarks, etc...

And color octets top-philic particles

$$\mathcal{L}_{S_8} \supset \frac{1}{2} D_{\mu} S_8^a D^{\mu} S_{8a} - \frac{1}{2} m_{S_8}^2 S_8^a S_{8a} + \bar{t} \left[y_{8S} + y_{8P} i \gamma^5 \right] S_8 t \xrightarrow{\rightarrow} \text{Composite models, N=2} \\ \mathcal{L}_{V_8} \supset -\frac{1}{4} V_8^{\mu\nu} V_{8\mu\nu} - \frac{1}{2} m_{V_8}^2 V_8^{\mu} V_{8\mu} + \bar{t} \gamma_{\mu} \left[g_{8L} P_L + g_{8R} P_R \right] V_8^{\mu} t \xrightarrow{\rightarrow} \text{Composite models, N=2} \\ \text{Include direct QCD interactions}$$

Simplified models matching

- Integrating out the (assumed heavy) mediator leads to matching coefficients between the EFT and the simplified models
 - Notice that basis is compact enough that, e.g. pseudo-scalar top-philic particles does not need a dedicated operator

	\mathcal{O}_S^1	\mathcal{O}_S^8	\mathcal{O}^1_{LL}	\mathcal{O}^1_{RR}	\mathcal{O}^1_{LR}	\mathcal{O}^8_{LR}
S_1	$\frac{y_{1S}^2}{2M_{S}^2}$	/	/	/	/	/
\tilde{S}_1	$-rac{y_{1P}^{2^{-1}}}{2M_{ ilde{S}_1}^2}$	/	/	/	$-rac{y_{1P}^2}{3M_{ ilde{S}_1}^2}$	$-2rac{y_{1P}^2}{M_{ ilde{S}_1}^2}$
V_8	/	/	$-rac{g_{1L}^2}{6M_{V_8}^2}$	$-\frac{g_{1R}^2}{6M_{V_8}^2}$	/	$-\frac{g_{8L}g_{8R}}{M_{V_8}^2}$

Backup - Detection strategy EFT vs simplified models

Based on CMS-TO-18-003 analysis

The CMS 4t analysis

\rightarrow SM-like searches

- Large progresses in recent years!
- Both BDT and SR-based strategy based on number of jets/leptons ...
- Backgrounds include $t\bar{t}W, t\bar{t}Z,$ non-prompt leptons etc ...

CMS (17) $\sigma_{4t}^{SM} = 16.9^{+13.8}_{-11.4}$ fb	CMS (19) $\sigma_{4t}^{SM} = 12.6^{+5.8}_{-5.2} \text{ fb}$		
35.9 fb^{-1}	137 fb^{-1}		
(CMS 1710.10614)	(CMS 1908.06463)		

• Since SM-driven, we need a full recast to get reliable NP bound

N_{ℓ}	N_b	N_{j}	Region	$t\bar{t}t\bar{t}$ (SM - CMS)	$t\bar{t}t\bar{t}$ (Bkd - CMS)
2	3	6	SR5	1.61 ± 0.90	5.03 ± 0.77
2	≥ 4	≥ 5	SR8	2.08 ± 1.23	3.31 ± 0.95
≥ 3	≥ 3	4	SR12	0.56 ± 0.32	2.03 ± 0.48
≥ 3	≥ 3	5	SR13	0.66 ± 0.38	1.09 ± 0.28
≥ 3	≥ 3	≥ 6	SR14	0.76 ± 0.45	0.87 ± 0.30

	SR5	SR8	Large H_T
$N_{\rm lim}$ (LHC)	5.3	6.6	10.1
$N_{\rm lim}$ (HL-LHC)	58	71	60

Recasting setup

• Simple recasting chain:

Implement effective model with ,e.g:

 $\mathcal{L} \supset \frac{1}{2} D_{\mu} O^a D^{\mu} O_a - \frac{1}{2} m_O^2 O^a O_a + y_8 \bar{t} \gamma^5 t O$

• FEYNRULES

[Christensen & Duhr (CPC '09); Alloul et al.(CPC'14) Degrande (CPC'16)]

• MG5_aMC@NLO

Alwall et al. (JHEP'14)

• PYTHIA 8

Sjostrand et al. (CPC'15)

• MadAnalysis 5

[Conte et al.(CPC'12); Conte et al. (EPJC'14) Dumont et al. (EPJC'15)] Generate $pp \rightarrow tttt$, including QED interferences

