Latest ATLAS results on ttHbb Analysis

[ATLAS-CONF-2020-058]

TOP-LHC-France 2021 Centre de Physique des Particules de Marseille Aix-Marseille Université / IN2P3-CNRS

April 6th-7th, 2021

1

Introduction

Top Yukawa coupling

- Probing the top-Higgs Yukawa y_t: Largest in SM and sensitive to potential New Physics (BSM)
- ttH production provides direct probe of yt
- Higgs measurement explored through Simplified Template Cross Sections (STXS) formalism

ttH(bb) leptonic channels

- ttH(bb) channel exploits the large branching ratio of H→bb (58%) and the leptonic decays of top quarks ⇒ distinctive signature
- Two channels based on the number of leptons in the final state: **single-lepton** and **di-lepton**
- Challenges: Modeling of tt+HF background due to large irreducible background with big theoretical uncertainty (from tt+bb)
- Higgs boson reconstruction challenging due to b-jet combinatorics

2

ATLAS ttHbb ATLAS-CONF-2020-058

Measurement of the ttH production with ttH(bb) events using full Run-2 (139 fb⁻¹) luminosity with 1 or 2 leptons (e/μ) in final state

Similar analysis to 36.1 fb⁻¹ Phys.Rev.D 97 (2018) 072016 with updates:

Categorization

- Signal regions defined by **#leptons**, **#jets**, **#b**tagged jets (4 working points) and boosted Higgs + top tagging DNNs
- Splitting the single-lepton channel into **boosted** and **resolved** channels
- Events split into p_{T}^{H} bins, matching STXS p_{T}^{H} bins
- Define **CRs** to constrain $tt+\geq 1b$ and $tt+\geq 1c$

Reconstruction

- BDTs trained on signal events to match reconstructed jets to the partons emitted from top-quark and Higgs-boson decays in resolved channel
- DNN trained to identify boosted Higgs and tops in boosted channel

Classification

 \bullet BDTs trained to discriminate signal (ttH) from backgrounds depending on channel

Region	$SR^{\geq 4j}_{\geq 4b}$	Dile CR ^{≥4j} 3b hi	epton CR ^{≥4j} 3b lo	CR ^{3j} _{3b hi}	$SR^{\geq 6j}_{\geq 4b}$	Single-lepton $CR^{5j}_{\geq 4b \text{ hi}} CR^{5j}_{\geq 4b \text{ I}}$	o SR _{boosted}
#leptons	= 2				= 1		
#jets	≥ 4			= 3	≥ 6	= 5	≥ 4
@85% #b-tag @77% @70%	-				≥ 4		
	-				-		$\geq 2^{\dagger}$
	≥ 4	= 3			≥ 4		-
@60%	-	= 3	< 3	= 3	-	≥ 4 < 4	-
#boosted cand.	-				0		≥ 1
Fit input	BDT Yield				BDT/Yield	ΔR_{hh}^{avg}	BDT

 \bullet Background estimate: $tt{+}{\geq}1b$ largest background in all regions

• tt+light jets is small due to tightened and simplified b-jet requirements

ATLAS ttHbb ATLAS-CONF-2020-058

 $\bullet \ tt+bb \ NLO \ 4FS$ simulation used in this analysis for nominal $\ tt+\geq 1b$ background estimate

• Different samples are used to model and assign the uncertainties from initial and final state radiation, parton shower and also NLO matching uncertainties on relative fractions of tt+bb sub-components

• To correct the p_T^H shape in the fit, data/MC uncertainty was derived from inclusive single-lepton and di-lepton regions

• Normalisation of $tt+{\geq}1b$ estimated with free-floating parameter in the signal extraction fit to data $\Rightarrow 1.25^{+0.09}_{-0.08}$

Neelam Kumari

TTHbbAnalysis

4

ATLAS ttHbb ATLAS-CONF-2020-058

- The measurement uncertainty is dominated by systematic uncertainties, in particular from $tt+\geq 1b$ modeling
- Observed significance \Rightarrow 1.3 and (expected significance \Rightarrow 3.0) (1.4 (1.6) for 36.1 fb⁻¹)
- The first differential measurement of the ttH signal strength performed in five p_T^H bins in the STXS framework
- Inclusive measurement of ttH signal-strength: $\mu = 0.43^{+0.36}_{-0.33}$

Thank you for your attention!