Decay tops inclusively t > w+ b, w+ > all al

The cross-section/signal shape depends only on the top-philic particle mass. → Scan over it

Efficiencies

- Comparing selection cut efficiencies for both approach
- "On-shell" effects important
- --> Particularly for the High Ht analysis
- For large mass regime/EFT regime, signal is more mixed with the SM

Backup – EFT details

QED interferences and going NLO

- Only a partial knowledge of NLO effects ...
 - In the SM, NLO-correction in QCD dominates $\rightarrow K_{SM} \sim 2.3$
 - In the SMEFT, much smaller effects from $\rightarrow K_{QCD} \lesssim 1^{\text{Degrande et al. 2008.11743}}$
 - In simplified model: case of pseudo-scalar octet led to $K_{QCD} \sim 2$ Goodsell 1805,10835
- Altogether, pretty uncertain situation: we will present limits varying the K-factor between 1 and 2

QEDinterference terms are important!

				(
		LO		Ļ	NLO
Op.	NP^2	Int. QCD only	Int. QED only	K_{NLO}^{QCD}	K _{SM}
$\mathcal{O}^1_{LL}/$	$2 0.8^{+44\%}_{-28\%} \text{ fb}$	$0.20^{+47\%}_{-31\%}$ fb	$-0.80^{+41\%}_{-28\%}$ fb	~ 0.93	
\mathcal{O}^8_{LR}	$0.28^{+44\%}_{-29\%}$ fb	$0.22^{+52\%}_{-35\%}$ fb	$-0.49^{+42\%}_{-28\%}$ fb	~ 1.1	
SM	/	$4.7^{+66\%}_{-38\%}$ fb	$0.5^{+59\%}_{-35\%}$ fb	/	~ 2.3
For $\frac{c}{\Lambda^2}$ ~	$\sim 1 \text{ TeV}^{-2}$		(1711.02116)		

Frederix, Pagani, Zaro

1711.02116

(2008.11743 + Ken's talk)

Matching EFT descriptions ...

tttt-related in SMEFT

used in 2010.05915

Pure tttt, SU(3)xU(1)

 $\begin{cases} \mathcal{O}_{RR}^{1} = \bar{t}_{R}\gamma^{\mu}t_{R} \ \bar{t}_{R}\gamma_{\mu}t_{R} \\ \mathcal{O}_{LL}^{1} = \bar{t}_{L}\gamma^{\mu}t_{L} \ \bar{t}_{L}\gamma_{\mu}t_{L} \\ \mathcal{O}_{LR}^{1} = \bar{t}_{L}\gamma^{\mu}t_{L} \ \bar{t}_{R}\gamma_{\mu}t_{R} \\ \mathcal{O}_{LR}^{8} = \bar{t}_{L}T^{A}\gamma^{\mu}t_{L} \ \bar{t}_{R}T^{A}\gamma_{\mu}t_{R} \\ \mathcal{O}_{S}^{1} = \bar{t}t \ \bar{t}t \\ \mathcal{O}_{S}^{1} = \bar{t}t \ \bar{t}t \\ \mathcal{O}_{S}^{8} = \bar{t}T^{A}t \ \bar{t}T^{A}t \ . \\ \begin{cases} \mathcal{O}_{PS}^{1} = \bar{t}t \ \bar{t}(i\gamma^{5})t \\ \mathcal{O}_{PS}^{8} = \bar{t}T^{A}t \ \bar{t}T^{A}(i\gamma^{5})t \end{cases} \end{cases}$

When the bottom-quark part is not included, this basis is redundant

P-odd

$$\mathcal{O}_{QQ}^{\mathrm{WG},1} \equiv \frac{1}{2} \mathcal{Q}_{qq}^{(1)} \longrightarrow \frac{1}{2} \mathcal{O}_{LL}^{1}$$
$$\mathcal{O}_{QQ}^{\mathrm{WG},8} \equiv \frac{1}{8} \left(\mathcal{Q}_{qq}^{(3)} + \frac{1}{3} \mathcal{Q}_{qq}^{(1)} \right) \longrightarrow \frac{1}{6} \mathcal{O}_{LL}^{1} ,$$

EFT scales cut-off

• To make the EFT more robust, we can cut on an event-perevent basis

 \rightarrow Partonic CoM smaller than 10⁻ the EFT scale

(Approach used in LHC –DM searches, before switching to simplified models)

- Effectively transform the LHC into a "lower energy" machine
- Typically "reduces" the EFT CS in a model-independent way

